Читать книгу Путешествия к Луне ( Коллектив авторов) онлайн бесплатно на Bookz (3-ая страница книги)
bannerbanner
Путешествия к Луне
Путешествия к Луне
Оценить:
Путешествия к Луне

3

Полная версия:

Путешествия к Луне

Рис. 1.17. Обитатели Луны по Г. Уэллсу.


Девиз NASA – «For the benefit of all» («Для всеобщей пользы»), и это не пустые слова. Все материалы NASA открыты для свободного копирования и воспроизведения. А материалов этих – море, и они отличного качества. Планы NASA выносятся на всеобщее обсуждение. Конечно, космические полеты обходятся недешево: например, программа «Аполлон» стоила 23 млрд долл., это 135 млрд долл. в ценах 2005 г. Как видим, каждый американец заплатил тогда за этот проект по 640 нынешних долларов. Немало, но ведь деньги пошли на развитие науки и техники. Они довольно быстро вернулись в казну в результате продажи лучших в мире технологий. К тому же не весь свой бюджет NASA «выбрасывает в космос». Тратятся большие силы и деньги на создание общедоступных архивов, подготовку материалов для журналистов, популяризацию своей деятельности на разных уровнях – отдельно для ученых, для учителей, для школьников. Это пиар в хорошем смысле слова: космическое ведомство делом доказывает свою необходимость обществу и ждет от него поощрения. В этой книге вы встретите много материалов NASA. Спасибо тем, кто их добыл, сохранил, обработал и сделал доступными «для всеобщей пользы».

Разумеется, нельзя сравнивать возможности современных России и США. К примеру, бюджет Роскосмоса на порядок меньше бюджета NASA, наше географическое положение не способствует космонавтике, и распад СССР отсек от нашей космической отрасли многие важные части. Это объективные причины, но есть и другие. Сколько сил было понапрасну растрачено на гигантские проекты суперракеты Н-1 и космического комплекса «Энергия – Буран»! Не доведенные до ума, брошенные на полпути, они изрядно разорили страну и сломали судьбы тысячам талантливых инженеров, летчиков, космических специалистов. А как мы сможем вырастить новых талантливых инженеров, если в стране нет музеев науки и техники, если мы не сумели сохранить даже то, что когда-то создали? Нужно здраво посмотреть на вещи и решить, хотим ли мы развивать у себя современную, то есть техническую, цивилизацию или же и дальше оставаться на обочине прогресса. Если мы трезво не оценим роль ученого и инженера в современном мире, не начнем культивировать талант и знание, если не будем считать технологию и опыт главным богатством нации, то дорога в будущее окажется не для нас, а Луну мы увидим только в мечтах.

Нужно отметить, что у многих, кто интересуется космическими исследованиями, сложилось неверное впечатление, будто эпоха исследований Луны резко оборвалась в середине 1970-х гг., вместе с прекращением полетов к ней автоматических зондов и пилотируемых экспедиций.

Рис. 1.18. Кратер Коперник. По рисунку Анджело Секки (1818–1878). Из книги: Henry Warren «Recreations in Astronomy», New York, Harper & brothers, 1879.


Действительно, полетов к Луне не было почти 20 лет, но ее исследования активно продолжались. Например, с использованием доставленных на Луну уголковых лазерных отражателей постоянно уточнялась картина движения Луны: если в начале 1970-х гг. расстояние до Луны измерялось лазерным лучом с ошибкой около 15 см, то сегодня ошибка снизилась до нескольких миллиметров. А это уже позволяет делать выводы о внутреннем строении Луны и, кроме того, по ее движению проверять релятивистскую теорию гравитации. Так что Луна, кроме прочего, стала сегодня и точнейшим физическим прибором.

А что касается всеобщей доступности Луны, то сегодня разглядеть ее поверхность для любого из нас стало проще, чем изучить поверхность Земли. У всех нас в последнее время вызывает восхищение сетевой ресурс «Google Earth», позволяющий увидеть через объектив спутника-шпиона и аэрофотокамеры поверхность Земли с разрешением от нескольких метров до 10–15 см! Однако вспомним, что 2/3 поверхности нашей планеты скрыто водой, огромные пространства покрыты лесами и лишь малая часть видна с высоты, да и то – сквозь мутную атмосферу. А поверхность Луны видна вся и без каких-либо преград.

