banner banner banner
Общая и частная гистология
Общая и частная гистология
Оценить:
Рейтинг: 0

Полная версия:

Общая и частная гистология

скачать книгу бесплатно


– мультивезикулярное тельце образуется, когда жидкость, поступившая в клетку внутри мелких пиноцитозных пузырьков, окружается мембраной и формируется вакуоль, сливающаяся с первичной лизосомой;

– остаточные тельца – лизосомы, содержащие непереваренные вещества.

Лизосомы формируются гранулярной ЭПС и КГ.

Гидролазы лизосом, возможно, движутся прямо из элементов ЭПС в первичные лизосомы в обход КГ.

Распространенным типом остаточных телец в организме человека являются липофусциновые гранулы, накапливающиеся в некоторых клетках (нейроны, кардиомиоциты) при старении.

Эндосомы, или окаймленные пузырьки, вовлечены в связанный с рецепторами плазмолеммы захват клеткой специфических макромолекул из окружающей среды и их переваривание. Они формируются после того, как специфические макромолекулы связываются с рецепторами плазматической мембраны, что вызывает скопление рецепторов в одном месте и формирование покрытых плазмолеммой углублений, которые инвагинируют и отделяются, образуя окаймленные пузырьки, окруженные клатрином.

Клатрин формирует структуру, похожую на решетчатую корзинку. Последняя окружает везикулу предположительно для того, чтобы эндосомы не сливались с другими мембранными органеллами.

Выделяют ранние (периферические) и поздние (перинуклеарные) эндосомы.

Эндосомы обеспечивают перенос макромолекул с поверхности клетки в лизосомы и их частичный или полный гидролиз на стадиях, предшествующих лизосомальному уровню деградации.

Функция лизосом: активное участие в завершающих этапах процесса внутриклеточного переваривания захваченных клеткой макромолекул, что лежит в основе гетерофагии (защитные реакции клетки) и аутофагии (омоложение, т. е. обновление клеточных структур).

Пероксисомы (микротельца) (peroxysomae) – мембранные органеллы, содержащие каталазу – фермент, синтезирующий и разрушающий перекись водорода, которая обладает сильным повреждающим эффектом.

Это сферические или удлиненные пузырьки диаметром 0,05– 1,5 мкм, с умеренно плотным однородным или мелкозернистым содержимым (матриксом), в котором иногда выявляется плотная сердцевина (нуклеоид), имеющая кристаллическое строение.

Выделяют мелкие пероксисомы (микропероксисомы) диаметром 0,05—0,25 мкм, встречающиеся во всех клетках, и крупные (макропероксисомы) – диаметром 0,3–1,5 мкм – в гепатоцитах, макрофагах и других клетках.

Матрикс пероксисом содержит до 15 ферментов. Наиболее важные из них – это пероксидаза, каталаза, оксидаза, уратоксидаза.

Образование пероксисом происходит в гранулярной ЭПС путем отпочковывания от ее элементов, а их ферменты синтезируются в гранулярной ЭПС.

Функции пероксисом: метаболизм перекиси водорода, холестерина, жиров и расщепление пуриновых и пиримидиновых оснований.

Центриоли (centrioli) – немембранные органеллы, которые участвуют в делении клетки (рис. 2.4). Это пара коротких палочек, расположенных под прямым углом друг к другу (диплосома); они образуют клеточный центр (цитоцентр).

Рис. 2.4. Центросома в яйцеклетке лошадиной аскариды. ?400.

1 – оболочка; 2 – зона сморщивания; 3 – цитоплазма; 4 – центриоль; 5 – центросфера; 6 – хромосомы; 7 – нити ахроматинового веретена.

Перед делением клетки центриоли самоудваиваются: каждая родительская центриоль формирует под прямым углом к себе дочернюю центриоль.

Центриоли образуют полюса митотического веретена, где микротрубочки берут начало и сходятся.

Каждая центриоль имеет стенку, состоящую из 9 триплетов микротрубочек (на поперечном срезе центриоли они напоминают колесо), связанных поперечными белковыми мостиками («ручками»). Каждый триплет центриоли связан со сферическими тельцами диаметром 70–75 нм (сателлитами); расходящиеся от них микротрубочки образуют центросферу.

Формируют базальные тельца, от которых отходят реснички и жгутики – органеллы специального значения, участвующие в процессах движения. Их основу составляет каркас из микротрубочек, называемый осевой нитью, или аксонемой.

Аксонема образована девятью периферическими парами микротрубочек и одной центрально расположенной парой, окруженной центральной оболочкой, от которой к периферическим дублетам расходятся радиальные спицы. Периферические дуплеты связаны друг с другом мостиками нексина, а к соседним дуплетам отдают «ручки» из белка динеина, который обладает активностью АТФазы.

Цитоскелет (cytoskeleton) относится к структурному каркасу клетки. Это компоненты цитоплазмы, которые поддерживают форму клетки, стабилизируют прикрепление клетки, лежат в основе эндо– и экзоцитоза, играют роль в подвижности клетки и т. д.

