В учебном пособии рассмотрены методы построения разностных схем для дифференциальных уравнений, интерполяция сеточных функций, методы решения стационарных и нестационарных задач математической физики, методы Шварца и разделения области, методы возмущений, методы оптимизации, повышение точности приближенных решений. Основное внимание уделяется сложным задачам математической физики, которые в процессе решения сводятся, как правило, к более простым, допускающим реализацию алгоритмов на ЭВМ. Рассмотрены многие современные подходы к численным методам. Учебное пособие предназначено для студентов старших курсов и аспирантов по специальности «Прикладная математика», также может быть полезно для научных работников в области вычислительной математики.
все жанры