Уже сегодня мы (хотя и не все) можем смотреть прямые телерепортажи с окололунной орбиты: японский спутник «Кагуйя», запущенный в сентябре 2007 г., передает изображение высокого качества (HDTV) с линейным разрешением в 10 м.

Рис. 1.19. Район кратера Коперник. Снимок космического телескопа «Хаббл». Рассмотреть более мелкие детали на лунной поверхности от Земли пока невозможно. Сравнивая этот снимок с предыдущим рисунком, мы видим, что опытный астроном-наблюдатель может поспорить по «зоркости» даже с космическим телескопом.


Его телекамеры в мае 2008 г. смогли заметить на месте посадки «Аполлона-15» площадку, очищенную от пыли газовой струей из двигателя лунного модуля. Недавно у Луны появился еще более зоркий спутник – американский Lunar Reconnaissance Orbiter (NASA). Его телекамеры с разрешением в 0,5 м показали нам сами посадочные ступени лунных модулей «Аполлонов». Но, разумеется, цель детального исследования лунной поверхности состоит не в этом. Аналогичный спутник Mars Reconnaissance Orbiter открыл много нового на поверхности Марса: достаточно напомнить о загадочных «колодцах» диаметром в сотни метров, дна которых до сих пор не удалось увидеть. Кто знает, какие сюрпризы приготовила нам Луна.

А пока японские специалисты, используя данные с зонда «Кагуйя», составили полные карты рельефа Луны и распределения на ее поверхности гравитационных полей. В 2005 г. карта рельефа Луны уже была составлена в США, однако на ней имелись крупные «белые пятна» в районе полюсов и другие недоработки. Зонд «Кагуйя» с помощью лазерного измерителя определил высоту примерно 6,8 млн точек на всей поверхности Луны. Оказалось, что разница между самой высокой и самой низкой точками на Луне составляет 19,8 км – это на 2 км больше, чем предполагалось ранее. «Кагуйя» впервые провел исследования такого рода на обратной стороне Луны. Эти материалы помогут при подготовке новых экспедиций на Луну и при создании там постоянных баз.

На окололунной орбите сейчас работает не только японский, но также индийский и китайский спутники. Для научных исследований Луна стала почти такой же доступной, как Антарктида. И так же, как с Антарктидой, уже понятно, что речь идет не только о научных экспедициях, но и о будущем разделе ресурсов этой планеты.

А для ученых Луна – по-прежнему загадочный и притягательный объект. Планетологи пытаются понять:

– имеет ли Луна металлическое ядро;

– существуют ли на Луне запасы воды;

– насколько велика тектоническая активность Луны; могут ли на ней действовать вулканы;

– почему своим строением и составом Луна так сильно отличается от 4 других тел земной группы (Меркурий, Венера, Земля, Марс);

– как и где сформировалась Луна;

– как Луна повлияла на эволюцию Земли;

– что за странные «временные» явления порой наблюдаются на Луне;

– где остатки вещества комет, которые время от времени должны разбиваться о лунную поверхность. Если это те белые «свирлы», которые видны на фотографиях Луны, то можно считать, что долгожданное вещество из ядер комет уже почти у нас в кармане.

Желая разгадать лунные загадки и освоить лунные ресурсы, мы стоим сейчас перед дилеммой: кто будет исследовать Луну – люди или автоматы? Работа человека в космосе – опасное занятие: мемориалы погибшим космонавтам и астронавтам есть уже не только на Земле, но и на Луне: там его оставил экипаж «Аполлона-15» в виде маленькой фигурки в скафандре и таблички с именами героев. К счастью, на Луне еще никто не погиб, но стоит ли рисковать? Об этом нужно задуматься уже сейчас. В конце концов, важен результат, а не геройские прогулки по Луне. С другой стороны, трудно представить, что нынешние роботы способны заменить человека (см. главу 6). По-видимому, и нынешний, второй этап исследования Луны не обойдется без присутствия там человека.

Рис. 1.20. Табличка с именами погибших космонавтов и маленькая скульптура, оставленные на Луне экипажем «Аполлона-15».