В цитоскелет входит несколько волокнистых структур: микротрубочки, микрофиламенты, промежуточные филаменты и микротрабекулы.

Микротрубочки – прямые структуры диаметром 25 нм и длиной несколько микрометров; толщина стенки составляет 4–5 нм, а просвет 14–15 нм. Различают 2 вида микротрубочек:

– лабильная популяция находится в цитоплазме в свободном состоянии и полимеризуется или деполимеризуется в зависимости от температуры, давления, наличия каких-либо лекарств и т. д.;

– стабильная популяция формирует стенки центриолей и аксонемы ресничек и жгутиков; имеет стенку толщиной 4–5 нм, которая окружает внутреннюю полость и состоит из 13 параллельных спирально расположенных протофиламентов (линейных полимеров тубулина).

Микротрубочки часто заканчиваются около центриолей в маленьких плотных тельцах (сателлиты центриолей).

Функции микротрубочек: поддержание формы и полярности клетки и внутриклеточного транспорта макромолекул в ней, обеспечение движения ресничек, жгутиков и хромосом (в митозе).

Актиновые микрофиламенты (тонкие филаменты) – филаменты толщиной 5–6 нм (F-актиновая форма), которые содержат 10–15 % от общего количества белка в клетке; актин существует также в глобулярной форме (G-актин). Они многочисленны на периферии клетки, где формируют под плазматической мембраной плотную сеть. Участвуют в трансформации цитоплазмы в формы зольгель, эндоцитозе, экзоцитозе, а также локомоции немышечных клеток.

Миозиновые филаменты (толстые филаменты) диаметром в среднем 14–15 нм. Обычно ассоциированы с актином в мышечных клетках. В поперечнополосатых мышцах полимеризуются в ясно различимые филаменты.

Миозин также находится в низких концентрациях в немышечных клетках, однако его функциональная роль здесь не совсем ясна.

Промежуточные филаменты – это гетерогенная популяция, включающая филаменты диаметром от 8 до 11 нм.

Выделяют кератиновые, виментиновые, десминовые, нейро-и глиальные филаменты.

Кератиновые филаменты (тонофиламенты) обычно располагаются в эпителиальных клетках и часто ассоциированы с десмосомами.

Десминовые филаменты формируют в скелетных, гладких и сердечной мышцах сети, которые объединяют миофибриллы.

Виментиновые филаменты присутствуют в фибробластах и других клетках – производных мезенхимы. Они стабилизируют содержимое ядра и тесно ассоциированы с ядерной оболочкой и ядерными порами.

Нейрофиламенты осуществляют поддержку отростков нейронов и обеспечивают состояние геля в цитоплазме клеток.

Глиальные филаменты присутствуют в астроцитах, олигодендроцитах и клетках микроглии центральной нервной системы (ЦНС).

Микротрабекулярная решетка (МР) – трехмерная сеть нитей в эргастоплазме некоторых клеток, обнаруживается только под электронным микроскопом.

Наличие этой решетки указывает на то, что эргастоплазма – не просто гомогенный белковый раствор, но является в высшей степени структурированным гелем, который объединяет филаментные компоненты и органеллы в единое структурно-функциональное целое.

Предполагают, что МР участвует в координации метаболической активности компонентов клетки с помощью специальных «управляющих» протеинов.

Включения (inclusiones) – скопления некоторых временно присутствующих веществ внутри клетки. Обычно к ним относятся скопление гликогена, капли липидов и секреторные гранулы.

Гликоген образует скопления в виде электронно-плотных агрегатов, известных как ?-розетки, или в виде мелких кластеров ?-частиц.

Жировые капли в зависимости от способа фиксации видны в виде черных (осмий) или светло-серых (альдегиды) образований. Они могут иметь ограничивающую мембрану, но чаще встречаются в виде гомогенной субстанции.

Секреторные гранулы включают слизистые капли, некоторые гормоны, протеины и пигментные гранулы.

2.1. Клеточный цикл

Клеточный цикл (КЦ; cyclus cellularis) – совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью (рис. 2.5).

В ходе КЦ обеспечивается функция воспроизведения клеток и передачи генетической информации. КЦ включает собственно митотическое деление и интерфазу – промежуток между делениями.

Интерфаза включает пресинтетический, или постмитотический (G

), синтетический (S) и постсинтетический, или премитотический (G

), периоды. В интерфазе клетка увеличивается в размерах и удваивает генетический материал.

В большинстве тканей делится лишь небольшая часть клеток, остальные дифференцируются и пребывают в G

-периоде.

G

-период – промежуток сразу после митотического деления клетки; характеризуется активным ростом клетки и синтезом белка и РНК, благодаря чему дочерние клетки достигают нормальных размеров и восстанавливают необходимый набор органелл. В этот период синтезируются особые «запускающие белки», или активаторы S-периода, которые обеспечивают переход клетки в S-период.

