Читать книгу The Ocean and its Wonders (Robert Michael Ballantyne) онлайн бесплатно на Bookz (4-ая страница книги)
bannerbanner
The Ocean and its Wonders
The Ocean and its WondersПолная версия
Оценить:
The Ocean and its Wonders

5

Полная версия:

The Ocean and its Wonders

Here, then, we have the first of the constant disturbing causes, and of apparent irregularities, in the winds. The Earth, as every one knows, whirls rapidly on its axis from west to east. At the equator the whirl is so rapid that the atmosphere does not at once follow the Earth’s motion. It lags behind, and thus induces an easterly tendency to the winds, so that a north wind becomes a north-east, and a south wind a south-east. Here we have another constant cause of variation from the northerly and southerly flow. We thus account for an easterly tendency to the winds, but whence their westerly flow? It is simply explained thus:

The motion of the Earth is greatest at the equator. It diminishes gradually towards the poles, where there is no motion at all. The atmosphere partakes of the Earth’s motion when in contact with it; and when thrown upwards by heat, as at the equator, it keeps up the motion for some time, as it meets with no resistance there. Bearing this in mind, let us now follow a gush of warm atmosphere from the equator. It rushes up, and, turning north and south, seeks the poles. We follow the northern division. When it left the Earth it had acquired a very strong motion towards the east,—not so great as that of the Earth itself, but great enough to be equivalent to a furious gale from west to east. If we suppose this air to redescend whence it rose, it would, on reaching the equator, find the Earth going too fast for it. It would lag a little, and become a gentle easterly breeze. But now, throw aside this supposition;—our breeze rushes north; at latitude 30 degrees it has got cooled, and swoops down upon the Earth; but the Earth at this latitude is moving much slower than at the equator; the wind, however, has lost little or none of its easterly velocity. On reaching the Earth it rushes east much faster than the Earth itself, and thus becomes a westerly gale.

There are, however, many other agents at work, which modify and disturb what we may call the legitimate flow of the wind; and these agents are diverse in different places, so that the atmosphere is turned out of a straight course, and is caused to deflect, to halt, and to turn round: sometimes sweeping low as if in haste; at other times pausing, as if in uncertainty; and often whirling round, as if in mad confusion. To the observer, who sees only the partial effects around his own person, all this commotion seems but the disorderly action of blind chance; but to the eye of Him who sees the end from the beginning, we may certainly conclude that naught is seen but order and perfect harmony. And to the eye of Science there now begins to appear, in what was formerly an atmospheric chaos, an evidence of design and system, which is not, indeed, absolutely clear, but which is nevertheless abundantly perceptible to minds that cannot hope in this life to see otherwise than “through a glass, darkly.”

The causes which modify the action of the winds are, as we have said, various. Local causes produce local currents. A clear sky in one region allows the sun’s rays to pour upon, let us say, the ocean, producing great heat; the result of which is evaporation. Aqueous vapour is very light, therefore it rises; and in doing so the aqueous particles carry the air up with them, and the wind necessarily rushes in below to supply its place. The falling of heavy rain, in certain conditions of the atmosphere, has the effect of raising wind. Electricity has also, in all probability, something to do with the creation of motion in the atmosphere. Now, as these are all local causes, they produce local—or what, in regard to the whole atmosphere, may be termed irregular—effects. And as these causes or agents are in ceaseless operation at all times, so their disturbing influence is endless; and hence the apparent irregularity in the winds.

But these causes are themselves, not less than their results, dependent on other causes or laws, the workings of which are steady and unvarying; and the little irregularities that appear to us in the form of fluctuating and changing winds and calms may be compared to the varying ripples and shifting eddies of a river, whose surface is affected by the comparatively trifling influences of wind, rain, and drought, but whose grand onward course is never for a single moment interrupted.

Among these disturbing influences, the Gulf Stream is a very important one. It is constantly sending up large volumes of steam, which, rising into the air, induce a flow of wind from both sides towards its centre. And many of the storms that arise in other parts of the Atlantic make for this stream, and follow its course.