И, наконец, еще одна, неожиданная, возможно, даже преждевременная проблема, но лучше подумать об этом заранее, чем заслужить упреки потомков. Нам нужно позаботиться о сохранении природной среды на Луне.

К счастью, от идеи атомных взрывов там вовремя отказались, но мусор туда мы поставляем регулярно. Все экспедиции доставили с Луны на Землю около 382 кг лунного вещества, а на поверхности Луны уже скопилось более 170 тонн мусора – в основном остатки «Аполлонов» и наших «Лунников». В свое время проблема вывоза мусора встала перед исследователями Антарктиды и покорителями Эвереста. Похоже, в будущем придется строить завод по утилизации мусора и на Луне: не везти же все это обратно на Землю! К счастью, пока это не самая актуальная задача.

1.5. Наблюдаем Луну с Земли

Луна – царица неба. Это знает каждый любитель астрономии. Какой бы оптический инструмент ни появился у желающего полюбоваться ночным небом, в первую очередь он направит его на Луну. Половина нашей книги посвящена «путешествиям к Луне» с телескопом. Прочитав главы 2–5, вы узнаете, кто и когда составил первые карты Луны, кто первым навел на нее телескоп. Обычно первенство в этом приписывают Галилею, хотя исторические изыскания говорят, что он мог и не быть самым-самым первым. Тем не менее именно Галилей был в числе первых двух-трех «астрономов с телескопом», и как никто другой он продемонстрировал возможности этого простого, но удивительно полезного прибора.

1.5.1. Телескоп Галилея

Отмечая 400-летие создания телескопа, мы должны вспомнить о тех временах. Как известно, Галилео Галилей занялся экспериментами с линзами в середине 1609 г., после того как узнал, что в Голландии для потребностей мореплавания была изобретена зрительная труба. Ее создали в 1608 г., возможно, независимо друг от друга голландские оптики Ганс Липперсгей, Яков Мециус и Захария Янсен. Всего за полгода Галилею удалось создать мощный астрономический инструмент и сделать ряд изумительных открытий.

Рис. 1.21. Очки появились за несколько столетий до телескопа.


Успех Галилея в совершенствовании телескопа нельзя считать случайным. Итальянские мастера стекла уже основательно прославились к тому времени: еще в XIII в. они изобрели очки. И именно в Италии была на высоте теоретическая оптика. Трудами Леонардо да Винчи она из раздела геометрии превратилась в практическую науку. «Сделай очковые стекла для глаз, чтобы видеть Луну большой», – писал он в конце XV в. Возможно, хотя этому и нет прямых подтверждений, Леонардо удалось изготовить телескопическую систему.

Оригинальное исследование по оптике линз, зеркал и призм провел в середине XVI в. итальянец Франческо Мавролик (1494–1575). Его соотечественник Джованни Батиста де ла Порта (1535–1615) посвятил оптике два великолепных произведения: «Натуральная магия» и «О преломлении». В последнем он даже приводит оптическую схему телескопа и утверждает, что ему удавалось видеть на большом расстоянии мелкие предметы. В 1609 г. он пытается отстаивать приоритет в изобретении зрительной трубы, но фактических подтверждений этому оказалось недостаточно. Как бы то ни было, работы Галилея в этой области начались на хорошо подготовленной почве. Но, отдавая должное предшественникам Галилея, будем помнить, что именно он сделал из забавной игрушки работоспособный астрономический инструмент.

Рис. 1.22. Схема зрительной трубы (рисунок Леонардо да Винчи): cd – линза объектива, АВ – тубус-бленда объектива, EF – тубус окуляра, тп – хрусталик глаза наблюдателя, расположенный за линзой окуляра.


Свои опыты Галилей начал с простой комбинации положительной линзы в качестве объектива и отрицательной линзы, дающей трехкратное увеличение, в качестве окуляра. Сейчас такая конструкция называется театральным биноклем. Это самый массовый оптический прибор после очков. Разумеется, в современных театральных биноклях в качестве объектива и окуляра применяются высококачественные просветленные линзы, иногда даже сложные, составленные из нескольких стекол. Они дают широкое поле зрения и отличное изображение. Галилей же использовал простые линзы как для объектива, так и для окуляра. Его телескопы страдали сильнейшей хроматической и сферической аберрацией, т. е. давали размытое на краях и не сфокусированное в различных цветах изображение.

