скачать книгу бесплатно
В примере социальных танцев из предыдущих подразделов как раз описано современное разделение труда: нет одного «создателя мастерства артиста». У агентов, которые танцуют в клубе сальсу, множество самых разных создателей, выполняющих самые разные роли – от врача, через тренера/инструктора фитнеса и учителя танцев к гуру танцевального стиля и хореографу. Но на уровень выше (создание и развитие вечеринок::мероприятий) разнообразие ролей ещё выше: совсем верхнеуровневые роли оргов вечеринок, фотографов и видеографов, артистов для шоу и учителей для мастер-классов (часто проводятся прямо на вечеринках), аниматоров для линейных танцев. А ещё выше там роли амбассадоров культуры, и это тоже могут быть отдельные профессионализирующиеся в этой роли агенты.
О глубине разделения труда говорят как о раздаваемом по разным агентам для последующего коллективного выполнения исходной роли числе уровней подролей, на которые распадается исходная роль и числе подролей на каждом уровне. Разделение труда, оказывается, довольно глубоко даже в танцах! Там уже ушли от ситуации «один учитель танцев учит одного танцора». Нет, подготовкой одного артиста-танцора занимается много агентов-создателей, имеющих разную специализацию. Инженерия личности (инженерия набора мастерства в человеке) требует не меньшего числа участников команд с разной специализацией, чем инженерия какой-нибудь программной или аппаратной «железной» системы (например, робота).
Системные уровни хороши как раз тем, что позволяют обсудить: кто::создатель что::система делает, и что можно не делать, и что нельзя не делать. Всё это будет упрощено (моделирование оставляет только важное!) разложено по полочкам и документировано (мозгу не верим, он забывчив, верим записанному), и сверхсложное станет более простым.
Так, сверхсложный город можно обсуждать как состоящий из кварталов/зон застройки, кварталы как состоящие из зданий, здания как состоящие из стен, и никакого винегрета типа «кварталов из стен». С городом просто понимать идею системных уровней, с танцевальной вечеринкой – сложней, с предприятием – ещё сложней. Но разобраться с предприятием::создатель::система и выпускаемыми им системами::«целевая система» всё-таки можно, мышление о предприятии будет тем же самым: разные системные уровни выпускаемых предприятием систем и систем-создателей подсистем систем на этих уровнях (а внешние роли для предприятия ещё и занимаются созданием надсистем). Главное, что разобраться с тем, чем заняты самые разные агенты в предприятиях как коллективных агентах, можно: просто помним о разделении труда, поэтому выстраиваем размышление от целевой системы (обязательно в окружении!) в момент её работы к целевой системе из конструктов, затем методов создания целой системы из конструктов, затем роли для этих методов и дальше – агенты с нужной степенью мастерства, а далее агенты, организующие агентов-сотрудников. Мы наблюдаем агентов при бытовом внимании к предприятию, а системное мышление говорит, какая должна быть траектория внимания по объектам, связанным с предприятием, если пользоваться системным моделированием. Поскольку объектов оказывается много, то предлагается документировать результаты системного моделирования, не ограничиваться «мышлением в уме», «мышлением проговариванием», и даже «мышлением письмом», но проводить «системное мышление моделированием».
В этом прелесть системного мышления: один раз понял, а затем используешь это мышление для всех самых разных систем, которые тебе встречаются. Окружающим агентам эти системы кажутся абсолютно разными, но системный мыслитель находит все эти системы довольно похожими друг на друга, мышление системного мыслителя про эти системы – беглое, он разбирается только с прикладными нюансами проектной ситуации, а в общих чертах любая проектная ситуация для него выглядит одинаковой, он уже знает про там происходящее в объёме знаний мета-мета-модели, «в общих чертах». Это экономит очень, очень много времени! У системного мыслителя всегда есть чеклист: на что обратить внимание в незнакомой ситуации. Поэтому по-настоящему незнакомых ситуаций не случается, растерянности перед хаосом окружающего мира нет.
Совершенно неважно, какая система, если речь идёт о системном мышлении. Мышление будет устроено одинаково, внимание будет удерживаться системными уровнями, хотя содержание мышления будет абсолютно разным для разных видов систем, разных системных уровней. Типы мета-мета-модели одни и те же (мышление ведётся в типах! Мета-мета-модель – это типы из нашего курса, типы понятий фундаментальных дисциплин/объяснений методов интеллект-стека), а вот типы мета-модели (предметной области, метаУ-модель из общего учебника какой-то дисциплины, метаС-модель ситуационная, как сложилась в какой-то организации и отражено, например, в регламентах и корпоративных стандартах) будут существенно отличаться.
Пример космической ракеты легче понимать, чем танцевальный пример, ибо ракета не живая, и не учится, хотя AI в современной ракете уже не факт, что не учится примерно так же, как люди-агенты в танцевальном примере. Но мышление о космическом корабле устроено так же, как мышление про танцоров: если корпус корабля изготовлен из неправильного для успеха системы материала (например, из алюминия), то нужно опускаться на уровень рассмотрения материала, и решать проблему (например, брать сталь[46 - https://worldsteel.org/steel-stories/innovation/spacex-relies-on-stainless-steel-for-starship-mars-rocket/ (https://worldsteel.org/steel-stories/innovation/spacex-relies-on-stainless-steel-for-starship-mars-rocket/)], как это сделал SpaceX с ракетой Starship). Иначе из-за проблем с материалом нарушится работа всех остальных более высоких системных уровней ракеты, она не сможет летать, или будет летать не очень надёжно.
Проблемы возникают из-за неправильной совместной работы многих системных уровней, помним о конфликтах систем разных системных уровней. Обычно задачи, которые нужно решать в ходе создания и развития систем, приходят с более высоких уровней, в конечном итоге от надсистемы, которая требует от целевой системы выполнения какой-то функции – и это рассмотрение идёт на много уровней вниз.
Ракета получает свою функцию летать с какими-то характеристиками с более высокого системного уровня. Например, можно рассмотреть космическую компанию вроде SpaceX, ставящую задачи для связки ракеты и космического корабля, или заказчика полётов корабля у такой компании, например, телекоммуникационную компанию, которая желает запустить спутник. Но вот для того, чтобы выполнить такое задание, нужно решить много-много проблем на низлежащих системных уровнях (их довольно много: скажем, из какого материала делать сопла двигателей? А чем охлаждать эти сопла? А как должны быть устроены насосы?), согласовать между собой взаимодействие всех частей ракеты, и частей этих частей, и так до уровня исходных материалов (из каких материалов делать насосы ракеты? А трубопроводы?). Чтобы сообразить, что много-много решаемых текущих проблем – это совсем не те решаемые проблемы, которые нужно решать (они неважные, их решение ничего не даст!), нужно подниматься на много-много уровней вверх – и затем спускаться опять вниз по системным уровням, чтобы выйти на действительно важные решения. Помним также, что конструкция системы должна отражать многоуровневую, а не одноуровневую оптимизацию. Глупо делать корпус ракеты из стали и иметь поэтому запас прочности корпуса при высоких температурах, а затем не использовать этот запас прочности! Все оптимизации конфигурации системы – многоуровневые.
