Читать книгу Automobile Biographies (Lyman Horace Weeks) онлайн бесплатно на Bookz (4-ая страница книги)
bannerbanner
Automobile Biographies
Automobile BiographiesПолная версия
Оценить:
Automobile Biographies

3

Полная версия:

Automobile Biographies

Gordon got fair results from this locomotive, but the speed was not satisfactory. In his first trials he found the power insufficient. He afterwards fitted one of Gurney’s light boilers in the hinder part of the carriage, though even after this improvement had been added the experiments were disappointing. Gordon was convinced that the application of the power to the wheels was the proper mode of propulsion, and his project was abandoned after six or seven years had been spent in inventing, constructing, and carrying out experiments with four distinct carriages.

William Henry James

Born at Henley, England, March, 1776. Died at Dulwich College Alms House, December 16, 1873.

The father of William Henry James was William James, of Warwickshire, the great railway projector of his time. He was a solicitor in early life, but became wealthy, worked a colliery in South Staffordshire, and in 1815 removed to London, where he had a large land agency business. He became interested in tramways in 1806, and from that date on devoted most of his energies and fortune to projecting railways in the United Kingdom. He had an interest in one of George Stephenson’s patents, made numerous railway surveys, and by many has been considered to have done more than any single individual in laying the foundations of the English railroad system.

William Henry James assisted his father in his railway surveys in early life, and then began business independently as an engineer, in Birmingham. He made experiments in steam locomotion on common roads, and took out patents for locomotive steam engines, boilers, driving apparatus, and so on. His patent for a water-tube boiler for road locomotives was secured in 1823, and his first car was built in 1824. This was a twenty-passenger steam coach. Each rear wheel had a double-cylinder engine, and the pistons were worked at a pressure of two hundred pounds per square inch. Separate engines to each driver gave each wheel an independent motion, so that power and speed might be varied for turning corners, the outer wheel travelling over a much greater space than the inner wheel. When the front wheels were so placed that the carriage proceeded in a straight line an equal amount of steam was admitted to each pair of cylinders, but when the front wheel was in the lock the engine driving the outer wheel received a greater amount of steam and thus developed more power and traveled faster than the inner wheel. This arrangement was said to be so efficient that the carriage could be made to describe every variety of curve, repeatedly making turns of less than ten feet radius. The whole of the machinery was mounted upon laminated carriage springs. This arrangement caused the engines and their framework to vibrate altogether upon the crank-shaft as a center, at the same time connecting these engines to the boiler by means of hollow axles moving in stuffing boxes. Each engine had two cylinders of small diameter and long stroke; to these separate engines steam was supplied from the boiler by means of the main pipe, which moved through steam-tight stuffing boxes to the slide valve-boxes by small pipes. The locomotive was entirely distinct from the passenger carriage.

Sir James C. Anderson became associated with James, and in 1829 they built another carriage. This weighed nearly three tons, and the first trials were made round a circle of one hundred and sixty feet in diameter. When it was finally ready to be brought out it was loaded with fifteen passengers and driven several miles on a rough gravel road across Epping Forest, with a speed varying from twelve to fifteen miles an hour. Steam was supplied by two tubular boilers, each forming a hollow cylinder four feet six inches long. The tubes of which the boilers were composed were common gas pipe, one of which split on one of the trips, thus letting the water out of one of the boilers and extinguishing its fire. Under these circumstances, with only one boiler in operation, the carriage returned home at the rate of about seven miles an hour, carrying more than twenty passengers—at one period, indeed, it is said, a much greater number; showing that sufficient steam could be generated in such a boiler to be equal to the propulsion of between five and six tons weight. In consequence of this demonstration that the most brilliant success was attainable, the proprietors dismantled the carriage and commenced the construction of superior tubular boilers with much stronger tubes.

