Читать книгу А что, если?.. (Рэндалл Манро) онлайн бесплатно на Bookz
bannerbanner
А что, если?..
А что, если?..
Оценить:
А что, если?..

5

Полная версия:

А что, если?..

Рэндалл Манро

А что, если?..

Научные ответы на абсурдные гипотетические вопросы

© by xkcd Inc., 2014

© К.С.Ромашко, перевод, 2014

© Издание на русском языке AST Publishers, 2019

* * *


Отказ от ответственности

Не пытайтесь повторить это дома. Автор этой книги всего лишь рисует комиксы в интернете – он не эксперт по безопасности и не специалист в области здравоохранения. Кроме того, автор обожает смотреть, как что-нибудь горит или взрывается, и это его увлечение вряд ли всегда пойдет вам на пользу.


Издательство и автор не несут ответственности за разрушительные последствия, которые могут прямо или косвенно возникнуть в результате чтения этой книги.

Введение

Книга, которую вы держите в руках, – сборник ответов на гипотетические вопросы в жанре «А что, если?».

Эти вопросы приходят на мой сайт, где я не только веду нечто вроде рубрики советов для безумных ученых, но и выкладываю свой комикс xkcd.

Я не всегда рисовал комиксы. В свое время я изучал физику, а после окончания университета занимался робототехникой в НАСА, но в конце концов я ушел из этой конторы, чтобы полностью посвятить себя комиксам. Однако мой интерес к науке и математике никуда не делся и нашел себе новое применение – теперь я отвечаю на странные (а иногда вызывающие тревогу) вопросы в интернете. В настоящей книге представлена подборка моих любимых ответов с сайта плюс немало новых вопросов, на которые я здесь отвечаю впервые.

Сколько себя помню, я пытался с помощью математики найти ответы на необычные вопросы. Когда мне было пять лет, моя мама записала один наш разговор и сохранила его. Когда она узнала, что я пишу эту книгу, она нашла записку и прислала ее мне. Вот этот диалог, дословно воспроизведенный с листочка бумаги, которому уже 25 лет.

Рэндалл: Каких предметов в нашем доме больше – мягких или твердых?

Джули: Не знаю.

Рэндалл: А во всем мире?

Джули: Понятия не имею.

Рэндалл: Ну, в каждом доме ведь есть три или четыре подушки, да?

Джули: Ну да.

Рэндалл: И в каждом доме есть где-то пятнадцать магнитиков, да?

Джули: Скорее всего.

Рэндалл: Значит, 15 плюс 3 или плюс 4… пусть будет 4… Получится 19, верно?

Джули: Верно.

Рэндалл: Значит, всего будет где-то три миллиарда мягких предметов и… пять миллиардов твердых. Ну и кто победил?

Джули: Похоже, твердые!

До сего дня я не имею ни малейшего представления, откуда я взял три и пять миллиардов. Очевидно, тогда я не вполне понимал, как работают цифры.

В математике я с годами набрался опыта, но причина, по которой я ею занимаюсь, та же, что была в пять лет: я хочу отвечать на вопросы.

Говорят, что глупых вопросов не бывает. Это неправда: думаю, например, что мой вопрос про твердые и мягкие предметы довольно глупый. Но оказывается, что если вы попытаетесь серьезно ответить на глупый вопрос, это может завести вас в довольно любопытные места.

Рэндалл Манро

Всемирный ураган

ВОПРОС: А что, если Земля и всё, что на ней находится, внезапно перестанет вращаться, но при этом атмосфера сохранит свою скорость движения?

– Эндрю Браун

ОТВЕТ: Практически все мы умрем. Но вот потом станет интересно.

В районе экватора поверхность Земли движется со скоростью 470 м/с относительно земной оси. Если бы Земля остановилась, а воздух продолжил бы движение, то в результате возник бы ураган со скоростью свыше 1000 км/ч.