Полезное упражнение тут – это представить авиалайнер как 6 млн индивидуальных деталей, летящих с одинаковой скоростью 890км/час в одном направлении на высоте 10 км. Это шутка, но это и чистая правда! Если не вводить тут рассмотрение на разных системных уровнях, оставаться редукционистом, то остаётся думать про самолёт именно так: 6 млн деталей, которые были собраны вместе и теперь согласованно летят на десятикилометровой высоте. Вспомните картику аккуратно выложенных рядом деталей разобранного автомобиля, работу автомобиля невозможно обсуждать, обсуждая его детали и их взаимодействие! Невозможно организовать производство автомобиля или самолёта, если рассматривать одноуровневое разбиение «автомобиль – все его детали списком». Невозможно организовать предприятие, если его рассматривать, например, как «предприятие – все его люди списком».
Если мы используем системное мышление, то мы сможем организовать работу примерно полумиллиона человек на самых разных заводах и в конструкторских бюро мира, которые изготавливают эту сборку из 6 млн деталей, которые мы называем «авиалайнер». Системное мышление использует системные уровни, чтобы не потерять ни одной части в системном разбиении, но каждый раз иметь дело с ограниченным числом частей-подсистем в каждой системе на каждом системном уровне.
Конечно, в случае авиалайнера и предприятия (и вообще по факту сегодня – любой другой системы) описание системного разбиения поддерживается компьютером, коллективное внимание команды этих проектов может быть удержано только с использованием компьютера. Даже если вернуться к бумажной инженерной работе, не удастся разработать и изготовить успешную систему таких масштабов. Поэтому системное мышление сводится по большому счёту к системному компьютерному моделированию, без компьютера удержать внимание в проекте просто нельзя, системное мышление требует технически обеспеченной собранности. Не пишешь результаты моделирования – системно не мыслишь!
Окружение, включая надсистему, а также целевая система и её подсистемы, входят в одно системное разбиение, уровни которого определяются на момент, когда целевая система существует, готова и работает, внося свой вклад в появление нужных системных свойств у надсистемы. Никакая система не нужна сама по себе, она нужна только для того, чтобы стать частью надсистемы! Поэтому системное мышление начинается всегда с того, что целевая система определяется как «чёрный ящик» (непонятно, как устроенный объект), выполняющий какую-то свою работу в надсистеме: рассмотрение от границы целевой системы начинается вверх по уровням, а не вниз/внутрь целевой системы, в состав её частей. Рассмотрение частей системы, знание о подсистемах – это рассмотрение «прозрачного ящика», у которого известен состав частей и как они взаимодействуют. Рассмотрение устройства/состава целевой системы, то есть проход от границы системы вниз по системным уровням – это всегда второй шаг. Первый шаг – «чёрный ящик» в системном окружении, второй шаг – «прозрачный ящик». И так с системами каждого системного уровня – на много уровней вверх и вниз.
Создатели::система имеют дело/взаимодействуют с целевой системой по мере того, как она постепенно («разово» – это так мыслили раньше, сейчас системы эволюционируют, а не «рождаются, живут, умирают») замышляется, проектируется, изготавливается, ликвидируется. Если речь идёт о времени создания и развития системы, то системы, изменяющие описания и материалы целевой системы, чтобы получить из них готовую работающую систему, называются создателями/«системами создания»[47 - в более ранних версиях курса это были «системы обеспечения», enabling передавалось как https://en.wiktionary.org/wiki/обеспечение (https://en.wiktionary.org/wiki/%D0%BE%D0%B1%D0%B5%D1%81%D0%BF%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5) – ударение можно ставить двумя способами, обеспе?чение или обеспече?ние.] (enabling systems по ISO 15288:2023, constructors в физике). Эти системы постепенно (в ходе «непрерывного всего» – непрерывной разработки, непрерывного изготовления, непрерывного введения в эксплуатацию) создают и развивают целевую систему. Создатели проводят инкременты (части системы, содержащие новый функционал/фичи/features/возможности) целевой системы через разные состояния (инкремент «замыслен», «спроектирован», «в виде закупленного сырья», «изготовлен», «проверен», «принят в эксплуатацию») к готовности эксплуатации/использования, а потом выводят из эксплуатации/использования, в том числе и ликвидируют (это может быть непросто! Например, оставляют «зелёную площадку» после полной ликвидации атомной электростанции), или вместо ликвидации ремонтируют, или иногда модифицируют и возвращают в использование. Подробней это рассказывается в курсах «Методология» и «Системная инженерия».
Создатели не входят в окружение целевой системы (не являются частями каких-то надсистем целевой системы) и тем самым не входят в одно системное разбиение с целевой системой, но входят в самые разные иные системные разбиения. Почему так? Сама целевая система не живёт, себя не кормит, не выращивает – для этого и требуются системы создания, сами работающие во время создания и развития системы. А окружение? Это все системы, которые окружают целевую в какой-то её конфигурации (помним, что система развивается/эволюционирует, поэтому конфигурация как состав системы меняется – посмотрите ваш телефон, он расскажет, какая его версия и какая версия операционной системы, какая версия его приложений) во время её работы/эксплуатации, когда она уже создана, работает, ещё окончательно не ликвидирована. Конечно, живые системы являются и создателями/родителями целевых (бабочка-1 родитель/создатель другой бабочки-2), но там есть особенности – геном (наследственный материал) находится в биологической системе и в создателе, и в целевой системе в ядре каждой клетки, а в техноэволюции мемом находится только в создателе (информационная модель системы), а то и распределён по многим создателям, а целевая система его не имеет.
В стандартах классической системной инженерии предпочитают о подобных системах говорить enabling system (например, в серии стандартов, основанных на ISO 15288:2023), но вот David Deutsch и Chiara Marletto предложили говорить о таких системах constructor[48 - https://www.constructortheory.org/ (https://www.constructortheory.org/)] (одно из словарных значений как раз «создатель»): основное тут то, что подобного сорта система поддерживает свою идентичность в ходе каких-то однородных изменений, производимых создателем в окружающей среде. Например, молекула катализатора производит множество актов катализа, оставаясь неизменной (enable chemical reaction, слово «enable» в английском языке тут хорошо подходит, поэтому enabling system в английском языке не вызывает вопросов). Или станок производит множество деталей. Или преподаватель обучает/«изготавливает» множество студентов. Или фирма рубит в лесу множество деревьев и изготавливает из них множество досок. Или кошка рожает множество котят, а самореплицирующийся робот производит/изготавливает множество себе подобных «роботят» (эти эксперименты уже идут[49 - https://reprap.org/wiki/RepRap (https://reprap.org/wiki/RepRap)]).