So much has been ascertained by scientific investigation of the winds, that we can now distinctly map out the great belts or currents which pass right round the world. We can tell in which parallels winds with easting, and in which those with westing, in them, will be most frequently found; and by directing our course to such places, we can to a certain extent count upon profiting by the winds that will be most suitable. Before the facts of atmospheric circulation were known, mariners sailed by chance. If they happened to get into the belt of wind that suited them, their voyages were favourable; if they got into the wrong region, their voyages were unfavourable,—that was all. But they had no idea that there was any possibility of turning the tables, and, by a careful investigation of the works of the Creator, coming at last to such knowledge as would enable them to reduce winds and waves, in a great degree, to a state of slavery, instead of themselves being at their mercy.

The world may be said to be encircled by a succession of belts of wind, which blow not always in the same direction, but almost invariably with the same routine of variations. A vessel sailing from north to south encounters these belts in succession. To mariners of old, these varying winds seemed to blow in utter confusion. To men of the present time, their varied action is counted on with some degree of certainty. The reason why men were so long in discovering the nature of atmospheric circulation was, that they were not sufficiently alive to the immense value of united effort. They learned wisdom chiefly from personal experience—each man for himself; and in the great majority of cases, stores of knowledge, that would have been of the utmost importance to mankind, were buried with the individuals who had laid them up. Moreover, the life of an individual was too short, and his experience too limited, to enable him to discover any of the grand laws of Nature; and as there was no gathering together of information from all quarters, and all sorts of men, and all seasons (as there is now), the knowledge acquired by individuals was almost always lost to the world. Thus men were ever learning, but never arriving at a knowledge of the truth.

May we not here remark, that this evil was owing to another evil—namely, man’s ignorance of, or indifference to, the duty of what we may term human communication? As surely as gravitation is an appointed law of God, so surely is it an appointed duty that men shall communicate their individual knowledge to each other, in order that the general knowledge of the species may advance and just in proportion to the fidelity with which men obey this duty—the care and ability with which they collate and systematise and investigate their knowledge—will be the result of their efforts.

In order to make the above remarks more clear as regards atmospheric phenomena, let us suppose the case of a sailor who makes the same voyage every year, but not precisely at the same time each year (and it must be remembered that the rigid punctuality at starting which now holds good did not exist in former times). In his first voyage he had to cross, say, four of the wind-belts. While crossing belt number one, he experiences south-west winds chiefly, and, being an observant man, notes the fact. In belt number two he encounters westerly winds. In number three he is in a region of variable winds and calms. In this region the winds blow all round the compass, averaging about three months from each quarter. But our sailor does not know that; he does not stay there all the year to make notes; he passes on, having recorded his experience. In crossing belt number four, he finds the prevailing winds to be easterly.

Next year he sets forth again but merchants are not always punctual. The lading cannot be completed in time, or adverse winds render the setting sail unadvisable. At length, after a month or six weeks’ delay, he proceeds on his voyage, and finds belt number one perhaps much the same as last year. He congratulates himself on his good fortune, and notes his observations; but in belt number two, the wind is somewhat modified, owing to its being later in the season,—it is rather against him. In number three it is right in his teeth, whereas last year it was quite in his favour. In number four, which we will suppose is the trade-wind belt (of which more hereafter), he finds the wind still easterly. Here, then, is the groundwork of confusion in our sailor’s mind. He has not the remotest idea that in belt number one the wind blows chiefly, but not always, in one particular direction; that in number four it blows invariably in one way; and that in number three it is regularly irregular. In fact, he does not know that such belts exist at all, and his opportunities of observing are not sufficiently frequent or prolonged to enable him to ascertain anything with certainty.