Shortly after Anderson and James commenced to build another steam carriage, which was ready for use in November, 1829. This engine was not intended to carry passengers, but to be employed for drawing carriages behind. Four tubular boilers were used, the total number of tubes being nearly two hundred. These boilers were enclosed in a space four feet wide, three feet long, and two feet deep. The steam from each boiler was conducted into one main steam pipe one and one-half inches in diameter, and the communication from any one of the boilers could be cut off in case of leakage. Four cylinders, each two and one-quarter inch bore and nine inch stroke, were arranged vertically in the hind part of the locomotive, and two of them acted upon each crank-shaft as before, giving a separate motion to each driving wheel.

The exhaust steam was conducted through two copper tanks for heating the feed water to a high temperature, and thence passed to the chimney. The steering-gear consisted of an external pillar containing a vertical shaft, at the upper end of which small bevel-gearing was used, giving motion to the vertical shaft, whose bottom end carried a pinion gearing into a sector attached to the fore axle. The motion of the crank-shafts was communicated to the separate axles of the driving-wheels by spur-gearing with two speeds.

In experiments made with this carriage, the greatest speed obtained upon a level, on a very indifferent road, was at the rate of fifteen miles an hour, and it never ran more than three or four miles without breaking some of the steam joints. The Mechanic’s Magazine, reporting one of these trials, said: “A series of interesting experiments were made throughout the whole of yesterday with a new steam carriage belonging to Sir James Anderson, Bart., and W. H. James, Esq., on the Vauxhall, Kensington, and Clapham roads, with the view of ascertaining the practical advantages of some perfectly novel apparatus attached to the engines, the results of which were so satisfactory that the proprietors intend immediately establishing several stage coaches on the principle. The writer was favored with a ride during the last experiment, when the machine proceeded from Vauxhall Bridge to the Swan at Clapham, a distance of two and a half miles, which was run at the rate of fifteen miles an hour. From what I had the pleasure of witnessing, I am confident that this carriage is far superior to every other locomotive carriage hitherto brought before the public, and that she will easily perform fifteen miles an hour throughout a long journey. The body of the carriage, if not elegant, is neat, being the figure of a parallelogram. It is a very small and compact machine, and runs upon four wheels.”

W. H. James patented another steam carriage in August, 1832. This varied much from his earlier engines in the working parts, and it was not generally considered to be as satisfactory as the others. Sir James Anderson was not able, for pecuniary reasons, to continue to back James in his experimenting, and it does not appear that these plans of 1832 were ever consummated in a completed vehicle.

James was a man of strong mind, an original thinker and thoroughly well-trained by his apprenticeship with his father. He spent a good part of his life in experimenting with common-road steam propulsion, but he had not monetary resources or financial ability commensurate with his mechanical genius. When the support of Anderson was withdrawn from him he seems to have been compelled to give up. Little has been recorded concerning the latter years of his life, and his death in the almshouse sufficiently indicates the poverty in which his last years were spent. His father also sacrificed his life to the cause of railroad advancement, losing his entire fortune and dying a poor man.

Goldsworthy Gurney

Born at Treator, near Padstow, Cornwall, England, February 14, 1793. Died at Reeds, near Bade, February 28, 1875.

The son of John Gurney, Goldsworthy Gurney received a good elementary education at the Truro Grammar School, and then studied medicine. He settled at Wadebridge as a surgeon, but although very successful, gradually turned his attention to scientific and mechanical investigations. He constructed an organ, studied chemistry and mechanical science, and removing to London in 1820, delivered a series of lectures on heat, electricity and gases at the Surrey Institute. His investigations resulted in the invention of the oxy-hydrogen blowpipe, and the discovery of the powerful lime-light known as the Drummond light, and he engaged in other experiments in this field of research.

In 1804, while on a holiday at Camborne, he saw a Trevithick engine on wheels. Recalling this in after years he began experimenting on steam locomotion in 1823, and soon abandoned his surgical and medical practice for this new pursuit. His first efforts were toward the construction of an engine to travel on the common roads. The weight of the steam engines that were then being built seemed to him to offer great objections to their use for this purpose, but he succeeded, with his first machine, in reducing weight from four tons to thirty hundredweight. Then he secured a sufficiency of power by the invention of the high-pressure steam jet. This invention differed from those of Stephenson and Trevithick, who sent their waste steam up through the chimney instead of utilizing it. The Gurney jet was applied to the Stephenson Rocket engine on the Liverpool and Manchester Railway, in October, 1829, and also to steamboats and steam carriages.