У создателей, как и у любых других систем, есть свои надсистемы и свои подсистемы. Раньше системы создания называли системами ведения жизненного цикла (lifecycle enabling system). Иногда «lifecycle enabling system» переводят и как «системы обеспечения жизненного цикла», но слово «обеспечение» как перевод enabling часто путают с обеспечением/снабжением или с неглавными/вспомогательными «системами обеспечения», поэтому в текущей редакции курса мы не используем слово «обеспечение» для жизненного цикла, а также стараемся избавиться и от термина «жизненный цикл», который был одни из основных терминов прошлого поколения системного подхода: слишком много от этого ошибок.
Ещё раньше системы создания называли просто системами жизненного цикла, иногда даже сразу предприятиями (enterprise), ибо проектами создания чаще всего занимаются предприятия. Сейчас создатели упоминаются как системы, участвующие в проектах создания и развития систем в отличие от проектов, занимающихся эксплуатацией систем. «Создание» – это по факту однократное (хотя там внутри может быть множество попыток с разными прототипами, просто эти прототипы не попадают в целевое окружение, они ещё могут не иметь минимальной нужной функциональности) выполнение работ по выпуску системы как MVP[50 - https://en.wikipedia.org/wiki/Minimum_viable_product (https://en.wikipedia.org/wiki/Minimum_viable_product)] (минимальный жизнеспособный продукт, minimal viable product), а «развитие» – это отсылка к длительному/многократному практикованию метода изменения конфигурации системы с целью улучшения её приспособленности/fit к «эволюционной нише», то есть использованию в каких-то надсистемах. Поэтому «создание» – это чаще всего выпуск MVP, а «развитие» – это выпуск множества версий системы после того, как она создана, то есть выпущена версия MVP.
Создатель – это не только развитый интеллектуально агент (человек, робот) или даже коллективный агент (предприятие). Формально это может быть и просто какой-то станок, который вытачивает целевую деталь – эта деталь потом станет подсистемой работающей целевой системы. Станок не участвует в эксплуатации целевой системы, он не входит в её эксплуатационное/операционное окружение, не рассматривается вообще во время эксплуатации. И даже метод работы станка для получения ожидаемых (а не абы каких) результатов работы обычно так не называется, чаще говорят «функция». Зато он участвует в создании системы – так что этот станок будет создателем/constructor/enabling system/системой создания. И, конечно, станок будет входить в какое-то предприятие, но предприятие будет для этого станка далёкой над-над-над-надсистемой, через много системных уровней (например, системные уровни станок-сектор-отдел-служба-предприятие). А если рассмотреть станок-2, принимающий участие в создании станка-1, который принимает участие в создании целевой системы, то эта цепочка будет называться цепочкой создания, в которой основное отношение – создания/enabling, а не часть-целое/композиции. В цепочках создания могут быть и люди, и предприятия, и AI. И из этих цепочек создаются сложные графы создания. Например,
• Консультант службы продвижения (внешний контрактор, предприятие) создаёт (выполняя работы по методам методологии и методики, это методы инженерии личности)
• учебный курс по продажам и
• Преподавателя для «менеджеров по продажам»/продавцов.
• Преподаватель для менеджеров по продажам учит их, используя материалы курса по продажам (создаёт мастерство продавца в агентах, которые будут дальше выполнять роли менеджеров по продажам)
• Менеджеры по продажам (то есть продавцы, но названные чуть более торжественно, «менеджерами») учат людей-сотрудников предприятия-будущего-клиента тому, как стать клиентом предприятия, и этого мало, они ещё и учат пользоваться продуктом, чтобы обеспечить постоянный доход от сервисных платежей и обновления версий продукта! Надо, чтобы после покупки люди ещё и пользовались продуктом! Так что продавцы создают в сотрудниках предприятия-клиента ещё и мастерство пользования продуктом.
Это очень маленький граф создания клиентуры, в жизни такие графы содержат существенно больше узлов. Скажем, консультанта тоже должен кто-то «создать», например, контрактовать, а если у продукта на предприятии будет много пользователей, то надо научить их всех, для этого потребуется обучить преподавателя из числа сотрудников предприятия-клиента, а ещё надо как-то встретить сотрудников предприятия и продавцов – и вот это оказывается работой по совсем отдельным методам.
Важно, что целевая система определяется для множества ролей, для большого коллектива. Об этом подробней будет говориться в следующих разделах. А как называется какая-то система, которая прямо сейчас находится в центре нашего внимания, но не целевая? Если мы эту нашу систему/system-in-hand назовём целевой, то нас никто не поймёт, будут считать (справедливо), что мы тянем одеяло на себя. Например, нам (в том числе вариант «мне и мне», или даже «нас тут пять ролей в команде из троих человек») поручили разработать винтик для большого и сложного станка. Да, целевой системой для всей команды является отгружаемый клиенту станок, который войдёт в остальное оборудование завода клиента как системное окружение, но мы-то в центре внимания вот прямо сейчас в разговоре держим этот винтик – и до системного уровня окружения станка на заводе клиента нам как до Луны, слишком высоко! Что, нам считать станок над-над-надсистемой для этого винтика::система? Да, конечно. Считать винтик целевой системой? Нет, конечно. Целевая система уже есть, станок, это на каком-то среднем масштабе времени, жизненного цикла всего проекта станка, требующего кооперации и договаривания многих людей. Целевая система для этого и была введена как тип: это исходная точка для договаривания многих ролей, часто многих ролей, исполняемых командами агентов.
Для таких ситуаций рассмотрения отдельными агентами из больших систем создания, состоящих из множества цепочек создания и появляется вид системы, который называется термином наша система (engineered system в классической системной инженерии, managed system в системном менеджменте, MySystem, OurSystem, система в руках/system in hand). «Наша система» обозначает систему в частном/преходящем/вре?менном фокусе внимания в системном разбиении целевой системы или длинной цепочке создания. Скажем, «целевая система – самолёт, наша система – пятый винтик в топливном насосе двигателя целевого самолёта», или «целевая система – самолёт, наша система – уникальный станок::создатель для нарезки „высокочастотного кабеля авионики“::подсистема этого самолёта», или «целевая система – процветающее трудолюбивое общество Остазии, но нашей системой сегодня является общество Евразии и Океании, которое мы всячески ослабляем и дестабилизируем».