Сильнее всего этот ураган бушевал бы на экваторе, но все, кто живет между 42° с. ш. и 42° ю. ш., а это примерно 85 % населения земного шара, внезапно оказались бы в зоне действия ветра, дующего со сверхзвуковой скоростью.

Вблизи земли такой ветер продержится всего несколько минут – трение о земную поверхность скоро его замедлит. Однако этих нескольких минут будет достаточно, чтобы обратить практически все построенное человеком в руины.

Вблизи полюсов ветра были бы слабее, но там нет городов, которые смогли бы избежать разрушения благодаря удаленности от экватора. Лонгйир, расположенный на норвежском острове Шпицберген – один из самых северных в мире поселков, но его тоже разрушили бы ветра, сравнимые по мощи с сильнейшими тропическими циклонами.

Если бы вы искали возможность переждать эту катастрофу, то некоторые шансы у вас появились бы в Хельсинки. Хотя столица Финляндии находится за 60° с. ш., ветер все равно сровняет ее с землей. Однако пласт скалистой породы, на котором стоит Хельсинки, пронизан сложной системой тоннелей, в которых прячутся подземный супермаркет, хоккейная площадка, бассейн и многое другое.



Не уцелело бы ни одного строения: даже достаточно прочные, чтобы устоять при таком ветре, оказались бы под угрозой. Как сказал однажды комик Рон Уайт, проблема не в том, что ветер дует, а в том, на что именно он дует.

Представьте себе, что вы сидите в огромном бункере, построенном из материала, вполне способного выдержать ветер, дующий со скоростью 1000 км/ч.



Бункер – это хорошо, и с вами все было бы в порядке… если бы у вас у одного был бункер. К сожалению, у вас, вероятно, есть соседи, и у соседей тоже есть бункеры, и если бункер соседа окажется менее устойчивым, чем ваш, вашим бункерам придется пережить столкновение на скорости 1000 км/ч.



Все человечество не погибнет[1]. Лишь немногие из людей на поверхности выживут: летящие обломки уничтожат все, что не было защищено настолько, чтобы пережить как минимум ядерный взрыв. Тем не менее многие люди под землей остались бы в живых. Если бы вы находились в глубоком подвале, а еще лучше – в тоннеле метро, когда Земля остановилась, у вас был бы неплохой шанс выжить.

Будут и другие счастливчики. Несколько десятков ученых и сотрудников научной станции Амундсен – Скотт на Южном полюсе были бы в безопасности. Для них первым признаком беды стало бы то, что весь внешний мир в радиоэфире внезапно замолчал.

Эта таинственная тишина, вероятно, заинтриговала бы полярников на какое-то время, но в конце концов кто-нибудь из них обратил бы внимание на кое-что еще более необычное.


Воздух

Когда ветер у поверхности уляжется, начнутся еще более странные события.

Порыв ветра превратится в тепловую волну. Обычно кинетическая энергия порыва ветра не слишком велика, и ею можно пренебречь в расчетах, но мы же имеем дело не с каким-то заурядным ветерком! В общем, когда ветер стихнет, воздух станет нагреваться.

На поверхности Земли это приведет к аномальному повышению температуры, а в зонах влажного климата – к бурям и грозам.

В то же время бушующие над океаном ураганы превратят верхний слой воды в водяную пыль. На какое-то время у океана вообще не станет поверхности, и будет невозможно понять, где заканчивается водяная пыль и начинается толща воды.

Океаны холодные. Средняя температура воды под тонким поверхностным слоем составляет всего 5 °C. Буря подняла бы холодную воду из глубин. Обилие очень холодной водяной пыли в перегретом воздухе породило бы погоду, которой раньше на Земле никогда не бывало: одновременно ветер, туман, мелкий дождь и резкие перепады температуры.