In 1823, Gurney made his first experiments with a model steam carriage, on which propellers or feet were used. Two years later, in 1825, he completed a full-size carriage on the same plan, and in May of that year he took out his first patent for this vehicle. The carriage was impelled by these legs being alternately drawn forwards and pressed backwards by a steam engine acting upon them through movable oblong blocks, to which they were attached. As a first experiment this carriage was driven up Windmill Hill, near Kilburn. Another trip, between London and Edgeware, demonstrated the inefficiency of these propellers, and led to the discovery that there was sufficient friction between wheels and the ground to insure propulsion.

In 1826 he constructed a coach about twenty feet long, which would accommodate six inside and fifteen outside passengers, besides the engineer. The driving-wheels were five feet diameter, and the leading wheels three feet nine inches diameter. Two propellers were used, which could be put in motion when the carriage was climbing hills. Gurney’s patent boiler was used for supplying steam to the twelve horse-power engine. The total weight of the carriage was about a ton and a half. In front of the coach was a capacious boot, while behind, that which had the appearance of a boot, was the case for the boiler and the furnace, from which it was calculated that no inconvenience would be experienced by the outside passenger, although in cold weather a certain degree of heat might be obtained, if required. In descending a hill, there was a brake fixed on the hind wheel, to increase the friction; but, independently of this, the guide had the power of lessening the force of the steam to any extent by means of the lever at his right hand, which operated upon the throttle valve, and by which he could stop the action of the steam altogether and effect a counter vacuum in the cylinders. By this means also he regulated the rate of progress on the road. There was another lever by which he could stop the vehicle instantly, and in a moment reverse the motion of the wheels.

This carriage traveled up Highgate Hill to Edgeware, and also to Stanmore, and went up both Stanmore Hill and Brockley Hill. In ascending these hills the driving-wheels did not slip, so that the legs were not needed. After these experiments the propellers were removed.

Gurney obtained another patent in 1827, and under this worked a steam carriage resembling the common stage coach, with the boiler in the hind boot. This carriage was run experimentally to Barnet, Edgeware, Finchley, and other places, and in 1828 it was said that a trip was made from London to Melksham, thirteen miles from Bath, a distance of nearly two hundred miles. On the return trip the rate of speed was about twelve miles an hour.

Gurney’s carriage so fully established its practicability, that in 1830, Sir Charles Dance contracted for several, and ran them successfully from London to Holyhead, and from Birmingham to Bristol. In the following year he ran over the turnpike road between Gloucester and Cheltenham for four months in succession, four times a day, without an accident or delay of consequence. The distance of nine miles was regularly covered in from forty-five to fifty-five minutes. Nearly three thousand persons were carried, and nearly four thousand miles traveled.

A strong public sentiment against the use of the common roads by these vehicles sprang up, and Parliament was prevailed upon to impose upon steam carriages heavy highway tolls that were in effect prohibitory. Sir Charles Dance suspended his operations. Gurney petitioned the House of Commons for relief. Several committees in 1831, 1834 and 1835 investigated the subject and reported strongly in favor of steam carriages, but no legislation could be secured, and Gurney was forced to give up further introduction of steam carriages.

He continued his experimenting in other directions, invented the stove that bore his name, introduced new methods of lighting and ventilating the Houses of Parliament, and was otherwise active in scientific pursuits. He was a magistrate for Cornwall and Devonshire, and in 1863 was knighted in recognition of his discoveries and inventions.

By writers of that period Gurney received a great deal of credit and an abundance of advertising for his work. He was especially conspicuous in the Parliamentary investigations regarding steam carriages. On the whole, however, it is generally considered that he was proclaimed far beyond his merits, especially in comparison with such rivals as Hancock, Maceroni and others.

Thomas Blanchard

Born in Sutton, Mass., June 24, 1788. Died, April 16, 1864.

