banner banner banner
Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ
Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ
Оценить:
Рейтинг: 0

Полная версия:

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ

скачать книгу бесплатно


Только эта двойственность смыслов символа Е и дает возможность получить «самоописывающееся» выражение r Е* r Е*, которое потом используется для доказательства упрощенного аналога теоремы Тарского о невыразимости истинности[20 - При таком доказательстве теорема Тарского остановится теоремой о связи двух семантических неразличений в формальной системе: неразличение текста и метатекста и неразличение оценки «истина – ложь».]. Заметим, что применение сформулированного выше семиотического принципа построения формальных систем исключает возможность написания в рамках идей, положенных в основу языка SELF, «самоописывающихся» выражений, которые получаются только путем введения знаковой двусмысленности.

Семантические парадоксы

Хорошо известно [см., например: Фрейденталь, 1969], что «парадокс лжеца» парадоксом содержательной логики не является, т.е. может быть снят анализом прагматической стороны высказывания, именно, выяснением того, является ли данное высказывание элементом текста или «метатекста».

Появляется он лишь в рамках формальных систем, не эксплицирующих прагматику высказываний. Уже в работе «Основы теоретической логики» [Гильберт, Аккерман, 1947, с. 92) совершенно справедливо отмечалось, что так называемые «семантические парадоксы», к которым принадлежит «парадокс лжеца», «не затрагивают нашего исчисления (расширенного исчисления предикатов. – Я.Д., В.С.), так как оно не в состоянии выразить их чисто логический характер».

Остается только задать вопрос, насколько полезно формальное логическое исчисление, которое не в состоянии выразить логический характер утверждений, представляющихся важными с точки зрения содержательной логики и, как представляется, не содержащих никаких логических понятий выходящих за рамки этого исчисления.

Мы, таким образом, ясно видим семиотический недостаток, общий для многих систем формальной логики – отказ от полной экспликации смысловых различений вплоть до семиотических. Собственно говоря, это было бы совсем нестрашно, если бы формальные тексты рассматривались не как язык, а просто как сокращенная запись, сопровождаемая по мере надобности естественно-языковыми комментариями, как это имеет место в большинстве математических работ. Однако, такое употребление формализма, разрушило бы цель, ради которой он был построен, привело бы к отказу от «идеала» – построения формального языка, не зависящего от естественно-языковой интерпретации символики.

Фактически же, в силу того что идеальный формализм построить очень трудно, «неидеальные» формализмы использовались так, как будто они являются идеальными, т.е. естественно-языковые фрагменты доказательств опускались, становясь частью устной традиции, что делает работы по математической логике почти абсолютно герметичными для людей не принадлежащих к находящимся в неформальном общении между собой специалистам, которые именно при этом неформальном общении устанавливают единый способ понимания публикуемых ими текстов. Таким образом, вопрос о природе формальных логических систем естественно переносится из плана семиотики в план социолингвистики. К этому вопросу мы еще вернемся ниже.

Продолжим, однако, обсуждение парадоксов математической логики. Существуют весьма различные точки зрения на их роль в развитии этой науки. Одна из этих точек зрения приведена выше и отрицает позитивную роль парадоксов. Существует и прямо противоположное мнение [Hofstadter, 1979], подчеркивающее их решающую роль в развитии математической логики.

Что касается проблемы разрешения парадоксов, то они не могут, по-видимому, быть «разрешены» в рамках существующих формальных систем, а вопрос о пользе построения формальных систем, в которых подобные парадоксы не возникают, зависит от доказательных возможностей подобных систем [Френкель, Бар-Хиллел, 1966].