Приток воды из глубины дал бы сильный толчок к развитию жизни, ведь свежие питательные вещества поднялись бы к верхним слоям. Но одновременно это привело бы к вымиранию множества рыб, крабов, морских черепах и других животных, неспособных дышать в поднявшейся из глубин воде с низким содержанием кислорода. А морским животным, которые дышат воздухом, например китам или дельфинам, было бы трудно выжить на постоянно меняющейся границе моря и воздуха.

Гигантские волны прокатились бы по всему земному шару, с востока на запад, и каждый берег, обращенный на восток, пережил бы самый грандиозный шторм в своей истории. Сначала сушу накрыло бы ослепляющее облако водяной пыли, а за ним пришла бы грохочущая стена воды наподобие цунами. В некоторых местах эти волны проникли бы на много километров вглубь побережья.

Ураганы выбросили бы в атмосферу огромное количество пыли и обломков. Одновременно с этим плотное облако тумана сформировалось бы над холодными поверхностями океана. В обычной ситуации это привело бы к резкому падению температур. Так бы и произошло. Во всяком случае, на одной стороне Земли.

Если бы Земля перестала вращаться, нормальный цикл дня и ночи прекратил бы свое существование. Солнце продолжало бы свое видимое движение по небу, но восходы и заходы случались бы теперь раз в год. День и ночь длились бы по шесть месяцев, даже на экваторе. На дневной половине Земли поверхность постоянно жарилась бы на солнце, тогда как на ночной стороне температура резко бы снизилась. Конвекция (перемешивание теплых и холодных слоев воздуха) на дневной стороне привела бы к возникновению мощных штормов и ураганов.



Земля стала бы отчасти напоминать Венеру в начале существования Солнечной системы. Специфика вращения Венеры такова, что, как и наша остановившаяся Земля, эта планета месяцами обращена к Солнцу одной и той же стороной. Однако в ее плотной атмосфере весьма быстрая циркуляция, благодаря чему температура на дневной и ночной стороне приблизительно одинакова.

Хотя длина дня изменилась бы, продолжительность месяца осталась бы прежней. Луна не прекратила бы вращаться вокруг Земли, однако перестала бы удаляться от Земли (как она это делает сейчас из-за приливных сил) и медленно начала приближаться к нам снова.



Более того, Луна сможет в какой-то мере исправить разрушения. Сейчас Земля вращается вокруг своей оси быстрее, чем Луна вокруг Земли, и притяжение нашего спутника замедляет вращение Земли, одновременно отталкивая от нас Луну[2]. Если бы Земля перестала вращаться, Луна перестала бы удаляться от нас и вместо того, чтобы замедлять Землю, начала бы ее ускорять. Потихоньку, помаленьку гравитация Луны тянула бы нашу планету за собой…

И Земля снова начала бы вращаться.


Релятивистский бейсбольный мяч

ВОПРОС: А что, если попытаться отбить бейсбольный мяч, брошенный со скоростью в 90 % от скорости света?

– Эллен Макмэнис

Оставим в стороне вопрос о том, как мы заставили мяч лететь так быстро. Предположим, что это был обычный бросок, просто в тот момент, когда подающий игрок (питчер) бросил мяч, тот загадочным образом ускорился до 0,9 с. Дальше все происходит по обычным законам физики.


ОТВЕТ: Похоже, ответ будет таким: случится очень многое, случится очень быстро, и ничего хорошего ни для отбивающего игрока (баттера), ни для питчера из этого не выйдет.

Мяч будет лететь так быстро, что мир вокруг него станет практически неподвижным. Даже молекулы воздуха фактически замрут. Они будут вибрировать со скоростью несколько сотен км/ч, но мяч будет лететь сквозь них со скоростью чуть меньше 1 млрд км/ч, так что по сравнению с мячом молекулы можно считать неподвижно подвешенными.