Рис. 1.23. Галилео Галилей


Однако Галилей не остановился, подобно голландским мастерам, на «театральном бинокле», а продолжил эксперименты с линзами и к январю 1610 г. создал несколько инструментов с увеличением от 20 до 33 раз. Именно с их помощью он совершил свои замечательные открытия: обнаружил спутники Юпитера, горы и кратеры на Луне, мириады звезд в Млечном Пути, и др. Уже в середине марта 1610 г. в Венеции на латинском языке вышел труд Галилея «Звездный вестник», где были описаны эти первые открытия телескопической астрономии. В сентябре 1610 г. ученый открывает фазы Венеры, а в ноябре обнаруживает признаки кольца у Сатурна, хотя и не догадывается об истинном смысле своего открытия («Высочайшую планету тройною наблюдал», – пишет он в анаграмме, пытаясь закрепить за собой приоритет открытия). Пожалуй, ни один телескоп последующих столетий не дал такого вклада в науку, как первый телескоп Галилея.

Рис. 1.24. Телескоп Галилея – один из величайших научных инструментов всех времен. Сегодня каждый из нас может за вечер сделать такой же оптический инструмент и, взглянув на небо, ощутить себя Галилеем.


Однако те любители астрономии, кто пытался собирать телескопы из очковых стекол, нередко удивляются малым возможностям своих конструкций, явно уступающих по «наблюдательным возможностям» кустарному телескопу Галилея. Порой современные наблюдатели не могут обнаружить даже спутники Юпитера, не говоря уже о фазах Венеры.

Во Флоренции, в Музее истории науки (рядом со знаменитой картинной галереей Уффици) хранятся два телескопа из числа первых построенных Галилеем. Там же находится и разбитый объектив третьего телескопа: его видно на фотографии (рис. 1.25) в нижней части подставки, в центре дорогой виньетки. В начале XX в. эти телескопы были изучены (см. табл.). С ними были даже проведены астрономические наблюдения.


Оптические характеристики первых объективов и окуляров телескопов Галилея (размеры в мм)

Оказалось, что первая труба имела разрешающую способность 20″ и поле зрения 15′, а вторая – соответственно 10″ и 15′. Увеличение первой трубы было 14-кратным, а второй – 20-кратным. Разбитый объектив третьей трубы с окулярами от первых двух труб давал бы увеличение в 18 и 35 раз. Итак, мог ли Галилей сделать свои изумительные открытия, используя столь несовершенные инструменты?

Именно таким вопросом задался англичанин Стивен Рингвуд и, чтобы выяснить ответ, создал точную копию лучшего телескопа Галилея (Ringwood, 1994). В октябре 1992 г. Стив Рингвуд воссоздал конструкцию третьего телескопа Галилея и в течение года проводил с ним всевозможные наблюдения. Объектив его телескопа имел диаметр 58 мм и фокусное расстояние 1650 мм. Как и Галилей, Рингвуд диафрагмировал свой объектив до диаметра апертуры D = 38 мм, чтобы получить лучшее качество изображения при сравнительно небольшой потере проницающей способности. Окуляром служила отрицательная линза с фокусным расстоянием -50 мм, дающая увеличение в 33 раза. Поскольку в такой конструкции телескопа окуляр размещается перед фокальной плоскостью объектива, полная длина трубы составила 1440 мм.

Самым большим недостатком телескопа Галилея Рингвуд считает его малое поле зрения – всего 10′, или 1/3 лунного диска. Причем на краю поля зрения качество изображения очень низкое. При использовании простого критерия Рэлея, описывающего дифракционный предел разрешающей способности объектива, можно было бы ожидать качества изображения в 3,5–4,0″. Однако хроматическая абберация снизила его до 10–20″. Проницающая сила телескопа, оцененная по простой формуле (2 + 5 lg D) ожидалась около +9,9m. Однако в действительность не удалось обнаружить звезд слабее +8m.

Рис. 1.25. Телескопы Галилея, хранящиеся в Музее истории науки (Флоренция).