Метафорически, если «целевая система» в большом коллективном проекте – это «начало координат»/«Северный Полюс», то «наша система» (engineered system) – это конкретный какой-то географический пункт для нашей команды, чьи координаты определяются по отношению к этому началу координат. И мы::«команда проекта нашей системы» должны чётко определить положение этого пункта по отношению к началу координат, определяя граф создания, иначе будет трудно договариваться с другими командами в проекте: мы для них будем не «сотрудниками, работающими на общую цель, успешность целевой системы», а «заботящимися о собственном благе, пришедшими откуда-то зачем-то», с чем бы ни пришли. Дальше об этом поговорим подробней, но пока несколько примеров (и небольшие нюансы могут приводить к большим изменениям в этих примерах! Помним, что при рассмотрении вымышленных учебных примеров не мышление прикручивается к ситуации, а ситуацию крутят так, чтобы она подошла к произвольно взятому мышлению, так что аккуратней с обсуждением примеров – лучше берите реальные ситуации, которые не дадут вам изменять ситуацию вместо изменения мышления о ситуации):
• В парикмахерской целевой системой является причёска (платят деньги за причёски!), сама парикмахерская – система создания для причёски, наша система – это точильный станочек для заточки ножниц, который мы устанавливаем в углу парикмахерской. И горе нам, если заточенные на нашем станке ножницы плохо постригут клиента, и причёска будет из-за этого некачественной! Мы выявляем сценарии рационального использования станка, выбираем из разных вариантов видов станков, имеющихся на рынке, закупаем, настраиваем и т. д. – занимаемся «нашей системой». Кто это «мы»? В данном случае «я, работающий на должности завхоза парикмахерской, мне поручили этот проект».
• У нас школа (частная!), мы усиливаем интеллект, тем самым занимаясь производством мастерства мышления в незнакомых ситуациях. Мы по факту изменяем свойства мозга наших выпускников так, чтобы в проблемных ситуациях включалось не бытовое мышление, а наше мастерство мышления по лучшим методам интеллект-стека. Моя система – это та часть интеллекта, которая ответственная за системное мышление. Я как преподаватель системного мышления делаю этот кусочек мозга, который должен сработать в окружении кусочков мозга, вместе которые реализуют мастерство по всему набору методов мышления интеллект-стека. А если я буду в роли разработчика полной учебной программы, то у меня «наша система» – это весь усиленный интеллект, включая системное мышление, но не ограничиваясь им. «Наша система» в этом случае будет совпадать с «целевой».
• Наш небольшой отдел IT-компании занят производством софта поддержания общей среды данных. Этот софт используется в проектных организациях, занятых проектированием объектов капитального строительства (мостов, эстакад, электростанций и т.д.). Конечно, сам софт как таковой никому не нужен, мы по факту сдаём работающий софт с людьми. Поэтому «нашей системой» («мы» для этого «наше» – это наш небольшой отдел IT-компании) в этом проекте будет «служба управления инженерными данными проектной организации»::оргзвено, а целевой системой будет объект капитального строительства (например, мост). Нам придётся показать, как служба управления инженерными данными, которую мы помогаем сделать проектной организации, поможет мосту стать лучше, дешевле, быть построенным быстрее. А для этого мы показываем, как подсистема нашей системы (софт, который производит наш отдел) выполняет уникальные функции в службе управления инженерными данными, которая выполняет уникальные функции в проектной организации, которая проектирует стройку моста и проектирует сам мост. И показываем, как наша работа связана с мостом, демонстрируем для этого документированный граф создания. Тут важно, что наша система – это служба, а софт – лишь подсистема этой службы (обычно беда, если наша система – это софт, ибо проектом службы тогда непонятно кто занимается, а софт не будет принят, ибо принимать будут работу службы, в жизни изменения от работы службы, нет изменений от работы софта, если им некому пользоваться).
• … таких примеров множество. Речь может идти или о подсистеме целевой системы, или о какой-то системе в графе создания (иногда довольно далеко по путям в этом графе), или о подсистеме в какой-то системе в графе создания. Нюансы тут важны, и помним, что «объективного» выбора нашей системы тут нет, и нет «пошагового алгоритма выбора»/«волшебного рецепта». Просто нужно учитывать, что во внимании удерживаем целевую систему, её надсистему, её подсистемы, а также системы в графе создания. И ещё понимаем, где там наша система, за которую ответственны «мы» как «маленькая команда в большом проекте» (иногда это команда из одного человека, вас лично). И у нашей системы есть своя надсистема, свои подсистемы, свои системы создания: по отношению к ней мы тоже управляем вниманием в проекте её создания и развития.
Рекурсивное применение системного мышления: рекурсивное управление вниманием
Понимание того, что любая система входит в системное разбиение и принадлежит какому-то системному уровню, позволяет системному мыслителю применять одно и то же системное мышление рекурсивно/recursive: проводить одни и те же рассуждения для каждого системного уровня, для каждой подсистемы в этом системном уровне, если идти по системным уровням вниз от целевой, и каждой надсистемы, если идти по системным уровням вверх. Неважно, какая это система – для неё может быть (и даже должно быть!) развёрнуто полное системное мышление (как прописано в системной мантре). А потом, после всестороннего обдумывания ситуации с этой конкретной рассматриваемой системой, можно вернуться к системному разбиению в целом (время использования) и графу создания, чтобы выбрать следующую систему для рассмотрения – и так с самыми разными системами самых разных системных уровней и самых разных мест в графе создания.
Системное разбиение (system breakdown structure) – это прежде всего средство для управления вниманием. Внимание выхватывает для подробного рассмотрения какой-то один объект-фигуру, а всё остальное остаётся фоном, насколько огромным или разнообразным ни было бы это «всё остальное». Внимание позволяет резко упростить сложность мира, временно игнорируя незначимые детали – оставив в обсуждении только важное. Системное мышление заставляет всё время концентрироваться на главном, опуская неважные детали, это концентрация внимания/focusing. И оно же заставляет не забывать о целом, когда внимание обращается к частям – деконцентрация внимания. Помним, что основной акцент в системном мышлении – это «наверх» по системным уровням: не от целевой системы к её подсистемам, а от целевой системы к её окружению, к надсистеме! Если у вас во внимании какая-то фигура, то её окружение будет находиться в фоне! Деконцентрация внимания, обращение внимание на фон оказывается даже более важным, чем игнорирование фона, фокусировка внимания!
Нужна осознанность в управлении вниманием: вы осознанно концентрируете и деконцентрируете внимание, осознанно перемещаете это внимание с объекта на фон в моменты деконцентрации (много объектов в поле внимания, высокая алертность к появлению нового в широком поле вашего внимания), и концентрируете внимание, отслеживая находящиеся в его фокусе объекты на игнорируемом фоне. Системное мышление управляет вниманием, описывая его движение в понятиях/типах системного подхода (система, функция/метод, роль, конструктив, эмерджентность и т.д.). Понятия/типы системного подхода – это типы мета-мета-модели для выявления/discovery и последующего удержания вниманием в окружающем мире (физическом мире и мире описаний) объектов этих типов.