Blanchard received a common school education, and before he had entered his teens his mechanical genius began to show itself. At thirteen years of age he invented a machine for paring apples, and shortly after, a machine for making tacks. His great work was the invention of a machine for turning out articles of irregular form from wood and metals. His lathes for this purpose were put in operation by the United States Government in the armories at Harper’s Ferry, Va., and Springfield, Mass.

Becoming interested in the subject of steam propulsion he made, in 1826, a steamboat that was successfully tried on the Connecticut River, running from Hartford, Conn., to Springfield, Mass. Afterward, he built a boat of larger size, that drew eighteen inches of water, and ran this up the Connecticut River, from Springfield, Mass., to Vermont. He also built other boats for use on the Alleghany River.

The subjects of railroads and locomotive power on land interested him for a short time, and in 1825, after he had completed his engagement with the United States armories, he built, at Springfield, Mass., a carriage driven by steam for use on the common road. This was the first real steam carriage constructed in this country, the Philadelphia machine of Evans being but a rude affair, although it involved the essential principles of steam propulsion. The Blanchard carriage was perfectly manageable, could turn corners and go backwards and forwards with all the readiness of a well-trained horse, and on ascending a hill the power could be increased. Its performance on the highway was altogether satisfactory, and a patent was issued to its inventor.

Blanchard endeavored to secure support to build a railroad in Massachusetts, and the joint committee on roads and canals of the Massachusetts Legislature, in January, 1826, endorsed the model of his railway and steam carriage, and recommended them “to all the friends of internal improvements.” Notwithstanding this report, capitalists viewed the project as visionary, and Blanchard met with no greater success when he subsequently applied to the Legislature of New York. Giving up his plans he thenceforward devoted his attention to the subject of steam navigation.

Blanchard was a prolific inventor, having taken out no less than thirty or forty patents for as many different inventions. He did not reap great benefit from his labors, for many of his inventions scarcely paid the cost of getting them up, while others were appropriated without payment to him, or even giving him credit. His machine for turning irregular forms was his most notable work, and even of that, others sought to defraud him. To defend himself he was forced to go to the courts and even to Congress, before he succeeded in establishing his rights. After the success of this machine he made other improvements in the manufacture of arms, constructing thirteen different machines that were operated in the government armories.

Johnson

Two brothers Johnson had a small engineering establishment in Philadelphia, in 1828. They put upon the streets in that year a vehicle that J. G. Pangborn, in his The World’s Rail Way, says was “the first steam wagon built, and actually operated as such, in the United States.” The same writer, describing this wagon, says that it had a single cylinder set horizontally, with a connecting-rod attachment with a single crank at the middle of the driving-axle. Its two driving-wheels were eight feet in diameter and made of wood, the same as those on an ordinary road wagon. The two forward or guiding wheels were much smaller than the others, and were arranged in the usual manner of a common wagon. It had an upright boiler hung up behind, shaped like a huge bottle, the smoke-stack coming out through the center of the top. The safety-valve was held down by a weight and lever, and the horses in the neighborhood did not take at all kindly to the puffing of the machine as it jolted over the rough streets. Generally it ran well, and could take without difficulty reasonable grades in the streets and roadways. During its existence, however, it knocked down a number of awning-posts, ran into and broke several window fronts, and sometimes was altogether unmanageable. Like all others of their day, however, the Johnsons were ahead of their time. There was no demand for their steam wagon, road conditions made it unavailable and the machine itself was, despite much merit, really not much more than a suggestion of better things three-quarters of a century later.

Walter Hancock

Born in Marlborough, Wiltshire, England, June 16, 1799. Died May 14, 1852.

The father of Walter Hancock was James Hancock, a timber merchant and cabinet maker. Walter received a common school education, and then was apprenticed to a watchmaker and jeweler in London. The bent of his inclination, however, was toward engineering, and he turned his attention to experimenting along the lines that were at that time absorbing the thoughts and efforts of those men of England interested in mechanical and scientific subjects.