Принципы аэродинамики здесь неприменимы. В обычных условиях воздух обтекает предметы, летящие через него, но у молекул воздуха, которые окажутся перед нашим мячом, просто не будет времени отлететь в сторону. Мяч врежется в них с такой силой, что между атомами молекул воздуха и атомами поверхности мяча начнется настоящая реакция ядерного синтеза. Каждое столкновение молекул будет приводить к выбросу гамма-излучения и рассеянных при столкновении частиц.[3]




Эти гамма-лучи и частицы будут разлетаться, образуя раздувающийся пузырь, центр которого будет находиться в точке, где стоял питчер. Они начнут разрушать молекулы воздуха, выбивая из ядер электроны и превращая воздух на стадионе в расширяющуюся сферу раскаленной плазмы. Стенка этого раздувающегося пузыря будет со скоростью света приближаться к баттеру, лишь немного обгоняя сам мяч.

Постоянный ядерный синтез, происходящий перед мячом, будет оказывать на него давление, замедляя его, как если бы мяч был ракетой, которая летит хвостом вперед, включив двигатели. К сожалению, мяч будет двигаться так быстро, что даже невероятная сила термоядерного взрыва замедлит его совсем чуть-чуть. Однако эта сила начнет постепенно уничтожать поверхность мяча, и мельчайшие ее фрагменты будут разлетаться во все стороны. Они полетят так быстро, что при столкновении с молекулами воздуха запустят еще два-три раунда ядерного синтеза.

Спустя примерно 70 наносекунд мяч прилетит к базе. Баттер не успеет даже увидеть, как питчер бросил его, так как свет, несущий эту информацию, достигнет баттера примерно в тот же момент, что и мяч. Столкновения молекул в воздухе к этому моменту практически полностью уничтожат мяч, и он будет представлять собой несущееся как пуля облако расширяющейся плазмы (в основном состоящей из углерода, кислорода, водорода и азота), которое будет все так же врезаться в молекулы воздуха и запускать все больше реакций синтеза. Сначала до баттера доберется оболочка пузыря, состоящая из рентгеновских лучей, а спустя несколько наносекунд на него обрушится облако из осколков мяча.



Центр этого облака к тому моменту, когда оно достигнет базы, все еще будет перемещаться со скоростью, составляющей значительную часть скорости света. Когда центр облака столкнется с битой баттера, то и он, и база будут отброшены волной и пробьют ограждение поля, одновременно расщепляясь на молекулы. Оболочка из гамма-лучей и раскаленной плазмы будет расширяться в стороны и вверх, поглотит бейсбольное поле, обе команды, зрителей, окружающие кварталы, и все это в первую же микросекунду.

Представьте, что вы наблюдаете за этим с холма, расположенного вне города. Первое, что вы увидите, – ослепляющий свет, гораздо более яркий, чем солнце. Он постепенно тускнеет в течение нескольких секунд, и растущий огненный шар превращается в грибовидное облако. Затем раздается нарастающий грохот и приходит взрывная волна, ломающая деревья и сравнивающая с землей дома.

Все в радиусе примерно полутора километров от парка будет снесено до основания, и огненная буря поглотит окружающий город. Бейсбольная площадка превратится в довольно приличного размера кратер, центр которого будет в сотне метров за тем местом, где еще недавно стоял баттер.


Правило Бейсбольной лиги 6.08 (b) гласит, что в данной ситуации баттер явно «получил удар при подаче», а значит, может продвинуться на первую базу.


Купание в ядерном бассейне

ВОПРОС: А что, если искупаться в бассейне для отработавшего ядерного топлива?

– Джонатан Бастьен-Фильятро

ОТВЕТ: Если вы хорошо плаваете, то вы, вероятно, сможете продержаться на поверхности 10–40 часов. После этого вы потеряете сознание от изнеможения и утонете. То же самое, кстати, верно и для обычного бассейна, на дне которого не хранится ядерное топливо.