Now, when we remember that in this imperfect experience of his he is still further misled by his frequently encountering local vicissitudes—such as storms and calms resulting from local and temporary causes—we see how confusion becomes worse confounded. No doubt he does gather some few crumbs of knowledge; but he is called on, perhaps, to change his scene of action. Another ship is given to him, another route entered on, and he ceases altogether to prosecute his inquiries in the old region. Or old age comes on; and even although he may have been beginning to have a few faint glimmerings as to laws and systems in his mind, he has not the power to make much of these. He dies; his knowledge is, to a very large extent, lost, and his log-books disappear, as all such books do, nobody knows or cares where.

Now this state of things has been changing during the last few years. Log-books are collected in thousands. The experiences of many men, in reference to the same spots in the same years, months, and even hours, are gathered, collated, and compared; and the result is, that although there are conflicting elements and contradictory appearances, order has been discovered in the midst of apparent confusion, and scientific men have been enabled to pierce through the chaos of littlenesses by which the world’s vision has been hitherto obscured, and to lay bare many of those grand progressions of nature which move unvaryingly with stately step through space and time, as the river, with all its minor eddies and counter-currents, flows with unvarying regularity to the ocean.

Chapter Six

Trade-winds—Storms—Their Effects—Monsoons—Their Value—Land and Sea Breezes—Experiments—Hurricanes—Those of 1801—Rotatory Storms—Their Terrible Effects—China Seas—Hurricane in 1837—Whirlwinds—Weight of Atmosphere—Value of Atmospheric Circulation—Height of Atmosphere

Before proceeding to speak of the power and the dreadful effects of wind, it is necessary to say a word or two about the trade-winds.

It is supposed that the “trades” derived their name from the fact of their being favourable to navigation, and, therefore, to trade. They consist of two belts of wind, one on each side of the equator, which blow always in the same direction.

In the last chapter it was explained that the heated atmosphere at the equator rises, and that the cooler atmosphere from the poles rushes in to supply its place. That which rushes from the south pole is, of course, a south wind, that from the north pole a north wind; but, owing to the Earth’s motion on its axis from west to east, the one becomes a north-east, the other a south-east wind. These are the north-east and the South-east “trades.” They blow regularly—sometimes gently, sometimes fiercely—all the year round. Between the two is a belt of calms and changeable breezes, varying from 150 to 500 miles broad—according to the time of the year—where there are frequent and violent squalls, of very short duration, accompanied with heavy rains. This region is called by seamen the “doldrums,” and considerable trouble and difficulty do ships experience in crossing it.

It has already been explained that about latitude 30 degrees, the upper current of wind from the south descends. At the same point the upper current from the north also descends. They cut through each other, and the point where these two cut each other is the northern limit of the north-east trade-winds. The same explanation holds in regard to the southern limit of the south-east trades.

In the accompanying diagram the arrows within the circle point out the direction of the north-east and the south-east “trades” between the tropics of cancer and capricorn, and also the counter currents to the north and south of these, while the arrows around the circle show how counter currents meet and rise, or descend, and produce the calm belts.

We have hitherto enlarged chiefly on the grand currents of the atmosphere, and on those modifying causes and effects which are perpetual. Let us now turn to the consideration of those winds which are produced by local causes, and the effects of which are partial.

And here we are induced to revert to the Gulf Stream, which has been already referred to as a local disturber of the regular flow of the atmosphere. This immense body of heated water, passing through cold regions of the sea, has the effect of causing the most violent storms. The hurricanes of the West Indies are among the most violent in the world. We have read of one so violent that it “forced the Gulf Stream back to its sources, and piled up the water in the Gulf to the height of thirty feet. A vessel named the Ledbnry Snow attempted to ride it out. When it abated, she found herself high up on the dry land, having let go her anchor among the tree-tops of Elliott’s quay! The Florida quays were inundated many feet; and it is said the scene presented in the Gulf Stream was never surpassed in awful sublimity on the ocean. The water thus dammed up rushed out with frightful velocity against the fury of the gale, producing a sea that beggared description.”