Вы знаете, что нужно искать в физическом мире объекты с типами «система» разных видов (целевая, надсистема, подсистема, наша, создатель). Как эти типы относятся друг ко другу (какие между ними типы отношений) как раз и описано в нашем курсе «Системное мышление», это и есть мета-мета-модель, выраженная текстом курса на естественном языке.
Дальше вы активно ищете в жизни объекты этих типов, ибо уже имеете ожидания по поводу этих объектов. Активно – это расспрашиваете о состоянии этих объектов, придумываете и создаёте такие объекты, если убеждаетесь, что их нет, проверяете догадки рациональным рассуждением и даже экспериментами.
Концентрация-деконцентрация внимания в ходе системного моделирования соответствует движению внимания по системным уровням (уровням размера систем), а сам фокус внимания – это выбор конкретной целевой системы, её подсистем и надсистем, системы в каком-то звене цепочки создания, выявление среди них «нашей системы».
Системный мыслитель хорошо ориентируется в сложном мире: ни на секунду он не теряет контекста/окружения рассматриваемого объекта внимания, оставаясь способным обсуждать как самый маленький винтик в самом маленьком приборе, так и совсем огромные системы планетарного масштаба. От этих «скачков масштаба» он не сходит с ума, для него это самая обычная процедура концентрирования внимания на всё более и более малой части мира, переставая воспринимать подробности из окружения этой части, или наоборот, деконцентрирования внимания на всё более большой части мира, теряя при этом подробности маленьких частей этой большой части мира.
Системный мыслитель выбирает/select какую-то систему, рассматривая её в составе надсистемы и в целом в системном окружении («в контексте», причём в момент работы готовой целевой системы), затем может рассмотреть эту систему в свою очередь как набор частей – «зуммировать»/«zoom in» на очередной уровень детальности, увеличив подробность рассмотрения этой части, как в современных фотоаппаратах. Совсем недаром говорят о «камерах внимания», когда рассматривают работу внимания:
• Эта работа активна/деятельна: камеру сначала надо навести на какой-то кусок мира, который собираемся рассмотреть, затем её настроить на нужный зум. Это изменение состояния мира ещё перед замером: направить камеру на объект! Измерение надо готовить, только потом измерять! Чтобы описать то, что за углом, надо подойти к этому углу и заглянуть за угол, сделать активное действие. И там надо понимать, высматриваешь силуэт большой горы или песчинку на этой горе, настроить фокус: это задействование знаний, мета-мета-модели.
• Только после этого можно рассматривать то, что получено из этой камеры и выбирать какие-то объекты из её поля зрения, присваивать тип. Опознание наличия или отсутствия объектов каких-то типов может быть только после проведения измерения и при наличии знания об этих типах (знания мета-мета-модели).
• В общем случае камер у агента может быть много: внимание «многопоточно», с каждой камеры идёт какой-то поток информации, и работу каждой камеры надо настраивать и использовать мета-модель, а ещё нужно как-то объединять в мышлении результаты работы камер внимания.
Системный мыслитель может легко выбрать для каждой камеры внимания нужный масштаб рассмотрения ситуации, выбрать нужные ему системные эффекты (эмерджентные свойства) в качестве своих предметов интереса на выбранном системном уровне. И делает это системный мыслитель осознанно: он хорошо знает, что использует навигацию по системным уровням и при каждом мета-системном переходе (с одного системного уровня на другой) у него в рассмотрении появляются новые системные эффекты/эмерджентности.
Вот пример рассмотрения системных уровней для мультимодальной транспортной системы[51 - Leidraadse (2008), Guideline Systems Engineering for Public Works and Water Management, 2
edition, http://www.leidraadse.nl/ (http://www.leidraadse.nl/)]:
В транспортной системе мы сначала можем обсуждать мульти-модальные[52 - https://ru.wikipedia.org/wiki/Мультимодальная_перевозка (https://ru.wikipedia.org/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%BC%D0%BE%D0%B4%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B7%D0%BA%D0%B0)] перевозки и конкуренцию независимых друг от друга мономодальных транспортных систем. Так, трубопроводный транспорт конкурирует в перевозке нефти с железнодорожным транспортом – для их владельцев они враги-конкуренты в операционном окружении, но для желающего перевезти нефть из одной точки мира в другую они части одной мульти-модальной транспортной системы (помним, что разные роли выделяют системы по-разному, как им удобно для их деятельности. Хотя для совместной работы в команде какого-то проекта им придётся договориться). Когда мы обсуждаем транспортные системы – это планетарные масштабы, или масштабы какой-то страны.
В одной из подсистем транспортной системы можно выбрать для обсуждения железнодорожную систему – поезда, энергетику железной дороги, управление движением поездов и т. п. Если взять одну из подсистем железной дороги – систему железнодорожной станции, то в ней можно дальше рассмотреть её собственные подсистемы – систему посадки пассажиров, информационную вокзальную систему, систему питания пассажиров (catering), систему продажи билетов. Часть этой системы продажи билетов – её подсистема автоматов по продаже билетов. Эти автоматы тоже каждый могут быть рассмотрены как отдельные системы. Винты, которые крепят печатную плату контроллера к корпусу этого автомата – это тоже системы. И даже в винтах можно найти разные части – головку с шлицами под отвёртки разной формы, резьбу.
Вот так, в паре абзацев и одной маленькой картинке мы проходим рассмотрение ситуации от планетарных или страновых масштабов до маленького винтика, и при этом не сходим с ума, не теряем нити рассуждений, чётко понимаем каждый раз предмет обсуждения и масштабы проблем. Это не поменяется и при обратном проходе, от частей винтиков до транспортной системы в целом. Перемещение по разным системным уровням, концентрация внимания на разных в них системах, деконцентрация внимания – это чрезвычайно мощный инструмент мышления.
Бессмысленно рассматривать винт в автомате по продаже билетов как непосредственную составную часть транспортной системы – это с точки зрения формальной логики будет правильно, но абсолютно бессмысленно, как «хвост стада коров». Системный подход, вводя системные уровни, делает рассуждения осмысленными: все люди получают возможность договориться, обсуждая проблемы только каждый на «своём» системном уровне (на уровне, для которого у них есть интересы, предпочтения, намерение действовать, чтобы изменить ситуацию к лучшему с точки зрения этих ролевых предпочтений), но при этом они учитывают проблемы смежных уровней – более высоких чем их целевые системы и более низких. Так организованное с разделением на системные уровни и по разным ролям коллективное мышление – это огромное достижение цивилизации.