Отработавшее ядерное топливо из реактора крайне радиоактивно. Но вода очень хорошо изолирует и охлаждает топливо, и поэтому его можно хранить на дне в течение нескольких десятилетий, пока его активность не снизится до такой степени, что топливо можно будет переместить в сухие контейнеры. Человечество пока не придумало, куда девать эти контейнеры потом, и в течение ближайших десятилетий нам предстоит решить эту проблему.

Температура не будет серьезной проблемой. Теоретически вода в подобном бассейне может разогреться до 50 °C, но на практике температура обычно составляет 25–35 °C. Это теплее, чем в обычном бассейне, но прохладнее, чем горячая ванна.

Вот разрез типичного бассейна для отработавшего топлива:



Наиболее радиоактивны стержни, лишь недавно извлеченные из реактора. В случае с видами радиации, излучаемыми отработавшим ядерным топливом, каждые 7 см воды уменьшают степень излучения вдвое. Согласно данным компаний, управляющих атомными электростанциями, зоны поражения для «свежих» стержней будут такими:



Если нырнуть на самое дно, коснуться «свежего» стержня локтем и немедленно вынырнуть на поверхность, то этого, вероятно, будет достаточно для того, чтобы умереть от излучения.

Однако за пределами опасной зоны можно плавать сколько угодно – доза излучения, которую вы получите, будет меньше, чем обычное фоновое излучение в повседневной жизни. Вода защищает вас от большей части этой фоновой дозы, так что, плавая в бассейне для отработавшего ядерного топлива, вы получите меньшую дозу радиации, чем просто прогуливаясь по улице.

Но все это верно лишь при условии, что с самим бассейном все в порядке. Если же стенка контейнера, содержащего стержень, будет повреждена коррозией, то в воде могут оказаться продукты деления ядра. Воду в подобных бассейнах довольно эффективно очищают, и плавать в ней не опасно, но при этом она достаточно радиоактивна, чтобы ее нельзя было разливать в бутылки и продавать.[4]

Мы точно знаем, что в бассейнах для отработавшего топлива можно плавать, потому что их регулярно обслуживают ныряльщики. Однако этим ныряльщикам нужно соблюдать осторожность.

21 августа 2010 года ныряльщик работал в бассейне Лайбштадтского ядерного реактора в Швейцарии. Он увидел на дне бассейна кусок какого-то шланга и связался с диспетчером, чтобы узнать, что делать. Ему велели поднять шланг и положить его в сумку с инструментами, что ныряльщик и сделал. Из-за бульканья воды в бассейне он не услышал, как сработал его датчик радиации.

Когда сумку с инструментами вытащили из воды, заработали все датчики радиации в здании. Сумку тут же бросили обратно в воду, а ныряльщик быстро вылез из бассейна. Дозиметры показали, что он получил высокую дозу радиации, причем особенно высоким было облучение его правой руки.


Напоминаю: я просто рисую комиксы!

Если вы, стоя на краю радиоактивного бассейна, принимаете мои слова за советы по безопасности, то вы, вероятно, заслуживаете всего того, что с вами вот-вот случится.


«Шланг» оказался фрагментом защитной оболочки радиационного монитора в ядре реактора, крайне радиоактивным за счет нейтронного потока. Этот кусок случайно отрезали от обшивки в 2006 году, когда закрывали контейнер, и с тех пор он валялся на дне в дальнем углу бассейна, где его никто не замечал в течение четырех лет.

Этот предмет был настолько радиоактивен, что если бы ныряльщик засунул его за пояс или в положил в рюкзак, где «шланг» оказался бы близко к телу, доза оказалась бы смертельной. К счастью, в данной ситуации рабочего защитила вода, и только рука – часть тела, куда более успешно противостоящая радиации, чем уязвимые внутренние органы, – получила серьезную дозу облучения.



Короче говоря, с вами, скорее всего, все будет в порядке, если вы не будете нырять на дно и подбирать там что попало.

Но чтобы быть окончательно в этом уверенным, я связался с моим приятелем, который работает на исследовательском реакторе, и спросил его: что, по его мнению, произойдет с человеком, который захочет поплавать в их бассейне для хранения топлива?