The monsoons of the Indian Ocean are among the most striking and regular of the locally-caused winds. Before touching on their causes, let us glance at their effects. They blow for nearly six months in one direction, and for the other six in the opposite direction. At the period of their changing, terrific gales are frequent—gales such as we, in our temperate regions, never dream of.

What is termed the rainy season in India is the result of the south-west monsoon, which for four months in the year deluges the regions within its influence with rain.

The commencement of the south-west monsoon is described as being sublime and awful beyond description. Before it comes, the whole country is pining under the influence of long-continued drought and heat; the ground is parched and rent; scarcely a blade of verdure is to be seen except in the beds of rivers, where the last pools of water seem about to evaporate, and leave the land under the dominion of perpetual sterility. Man and beast pant for fresh air and cool water; but no cool breeze comes. A blast, as if from the mouth of a furnace, greets the burning cheek; no blessed drops descend; the sky is clear as a mirror, without a single cloud to mitigate the intensity of the sun’s withering rays. At last, on some happy morning, small clouds are seen on the horizon. They may be no bigger than a man’s hand, but they are blessed harbingers of rain. To those who know not what is coming, there seems at first no improvement on the previous sultry calms. There is a sense of suffocating heat in the atmosphere; a thin haze creeps over the sky, but it scarcely affects the broad glare of the sun.

At length the sky begins to change. The horizon becomes black. Great masses of dark clouds rise out of the sea. Fitful gusts of wind begin to blow, and as suddenly to cease; and these signs of coming tempest keep dallying with each other, as if to tantalise the expectant creation. The lower part of the sky becomes deep red, the gathering clouds spread over the heavens, and a deep gloom is cast upon the earth and sea.

And now the storm breaks forth. The violent gusts swell into a continuous, furious gale. Rain falls, not in drops, but in broad sheets. The black sea is crested with white foam, which is quickly swept up and mingled with the waters above; while those below heave up their billows, and rage and roar in unison with the tempest. On the land everything seems about to be uprooted and hurled to destruction. The tall straight cocoa-nut trees are bent over till they almost lie along the ground; the sand and dry earth are whirled up in eddying clouds, and everything movable is torn up and swept away.

To add to the dire uproar, thunder now peals from the skies in loud, continuous roars, and in sharp angry crashes, while lightning plays about in broad sheets all over the sky, the one following so close on the other as to give the impression of perpetual flashes and an unintermitting roar; the whole scene presenting an aspect so awful, that sinful man might well suppose the season of the Earth’s probation had passed away, and that the Almighty were about to hurl complete destruction upon his offending creatures.

But far other intentions are in the breast of Him who rides upon the storm. His object is to restore, not to destroy—to gladden, not to terrify. This tempestuous weather lasts for some days, but at the end of that time the change that comes over the face of nature seems little short of miraculous. In the words of Mr Elphinstone, who describes from personal observation—“The whole earth is covered with a sudden but luxuriant verdure, the rivers are full and tranquil, the air is pure and delicious, and the sky is varied and embellished with clouds.

“The effect of this change is visible on all the animal creation, and can only be imagined in Europe by supposing the depth of a dreary winter to start at once into all the freshness and brilliancy of spring. From that time the rain falls at intervals for about a month, when it comes on again with great violence; and in July the rains are at their height. During the third month they rather diminish, but are still heavy. In September they gradually abate, and are often suspended till near the end of the month, when they depart amid thunders and tempests, as they came.”

Such are the effects of the monsoons upon land and sea. Of course the terrific gales that usher them in and out could not be expected to pass without doing a good deal of damage, especially to shipping. But this is more than compensated by the facilities which they afford to navigation.

In many parts of the world, especially in the Indian Ocean, merchants calculate with certainty on these periodical winds. They despatch their ships with, say, the north-east monsoon, transact business in distant lands, and receive them back, laden with foreign produce, by the south-west monsoon. If there were no monsoons, the voyage from Canton to England could not be accomplished in nearly so short a time as it is at present.