При наблюдении Луны телескоп показал себя неплохо. В него удалось разглядеть даже больше деталей, чем было зарисовано Галилеем на его первых лунных картах. «Возможно, Галилей был неважный рисовальщик или его не очень интересовали детали лунной поверхности?» – удивляется Рингвуд. А может быть, опыт изготовления телескопов и наблюдения с ними был у Галилея еще недостаточно велик? Мне кажется, что причина именно в этом. Качество стекол, отполированных Галилеем собственноручно, не может соперничать с качеством современных линз. Ну и, конечно, Галилей не сразу научился смотреть в телескоп. Имея 40-летний опыт визуальных наблюдений, я могу это утверждать.

Кстати, а почему создатели первых зрительных труб – голландцы – не совершили астрономических открытий? Предприняв наблюдения с театральным биноклем (увеличение 2,5–3,5 раза) и с полевым биноклем (увеличение 7–8 раз), вы заметите, что между их возможностями пролегает пропасть. Современный высококачественный 3-кратный бинокль позволяет (при наблюдении одним глазом!) с трудом заметить крупнейшие лунные кратеры; очевидно, что голландская труба с таким же увеличением, но более низким качеством не могла и этого. Полевой бинокль, дающий приблизительно те же возможности, что и первые трубы Галилея, показывает нам Луну во всей красе, со множеством кратеров. Усовершенствовав голландскую трубу, добившись в несколько раз более высокого увеличения, Галилей перешагнул через «порог открытий». С тех пор в экспериментальной науке этот принцип не подводит: если вам удастся улучшить ведущий параметр прибора в несколько раз, вы сделаете открытие.

Безусловно, самым замечательным открытием Галилея явилось обнаружение четырех спутников Юпитера и диска самой планеты. Вопреки ожиданиям, низкое качество телескопа не сильно помешало наблюдениям системы юпитеровых спутников. Рингвуд ясно видел все четыре спутника и смог, как и Галилей, каждую ночь отмечать их перемещение относительно планеты. Правда, не всегда удавалось одновременно хорошо сфокусировать изображение планеты и спутника: очень мешала хроматическая аберрация объектива. А вот что касается самого Юпитера, то Рингвуд, как и Галилей, не смог обнаружить никаких деталей на диске планеты. Слабоконтрастные широтные полосы, пересекающие Юпитер вдоль экватора, оказались полностью замыты в результате аберрации.

Рис. 1.26. Цейссовский театральный бинокль, оформленный в виде очков, – прямой потомок телескопа Галилея.


Очень интересный результат получил Рингвуд при наблюдении Сатурна. Как и Галилей, при увеличении в 33 раза он увидел лишь слабые вздутия («загадочные придатки», как писал Галилей) по бокам планеты, которые великий итальянец, конечно же, не мог интерпретировать как кольцо. Однако дальнейшие эксперименты Рингвуда показали, что при использовании других окуляров с большим увеличением все же можно различить более ясные признаки кольца. Сделай это в свое время Галилей, и открытие колец Сатурна состоялось бы почти на полстолетия раньше и не принадлежало бы Гюйгенсу (1656 г.).

Рис. 1.27. Полевой бинокль – потомок телескопа Кеплера.


Впрочем, наблюдения Венеры доказали, что Галилей быстро стал искусным астрономом. Оказалось, что в наибольшей элонгации фазы Венеры не видны, ибо слишком мал ее угловой размер. И только когда Венера приблизилась к Земле и в фазе 0,25 ее угловой диаметр достиг 45″, стала заметна ее серпообразная форма. В это время ее угловое удаление от Солнца уже было не так велико, и наблюдения оказались затруднены.

Самым же любопытным в исторических изысканиях Рингвуда, пожалуй, явилось разоблачение одного старого заблуждения по поводу наблюдений Галилеем Солнца. До сих пор считалось общепринятым, что в телескоп системы Галилея невозможно наблюдать Солнце, спроецировав его изображение на экран, ибо отрицательная линза окуляра не может построить действительного изображения объекта. Только изобретенный немного позже телескоп системы Кеплера из двух положительных линз дал такую возможность. Считалось, что впервые наблюдал Солнце на экране, помещенном за окуляром, немецкий астроном Кристоф Шейнер (1575–1650). Он одновременно и независимо от Кеплера создал в 1613 г. телескоп аналогичной конструкции.