Примерно так же мы можем обсуждать создание и развитие мультимодальной транспортной системы, указывая входящие в неё подсистемы разных уровней: кто::создатели и как::методы строит железнодорожную систему, кто::создатели и как::методы изготавливает винт крепежа платы контроллера к корпусу автомата по продаже билетов, кто и как завинчивает винт крепежа платы (это будет другой создатель, нежели создатель, изготавливающий винт). Всё обсуждается как «системы», и системы создания обсуждаются по отношению к системам в окружении, ибо если не знаешь, что::«целевая система или наша система» изготавливаешь – то тогда и не знаешь, какие системы-создатели это изготавливают, обсуждение невозможно. Окружение сначала, целевая система и её устройство потом, методы создания («как делаем целевую систему») ещё позже, а системы создания (кто::роли, кто::агенты их играет, кто::менеджеры будет их организовывать) – будут рассматриваться последними.
Боинг 747—8 состоит из 6 миллионов независимых видов деталей (входят в состав целевой системы), которые производили полмиллиона человек на 5400 фабриках (системы создания), за один год заказывалось (последний самолёт выпущен в декабре 2022) 783 миллиона частей самолёта (входят в состав целевой системы)[53 - http://787updates.newairplane.com/787-Suppliers/World-Class-Supplier-Quality (http://787updates.newairplane.com/787-Suppliers/World-Class-Supplier-Quality)]:
А теперь окружение этих боингов, время эксплуатации самолётов: аэропорты с авиадиспетчерскими и системами посадки-высадки пассажиров, воздушные коридоры (тоже системы! Они оборудованы радарами и другой инфраструктурой для их отслеживания. Они материальны, занимают место в пространстве). Сам по себе самолёт вне всего этого бесполезен, как пробка от бутылки бесполезна без бутылки, как бутылка бесполезна вне ситуации её использования.
В современных системах число отдельных элементов, которые нужно согласовать между собой (в проектировании), а часто и создать с нуля (в конструировании) достигает десятков миллионов в «железных» системах, а если речь идёт об электронных системах, то и триллионов: на одном электронном чипе Cerebras число отдельных транзисторов – 2.6 триллиона штук, при этом каждый транзистор имеет своё уникальное назначение внутри чипа, выполняет свою уникальную функцию[54 - https://www.anandtech.com/show/16000/342-transistors-for-every-person-in-the-world-cerebras-2nd-gen-wafer-scale-engine-teased (https://www.anandtech.com/show/16000/342-transistors-for-every-person-in-the-world-cerebras-2nd-gen-wafer-scale-engine-teased)]. И ещё эти чипы – не самый высокий системный уровень, выше их уровень печатной платы, ещё выше – суперкомпьютера на основе этих плат.
Можно оставить надежду о создании таких сложных объектов без какого-то их иерархического рассмотрения и управления коллективным и личным вниманием посредством документированной системной иерархии (то есть иерархии систем по отношению композиции). Управление коллективным вниманием создателей в привязке этого внимания к системным уровням, выделяемым в иерархии по отношению композиции систем – самая важная часть системного мышления. Это коллективное внимание также направлено на отношения создания между создателями и создаваемыми системами, тут мы говорим о графе создания.
Системные уровни появляются в результате роста сложности систем, это свойство эволюции (биологической/дарвиновской, меметической, техно-эволюции). Сложность систем будет только расти, это бесконечный рост. При этом каждый создатель-команда и создатель-предприятие может быть устроен достаточно просто (хотя это тоже системы, сложность создателей тоже растёт – предприятия объединяются в эко-системы, растут в суперхолдинги, число системных уровней там тоже увеличивается по мере эволюции). Но разбираться с проектами создания сложных систем (включая сами системы создания) можно потому, что одному создателю или даже его части (например, команде проекта внутри предприятия) не приходится заниматься всей системой в целом на всех системных уровнях – нет, каждый создатель работает с какими-то частями системы, и это существенно упрощает создание. Кто-то делает двигатель ракеты, кто-то делает компьютер ракеты, кто-то делает корпус ракеты, но нет фирмы, которая делала бы вот это всё – и даже выплавляла бы сталь для корпуса ракеты и очищала кремний для чипа компьютера.
Разные фирмы специализируются на разном мастерстве, но организованные согласно какому-то графу создания – они вместе создают удивительно сложные целевые системы, работающие в удивительно сложном окружении. Всё это возможно благодаря системному мышлению, реализуемому системными инженерами и менеджерами этих предприятий-создателей.
Задания по системным уровням
Поставьте отметку о выполнении:
1. Написан пост с моделированием системных уровней мастерства вашего хобби (за основу поста взято описание из разделов с примером социальных танцев).
2. Написан пост с моделированием системных уровней вашего основного рабочего мастерства, (за основу поста взято описание из разделов с примером социальных танцев).
8. Графы создания
Отношения создания
Простейший граф создания метафорически (то есть весьма вольно) можно проиллюстрировать диаграммой:
На диаграмме целевая система (обозначена красным кружком, «начало координат» для системных описаний) находится в своём системном окружении/среде/environment, то есть входит в надсистему целевой вместе с другими какими-то системами. Надсистема обозначена объемлющим кружком в окружении, куда входят ещё другие кружки с кружками внутри – системы в окружении целевой с их подсистемами. Помним, что целевая система проходит техно-эволюцию. Она имеет свои подсистемы (кружки внутри красного кружка). Каждый уровень группировки частей в целой системе (обозначены как более мелкие кружки в объемлющих их более крупных кружках, и так на нескольких уровнях вложенности) – это системный уровень. Системный уровень подсистем целевой системы – три кружка-подсистемы в кружке целевой системы, два кружка вокруг целевой и сама целевая система внутри надсистемы – это системный уровень, на котором находится целевая система. Дальше мы не детализируем именно системные уровни, но просто отмечаем отдельные надсистемы.
Целевая система проявляет свои внешние свойства в надсистему «в ходе»/«во время» её работы/operations, это обозначено словами «феном[55 - https://ru.wikipedia.org/wiki/Феном (https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D0%BD%D0%BE%D0%BC)] тут». Слова run-time часто используются в программной инженерии, чтобы обозначать время функционирования/работы/эксплуатации готовой системы. Но мы обозначили на диаграмме его другим, не менее употребимым словом – Ops-time, время работы операторов системы, когда система в рабочем состоянии, функционирует.
Целевые системы создаются и развиваются не сами (они саморазвиваться обычно не умеют, ибо не совсем живые, а в классической инженерии чаще совсем неживые), а создателями, выполняющими методы визионерства, разработки, архитектуры, DevOps/«инженерии внутренней платформы создания» и т. д. Системы создания включают в себя агентов с их инструментами. Агенты в узком смысле (автономные интеллектуальные вменяемые агенты) изображены кружочками с «лицами», а их явно неживое оборудование (от отвёртки до датацентра) – кружочками без лиц, организации изображены состоящими (композиция) из умных агентов и их оборудования и инструментов. Обратите внимание, что и во время эксплуатации/operations какие-то агенты на нашей картинке входят в окружение (например, пользователь::внешняя-роль-из-надсистемы компьютера::система входит в его операционное окружение, в отличие от компьютерного завода, который будет создателем компьютера и будет рассмотрен во время создания/dev-time).