He was foremost among those who in the early part of the nineteenth century were engaged in trying to solve the problem of steam carriage locomotion on the common highways. The story of his work in this direction is fully told by himself in his Narrative of Twelve Years’ Experiments, 1824-36, Demonstrative of the Practicability and Advantage of Employing Steam Carriages on Common Roads, a book published in London, in 1838. This volume contains a full account of his labors, and descriptions of all the carriages that he built and ran. The following extract from the introduction of the book shows in what esteem Hancock regarded himself and what estimate he placed upon the value of his work:

“The author of these pages believes he should offend alike against truth and genuine modesty were he to yield to any of the steam carriage inventors who have appeared in his day, in a single particular of desert; he began earlier (with one abortive exception) and has persevered longer and more unceasingly than any of them. He was the first to run a steam carriage for hire on a common road, and is still the only person who has ventured in a steam vehicle to traverse the most crowded streets of the metropolis at the busiest periods of the day; he has built a greater number of steam carriages (if not better) than anyone else, and has been thus enabled to try a greater variety of forms of construction, out of which to choose the best.”

In 1824, Hancock invented a steam engine in which the ordinary cylinder and piston were replaced by two flexible steam receivers, composed of several layers of canvas firmly united together by coatings of dissolved caoutchouc, or india-rubber, and thus enabled to resist a pressure of steam of sixty pounds upon the square inch. This engine he tried to adapt to steam carriages, but found that he could not get the requisite degree of power for locomotion, although it worked very well as a stationary engine of four horse-power at his factory in Stratford. Next he invented a tubular boiler with sixteen horizontal tubes, each connected with each other by lesser tubes, so that the water or steam might circulate through the entire series. This boiler was subsequently changed by arranging the tubes vertically, and a patent was taken out in 1825.

After further experiments and improvements, Hancock finally made a vehicle to travel on three wheels, getting power from a pair of vibrating or trunnion engines fixed upon the crank-axle of the fore wheels. Experimental trips of this carriage were made from the Stratford shop to Epping Forest, Paddington, Hounslow, Croydon, Fulham, and elsewhere. Some changes were made in the vehicle, and finally the trunnion engines were put aside and fixed ones substituted.

This improved carriage, the first in a long series built by Hancock, was named the Infant. The body was in the form of a double-body coach, or omnibus, with seats for passengers inside and out. The bulk of the machinery was placed in the rear of the carriage, a boiler and a fire being beneath it. Between the boiler and the passengers’ seats was the engine and a place for the engineer. A pair of inverted fixed engines working vertically on a crank-shaft furnished the power. The steering apparatus was in front. The whole carriage was on one frame supported by four springs on the axle of each wheel. The carriage was capable of carrying sixteen passengers besides the engineer and guide. Its total weight, including coke and water, but exclusive of attendants and passengers, was about three and one-half tons. The wheel tires were three and one-half inches wide, and the diameter of the hind wheels four feet.

In February, 1831, the Infant began to run on regular trips between Stratford and London. In 1832 a second carriage, similar to the Infant, was built, and called the Era. It was constructed for the London and Brighton Steam Carriage Company, to ply between London and Greenwich. The following year a third carriage, the Enterprise, was completed, for the London and Paddington Steam Car Company, and was run between London and Paddington.

Hancock took the Infant on a long trip from Stratford to London and Brighton, in October, 1832. Eleven passengers were carried, and the carriage kept a speed of nine miles an hour on the level, and six to eight miles an hour up grade. On the return one mile up hill was made at the rate of seventeen miles an hour. Another trip to Brighton was made in September of the next year at an average speed of twelve miles an hour actual traveling. At Brighton the new carriage attracted much attention, and was exhibited for several days on trips in and around the town. After the Enterprise, the Autopsy came from the Hancock shops, in September, 1833. This carriage was run on trial about Brighton and in London streets, and for about a month was run for hire between Finsbury Square and Pentonville.

A small steam drag or tug to draw an attached coach or omnibus was the next production of the Hancock establishment, which had already attained more than local fame. This was built for a Herr Voigtlander, of Vienna, and on one of its trial trips it carried ten persons and an attached four-wheeled carriage with six persons in it. With this load a speed of fourteen miles an hour on the level was attained, and eight to nine miles an hour on up grades.

bannerbanner