And now as to the cause of monsoons. They are, for the most part, deflected trade-winds. And they owe their deflection to the presence of large continents. If there were no land near the equator, the trade-winds would always blow in the same manner right round the world; but the great continents, with their intensely-heated surfaces, cause local disturbance of the trade-winds. When a trade-wind is turned out of its course, it is regarded as a monsoon. For instance, the summer sun, beating on the interior plains of Asia, creates such intense heat in the atmosphere that it is more than sufficient to neutralise the forces which cause the trade-winds to blow. They are, accordingly, arrested and turned back. The great general law of the trades is in this region temporarily suspended, and the monsoons are created.

It is thus that the heated plains of Africa and Central America produce the monsoons of the Atlantic, the Pacific, and the Gulf of Mexico.

We think it unnecessary to explain minutely the causes that produce variation in the monsoons. Every intelligent reader will readily conceive how the change of seasons and varied configuration as well as unequal arrangement of land and water, will reverse, alter, and modify the direction and strength of the monsoons.

Land and sea breezes are the next species of wind to which we would direct attention. They occur in tropical countries, and owe their existence to the fact that the land is much more easily affected by sudden changes of temperature than the sea. Thus, the land in warm regions is much heated by the sun’s rays during the day; the atmosphere over it becomes also heated, in virtue of which it rises: the cool atmosphere over the sea rushes in to supply its place, and forms the sea breeze: which occurs only during the day.

At night the converse of this takes place. Land heats and cools rapidly; water heats and cools slowly. After the sun sets, the cooling of the land goes on faster than that of the sea. In a short time the atmosphere over the land becomes cooler than that over the sea; it descends and flows off out to sea; thus forming the land breeze. It occurs only at night, and when the change from one to the other is taking place there is always a short period of calm. Land and sea breezes are of the greatest use in refreshing those regions which, without them, would be almost, if not altogether, uninhabitable.

In “The Tempest,” an interesting work on the origin and phenomena of wind, published by the Society for Promoting Christian Knowledge, a curious and simple experiment is described, whereby the existence of upper and under currents of air and the action of land and sea breezes may be clearly seen and understood. We quote the passage:—

“The existence of the upper and under currents of air which mark the phenomena of the trade-winds, and of land and sea breezes, may be beautifully illustrated in two adjoining rooms, in one of which a good fire is burning, while in the other there is none. If the door between the two rooms be thrown open, the cold air will enter the heated room in a strong current, or, in other words, as a violent wind. At the same time the heated air of the warm room ascends and passes the contrary way into the cold room, at the upper part of the same doorway; while in the middle of this opening, exactly between the two currents, the air appears to have little or no motion. The best way to show this experiment is to introduce the flame of a candle into the doorway between a hot and a cold room. If the flame be held near the bottom of the doorway, where the air is most dense, it will be strongly drawn towards the heated room; and if held near the top of the door it will be drawn towards the cold room with somewhat less force; while midway between the top and bottom the flame will be scarcely disturbed.

“There is also another pretty experiment which illustrates well the theory of land and sea breezes. Take a large dish, fill it with cold water, and in the middle of this put a water-plate or a saucer filled with warm water. The first will represent the ocean, and the latter an island made hot by the rays of the sun, and rarefying the air above it. Take a lighted wax candle and blow it out; and, if the air of the room be still, on applying it successively to every side of the saucer, the smoke will be seen moving towards the saucer and rising over it, thus indicating the course of the air from sea to land. On reversing the experiment, by filling the saucer with cold water (to represent the island at night) and the dish with warm water, the land breeze will be shown by holding the smoking wick over the edge of the saucer; the smoke will then be wafted to the warmer air over the dish.”

We have just tried the first of these experiments, with complete success. We would, however, recommend a piece of twisted brown paper, lighted and blown out, instead of a wax candle, because it gives out more smoke and is probably more obtainable on short notice. The experiment of the doorway, moreover, does not require that there should lie two rooms with a door between. We have found that the door of our study, which opens into a cold passage, serves the purpose admirably.

bannerbanner