Эти агенты-создатели создают и развивают (то есть часто просто как-то изменяют состояние, а не создают с нуля – скажем, красят, настраивают, добавляют функции, ремонтируют) целевые системы, подсистемы и надсистемы целевых систем. Агенты в самых разных проектных ролях имеют предметами своего интереса самые разные эмерджентные характеристики самых разных систем на разных системных уровнях, для этого они пытаются как-то спроектировать и предсказать по проекту успешность целевой системы (в эволюции – fit/«соответствие нише»), для этого они делают «умные мутации» в ходе развития системы. И для этого они совместно редактируют мемом системы в ходе её создания и развития. Это обозначено словами «мемом тут» во времени создания (слова «и развития» мы просто опустили для краткости, но развитие не менее, а часто более важно, чем создание MVP) напротив слов «феном тут».
Техно-эволюция, как и биологическая эволюция, включает «развитие вида», а не только «рост/изготовление одного организма/«экземпляра продукта». На каждом шаге техно-эволюции есть проект/design текущего поколения продукта::система с уровнем детальности, достаточным для изготовления (например, инструкции для станка с ЧПУ, а также инструкции сборочному роботу на машинном языке ЧПУ и робота). Этот проект/design сам является развёрнутыми разработчиками изобретательскими идеями (то, как функциональные объекты реализуются конструктивными объектами, как они расположены в пространстве, сколько стоят), и вот они в биологии находятся в геноме, внутри целевого организма (но в генной инженерии ещё и в памяти создателей, например в компьютерах лаборатории!), а вот в техноэволюции аналог генома – мемом, хранится у создателей. И в ходе «умных мутаций» (потенциально успешных изменений в идеях мемома) создаётся целевая система с набором её особенностей в готовом виде: мемом порождает феном, как и в биологии.
Слова для времени создания и развития из программной/software инженерии – dev-time (от «development»), часто design time. При рассмотрении создателей мы не рассматриваем работающую/эксплуатирующуюся в окружении целевую систему, а рассматриваем систему в момент её создания (замысливания/«стратегирования использования», проектирования, изготовления, ввода в эксплуатацию системы как MVP, а дальше поток инкрементального развития функциональности и конструкции). Остальные методы времени создания (инженерные обоснования, принятие архитектурных решений) тоже присутствуют, но они тоже опущены для краткости, главное, что понятно: речь идёт о ходе/времени создания, dev-time, а не ops-time. Системы создания и системы из системных уровней внутри и снаружи целевой системы рассматриваются в разные времена/realms, что отражено пунктирной вертикальной красной линией, которую пересекают стрелки отношения создания.
Есть время готовки борща (создатели – повара), есть время есть борщ (целевая система – борщ, окружением тут выступают ситуация обеда в ходе подачи, рот-язык-зубы в ходе еды, а также желудок в ходе переваривания. Но это уже всё ops-time, а dev-time – это изменение состояния свежих овощей, сырого мяса, воды создателями борща на кухне, до конечного состояния «борщ в тарелке, готов к использованию»). Есть время изготовления ракеты, есть время полёта ракеты. При этом работа инженеров с ракетой абсолютно не похожа на работу космонавтов в летящей ракете. В системном мышлении принято чётко различать время, которое обсуждается, и главное время тут – использования/функционирования системы (все функциональные описания – в нём). Но есть ещё и время создания системы (все конструктивные описания – в нём), оно не главное, но тоже есть!
Конечно, есть проблемы и единства рассмотрения этого времени, так называемая проблема DevOps, когда разработчики/создатели системы никак не связаны с операторами/пользователями и поэтому делают систему, которой невозможно пользоваться. Эта проблема решается прежде всего организационными мерами, но сегодня часто задействуют и технические меры: операторы и даже пользователи вообще исключаются как люди, заменяются роботами, так называемый подход NoOps[56 - https://ailev.livejournal.com/1367897.html (https://ailev.livejournal.com/1367897.html)]. В любом случае, в системном мышлении принято не столько считать всё происходящее в разработке и использовании принадлежащим к одному физическому времени, сколько различают «логические» времена создания (development, design, construction, implementation, enabling – везде в центре методы работы создателей, а целевая система тут пассивна, ещё не готова к работе) и времени эксплуатации (run, operation, use – функции/методы самой целевой системы, а создатели тут уже не работают, пассивны).
Можно тут обсуждать и цифровых двойников, но основная их роль – это «автоматизированное управление», замена оператора по настройке-подстройке параметров уже работающей целевой системы автоматом или составной конструкцией из человека (который крутит какие-нибудь ручки или меняет ненадёжные элементы конструкции в физическом мире) и информационной управляющей системы (которая говорит, куда какие ручки покрутить, что из элементов конструкции стало настолько ненадёжным, что хорошо бы заменить – софт занят «предиктивной аналитикой», например, для «ремонта по состоянию»). Цифровой двойник работает во время использования, а не во время создания.
Между системами в окружении (целевой, надсистемой, системами в составе надсистемы из ближнего окружения и т. д. – если встретилось слово окружение/среда/environment, надо всегда помнить, что это «операционное окружение»/«operations environment», то есть рассмотрение времени работы) и их создателями тоже отношение создания (development, design, construction, implementation, enabling), когда один создатель::система описывает и/или меняет другую систему. И таких систем можно рассмотреть целую цепочку по отношению создания, а если поглядеть на все такие цепочки, то это будет граф создания: узлы – это системы (целевая и создатели) а рёбра – отношения создания. Внутри одного времени – отношения часть-целое/композиции, через границы времён/realms – отношения создания (X::система создаёт/«изменяет состояние» Y::система).
На диаграмме показан вариант такого графа создания. Для каждого создателя тоже было его создание, и его эксплуатация/использование/работа/operations. Поэтому на диаграмме представлено несколько разных «времён» рассмотрения (realms), и что для создателя будет его ops-time, для целевой системы будет dev-time. А что для создателя его dev-time, то для создателя создателя – ops-time.
Разных создателей может быть много, и сами цепочки могут быть длинными. Можно двигаться по цепочкам создания довольно далеко от целевой системы, ибо каждого создателя тоже надо кому-то создать, и при системном моделировании мы в каждом проекте просто останавливаемся на той длине цепочки создания, которая позволяет более-менее уверенно оценивать успешность целевой системы.
Топ-менеджеры в своих проектах регулярно работают с цепочками создания на шесть-семь звеньев – и когда берут какие-нибудь примеры на три или даже четыре звена, удивляются, что модель плохо соответствует жизни. Скажем, вы рассматриваете продавцов, но не учитываете, что реально вы в ситуации какой-нибудь дилерской сети и ещё с «агентами у клиента», а не прямых продаж – и вы их всех зовёте «продавцами». Всё, вы потеряли одно звено цепочки создания, модель будет плохой.