«В нашем бассейне? – он на секунду задумался. – Умрет еще до того, как доберется до воды: его пристрелит охрана».

Странные (и тревожные) вопросы из папки «Входящие» сайта «А что, если?» (первая порция)

ВОПРОС: Можно ли охладить зубы настолько, чтобы они треснули при попытке выпить горячий кофе?

– Шелби Хеберт

ВОПРОС: Сколько домов сгорает в США каждый год? И как проще всего значительно увеличить эту цифру (хотя бы на 15 %)?

– Аноним

Машина времени по-нью-йоркски

ВОПРОС: Когда путешествуешь во времени, всегда оказываешься в одной и той же точке пространства. Во всяком случае, в фильме «Назад в будущее» дело обстоит именно так. А что, если, стоя на Таймс-сквер, отправиться на 1000 лет назад? А на 100 000? А на миллиард лет? А что, если отправиться на миллион лет вперед?

– Марк ДеттлингТысячу лет назад

Манхэттен постоянно населен последние 2000 лет, а первые люди появились здесь приблизительно 9000 лет назад.

В XVII веке, когда прибыли европейцы, в этих краях жили индейцы ленапе.[5]

Тысячу лет назад это место, вероятно, тоже населяла некая группа племен, но они жили за пять сотен лет до контакта с европейцами и были так же далеки от ленапе XVII века, как индеец XVII века – от современного американца.

Чтобы увидеть, как выглядела Таймс-сквер до того, как появился город, стоит обратиться к замечательному проекту под названием Welikia, выросшему из маленького проекта Mannahatta. Разработчики создали подробную экологическую карту нью-йоркского ландшафта времен прибытия первых европейцев.

Интерактивная карта, доступная на сайте welikia.org, представляет собой воображаемый спутниковый снимок «другого» Нью-Йорка. В 1609 году остров Манхэттен был покрыт холмами, болотами и рощами, озерами и реками.

Район Таймс-сквер тысячелетней давности выглядел, вероятно, примерно так, как это показывает Welikia. Если не вдаваться в подробности, местный пейзаж, скорее всего, напоминал девственные леса, которые все еще можно увидеть на северо-востоке США. Однако были бы и серьезные отличия.

Тысячу лет назад на Манхэттене водились довольно крупные животные. В тех разрозненных остатках девственных лесов, что мы видим сегодня, практически нет крупных хищников, разве что несколько медведей да немного волков и койотов, а вот пумы практически отсутствуют (зато популяции оленей, напротив, разрослись, благодаря в том числе и исчезновению крупных хищников).



В лесах Манхэттена тысячелетней давности в изобилии росли каштаны. До эпидемии паразитического гриба в начале XX века леса на востоке США на 25 % состояли из каштанов, от которых сегодня остались только пни.

Эти пни все еще можно увидеть в лесах Новой Англии. Периодически они дают новые побеги, которые, однако, быстро увядают под действием гриба. Однажды (и это будет довольно скоро) исчезнут последние из этих пней.

А в лесах тысячелетней давности вам встретятся волки, особенно когда вы будете продвигаться вглубь материка. Еще вы увидите пум[6] и странствующих голубей.[7]

А вот чего вы точно не увидите, так это дождевых червей. Их не было в Новой Англии до появления европейских колонистов. Чтобы узнать почему, давайте отправимся еще глубже в прошлое.

10 000 лет назад

Земля 10 000 лет назад только-только выбралась из очень холодного периода. Ледники, покрывавшие Новую Англию, уже исчезли. 22 000 лет назад южная граница льда проходила у Статен-Айленда[8], но уже через четыре тысячи лет назад отступила на север за Йонкерс[9]. К моменту нашего прибытия (еще спустя восемь тысяч лет) ледник по большей части отодвинулся к северу за пределы современной канадской границы.

bannerbanner