А как наблюдал Солнце Галилей? Ведь именно он открыл солнечные пятна. Долгое время существовало убеждение, что Галилей наблюдал дневное светило глазом в окуляр, пользуясь облаками как светофильтрами или подкарауливая Солнце в тумане низко над горизонтом. Считалось, что потеря Галилеем зрения в старости частично была спровоцирована именно его наблюдениями Солнца. Однако Рингвуд обнаружил, что и телескоп Галилея может давать вполне приличную проекцию солнечного изображения на экран, причем солнечные пятна видны очень отчетливо. Позже в одном из писем Галилея Рингвуд обнаружил подробное описание наблюдений Солнца путем проекции его изображения на экран. Странно, что этого обстоятельства не отмечали раньше.

Думаю, что каждый любитель астрономии не откажет себе в удовольствии на несколько вечеров «стать Галилеем». Для этого нужно всего лишь сделать галилеев телескоп и попытаться повторить открытия великого итальянца. В детстве я делал из очковых стекол кеплеровы трубы, а лет 15 назад не удержался и соорудил инструмент, похожий на телескоп Галилея. В качестве объектива я использовал насадочную линзу диаметром 43 мм силой в +2 диоптрии, а окуляр с фокусным расстоянием около -45 мм взял от старинного театрального бинокля. Телескоп получился не очень мощный, с увеличением всего в 11 раз, но и у него поле зрения оказалось маленькое, диаметром около 50′, а качество изображения неровное, значительно ухудшающееся к краю. Однако изображения стали значительно лучше при диафрагмировании объектива до диаметра 22 мм, а еще лучше – до 11 мм. Яркость изображений, разумеется, понизилась, но наблюдения Луны от этого даже выиграли.

Как и ожидалось, при наблюдении Солнца в проекции на белый экран мой телескоп действительно давал изображение солнечного диска. Отрицательный окуляр увеличил эквивалентное фокусное расстояние объектива в несколько раз (принцип телеобъектива). Поскольку не сохранилось сведений о том, на каком штативе Галилей устанавливал свой телескоп, я наблюдал, удерживая трубу в руках, а в качестве опоры для рук использовал ствол дерева, забор или раму открытого окна. При 11-кратном увеличении этого было достаточно, но при 30-кратном, мне кажется, у Галилея могли быть проблемы.

Можно считать, что исторический эксперимент по воссозданию первого телескопа удался. Теперь мы знаем, что телескоп Галилея был довольно неудобным и скверным прибором с точки зрения современной астрономии. По всем характеристикам он уступал даже нынешним любительским инструментам. У него было лишь одно преимущество – он был первым, а его создатель Галилей «выжал» из своего инструмента все, что возможно. За это мы чтим Галилея и его первый телескоп.

1.5.2. Прогулки по Луне

Мало кому пришлось и немногим еще придется в ближайшие годы погулять по Луне. Но ведь экскурсия на соседнюю планету может быть и виртуальной. Сегодня «путешествовать» по Луне можно с помощью компьютера, не выходя из дома: детальная масштабируемая карта Луны доступна в интернете (http://www.google.com/moon) и на оптических дисках. Разумеется, это большое удобство – «отправиться к далекой планете» в теплых тапочках и с чашкой чая. Но можете мне поверить: «прогулка по Луне» на свежем воздухе с помощью телескопа даст вам ни с чем не сравнимое удовольствие. Разумеется, чем больше и дороже телескоп, тем интереснее будет прогулка. Но Луна тем и привлекательна, что для первых визитов к ней годится любой оптический прибор. Впрочем, первый «визит» к Луне можно предпринять, даже не вооружая глаз оптикой.

Выберите момент, близкий к полнолунию. Во-первых, вы увидите освещенным почти весь лунный диск. А во-вторых, наблюдать другие объекты в такую ночь почти не имеет смысла: яркий свет полной Луны подавляет слабое свечение звезд и планет. Чтобы быть точным, скажу, что полная Луна в зените создает на поверхности Земли освещенность в 0,25 лк, при которой без труда можно читать крупный типографский шрифт. А безлунное звездное небо освещает Землю с интенсивностью всего лишь в 0,001 лк, то есть в сотни раз слабее.

bannerbanner