На диаграмме показан сереньким «создатель создателя создателя целевой системы», чтобы не забыть про наличие именно длинных цепочек создания, а не одного отношения создания между двумя системами. Стрелки направлены в среднем слева направо, это обычное умолчание для показа времени с прошлым слева и будущим справа: сначала как-то появляется создатель, и только потом – создаваемая им система. Вместе же все цепочки создания – граф создания, обычно направленный/directed ациклический граф[57 - https://en.wikipedia.org/wiki/Directed_acyclic_graph (https://en.wikipedia.org/wiki/Directed_acyclic_graph)].
Отношения создания – это не отношения часть-целое! Enabling/construction это не composition/part_of! Кастрюля, в которой варится борщ – это не кастрюля в составе борща, или борщ в составе кастрюли! Это кастрюля для создания борща!
А теперь поставьте крестик на любом из кружков этой диаграммы, которым в составе большой команды проекта будет заниматься ваша маленькая команда (возможно, в ней будете только вы один) – это будет «наша система» (system-in-hand, engineered system, MySystem, OurSystem). И повторите все рассуждения про целевую систему для нашей системы – ни на секунду не забывая про целевую систему и отношения нашей системы и целевой системы!
Запутались? Запишите все эти системы в каком-нибудь редакторе текстов или другом моделере, как шахматист записывает шахматную партию. Думайте не «в уме», думайте над текстом, или аутлайном, или таблицей!
Системное мышление подразумевает использование моделей/описаний, внимание должно удерживаться не в мозгу мыслителя, а документами (сегодня – электронными, в том числе информационными и имитационными моделями, вчера – бумажными документами). Мышление – это всегда мышление письмом и письменным моделированием!
Наша диаграмма графа создания (тип изображения, в котором квадратики или кружочки обозначений объектов соединены стрелками для обозначения отношений) в курсе используется исключительно в целях объяснения небольшого неизменяемого и никак не привязанного к проектам набора понятий. Она не будет модифицироваться в ходе проекта, она содержит очень мало деталей. Это иллюстрация в учебник, не рабочий инструмент системного моделирования. Мы не рекомендуем диаграммное моделирование в рабочих проектах, но мы требуем вести в проектах обязательное системное моделирование в виде текстов, аутлайнов, таблиц: форматы, которые удобно менять/редактировать, производить в них поиск, наращивать их объём без боязни запутаться в хитросплетении связей[58 - Подробней про системное моделирование на примере предприятий см. доклад А. Левенчука, 2022, «Как мы наладили обучение организационному моделированию», видео с 6:18:13, https://www.youtube.com/watch?v=lpgpnCoV14w&t=22693s (https://www.youtube.com/watch?v=lpgpnCoV14w&t=22693s), слайды https://disk.yandex.ru/i/ixpCGYY4kROrmA (https://disk.yandex.ru/i/ixpCGYY4kROrmA). Про вред от визуального моделирования см. книгу А. Левенчука «Визуальное мышление. Доклад о том, почему им нельзя обольщаться», 2018, https://ridero.ru/books/vizualnoe_myshlenie/ (https://ridero.ru/books/vizualnoe_myshlenie/)].
Документирование в системном мышлении важно. Внимание, которым управляют без записей, управляется ненадёжно. Люди забывчивы, поэтому документируйте/записывайте всё (всё-всё!).
Как моделировать изменения важных объектов в проекте, будет рассказано подробно в курсе «Методология».
Моделирование: цепочки создания
Заполните табличку для трёх и более известных вам проектов (можно брать подпроекты одного большого проекта, можно брать независимые проекты) для цепочек создания графа создания, в которые входит «наша система».
Концепция использования
Знание о существовании различных видов систем (надсистемы, подсистемы) в их относительном положении от целевой системы в системном разбиении (указание на системное разбиение – это было указание на время использования) позволяет более строго/точно выделять целевую систему в мире. Понятие системы в физике как раз означает какую-то часть мира, отделённую границей от остального мира (окружения/среды, а когда говорят больше об описаниях/текстах, то используют слово «контекст»).
Мы будем выделять систему из мира вниманием, при этом границу будем считать границей нашего внимания, а не какой-то материальной средой. Так, компьютер берём нашим вниманием вместе с его корпусом (корпус – не граница системы! Граница проходит там, где молекулы корпуса кончаются и начинаются молекулы воздуха вокруг корпуса, и эта граница нематериальна, она «в уме», это граница внимания), дом вместе с его внешней стеной, кабель вместе с его оплёткой, клетку вместе с её мембраной.
Дальше мы вводим понятие «чёрного ящика» (black box): это какая-то система, которую мы представляем без знаний о внутреннем её устройстве – мы только можем описывать функцию::поведение «чёрного ящика»::система, проявляемое на внешней его границе, то есть на границе занимаемого системой места в физическом мире. Мы ничего не знаем о внутреннем устройстве, о подсистемах «чёрного ящика». А если мы заглядываем внутрь границы системы и говорим о том, как она устроена, то будем называть это «прозрачный ящик» (transparent box, иногда говорят «белый ящик»). Бывает и «серый ящик»: мы знаем очень немного про то, как устроена система внутри её границы, но всё-таки знаем.
Мы описываем систему как чёрный ящик минимально четыре раза, это и есть «системное рассмотрение»:
• Функционально: как роль (функциональный/ролевой объект) и его функцию во взаимодействии с окружением во время эксплуатации/работы/функционирования. Забивало – прикладывает усилие от руки к забиваемому острому предмету.
• Конструктивно: как конструктив, который мы создаём и развиваем во время создания. Молоток – вот этот, который мы купили в магазине (и будет реализовывать во время эксплуатации забивало).
• Пространственно: как место в пространстве, которое занимает этот чёрный ящик в момент эксплуатации. Тот объект, который лежит в верхнем ящике шкафа у правой стенки, а в момент эксплуатации на рабочем месте номер пять в помещении номер четыре.
• Стоимостно: Как совокупная стоимость владения чёрным ящиком. Вот эта штука, стоит 1000 рублей купить и практически нисколько эксплуатировать.
Важно, что все эти рассмотрения про один и тот же объект-систему и согласованы между собой, то есть они непротиворечиво описывают одну и ту же систему (это делается через 4D экстенсионализм – проверяется, что описываемый объект занимает одно и то же пространство-время), а ещё они не лезут внутрь системы (тут в примере мы не говорим, что там внутри забивала-молотка – не поминаем его части: ручку и боёк).
При системном рассмотрении мы учитываем дополнительно:
• Граф создания: кроме рассмотрения системы как «чёрного ящика» в момент его работы, мы учитываем, что кто-то эту систему создаст и будет развивать.