Пособие охватывает классические разделы численного анализа: методы алгебры, теории приближения функций одной переменной с их приложениями, разностные методы решения задач Коши и краевых задач для обыкновенных дифференциальных уравнений, численные методы решения уравнений математической физики с двумя и тремя независимыми переменными. Наряду с традиционными методами изложены новые экономичные, устойчивые и простые в реализации методы приближения функций, численного дифференцирования и интегрирования, решения задачи Коши, основанные на применении интегрально-дифференциальных сплайнов. В каждом разделе кратко изложены основные теоретические сведения, приведены решения типовых примеров и задачи для самостоятельного решения. Учебное пособие поддерживает компетентностную модель обучения: содержит модели требуемых знаний и умений решать типовые задачи предмета. Для студентов, обучающихся по направлению «Прикладная математика» и для других математических, инженерно-технических и авиационных специальностей вузов, а также для аспирантов и научных работников.
все жанры