S-период характеризуется удвоением (репликацией) ДНК и синтезом белков (гистонов), обеспечивающих нуклеосомную упаковку вновь синтезированной ДНК. Одновременно удваивается число центриолей. S-период у большинства клеток длится 8—12 ч.

G

-период продолжается вплоть до митоза. В течение этого периода клетка готовится к делению: происходит созревание центриолей, запасается энергия, синтезируются РНК и белки (тубулины). Длительность G

-периода составляет 2–4 ч.

За G

-периодом следует митоз. Он завершает КЦ, образуется две идентичные (дочерние) клетки.

Митоз(mitosis; кариокинез, или непрямое деление клетки) является универсальным механизмом деления клеток. Он включает основные фазы: профазу, метафазу, анафазу и тело-фазу (см. рис. 2.5).

Рис. 2.5. Клеточный цикл (схема).

1 – интерфаза; 2 – профаза; 3 – прометафаза; 4 – метафаза; 5 – анафаза; 6 – телофаза; 7 – цитокинез.

Профаза начинается с конденсации хромосом, которые под световым микроскопом предстают в виде нитевидных структур.

Каждая хромосома состоит из двух параллельно лежащих хроматид, связанных друг с другом с помощью суженного участка – центромеры.

К концу профазы ядрышко и ядерная оболочка исчезают, а центриоли мигрируют к противоположным полюсам клетки и дают начало нитям митотического (ахроматинового) веретена. В области центромеры образуются особые белковые комплексы – кинетохоры, которые прикрепляют хроматиды к нитям веретена.

Метафаза соответствует максимальной конденсации хромосом. Они выстраиваются в области экватора митотического веретена в виде экваториальной (метафазной) пластинки (вид сбоку) или материнской звезды (вид со стороны полюсов), удерживаемые здесь благодаря сбалансированному натяжению кинетохорных микротрубочек.

Сестринские хроматиды в конце этой фазы разделяются щелью, соединенные только в области центромеры.

Анафаза начинается с синхронного расщепления всех хромосом на сестринские хроматиды (в области центромера) и движения дочерних хромосом к противоположным полюсам клетки. Характеризуется удлинением митотического веретена за счет некоторого расхождения полюсов клетки. Завершается скоплением на полюсах клетки двух идентичных наборов хромосом (стадия дочерних звезд).

В конце анафазы благодаря сокращению актиновых микро-филаментов, концентрирующихся по окружности клетки (сократимое кольцо), начинает образовываться клеточная перетяжка.

Телофаза – конечная стадия митоза, в течение которой реконструируются ядра дочерних клеток и завершается их разделение. Вокруг хромосом восстанавливается кариолемма, с которой связывается формирующаяся ядерная пластинка, вновь появляются ядрышки. Ядра дочерних клеток постепенно увеличиваются, а хромосомы прогрессивно деспирализуются и исчезают, замещаясь картиной хроматина интерфазного ядра. Клеточная перетяжка углубляется, так что дочерние клетки в течение некоторого времени остаются связанными только узким мостиком из пучка микротрубочек – срединным тельцем; дальнейшая перешнуровка цитоплазмы завершается образованием двух дочерних клеток.

В телофазе происходит также распределение органелл между дочерними клетками (митохондрий, ЭПС, комплекс Гольджи).

Эндомитоз – вариант митоза, при котором происходит удвоение числа хромосом внутри ядра без разрушения кариолеммы и образования веретена деления, что приводит к значительному увеличению содержания ДНК в ядре – полиплоидии и увеличению его объема.

Наличие полиплоидных клеток – нормальное явление в печени, эпителии мочевого пузыря, клеток концевых отделов слюнных желез, поджелудочной железы.

Основной смысл развития полиплоидии заключается в усилении функциональной активности клетки.

Общий контроль активности деления клеток обеспечивают протоонкогены, антионкогены, факторы роста (факторы роста нервов, эпидермальный фактор роста, тромбоцитарный фактор роста, инсулиноподобные факторы роста, колониестимулирующие факторы и др.), а также кейлоны – гормоноподобные регуляторы, угнетающие клеточное размножение.

2.2. Старение и гибель клеток

После функционирования в течение определенного периода времени клетка стареет и гибнет.

Морфологическими признаками старения клетки являются уменьшение ее объема, редукция большинства органелл, увеличение содержания лизосом, накопление пигментных и жировых включений, нарастание проницаемости клеточных мембран, вакуолизация цитоплазмы и ядра.

Гибель клеток обеспечивается двумя видами морфологических изменений, которые соответствуют различным механизмам ее развития – некрозом и апоптозом.

Некроз возникает под действием выраженных повреждающих факторов (перегревание, переохлаждение, недостаток кислорода, нарушение кровоснабжения, механические травмы и т. п.).

При некрозе происходит разрушение клеточных структур после выделения гидролаз и других ферментов из поврежденных лизосом, кариопикноз, кариорексис и кариолизис ядра, исчезновение клеточных границ и распад клетки.

Апоптоз – физиологическая (запрограммированная) гибель клеток. Это активный энергоемкий генетически контролируемый процесс, регулируемый внутренней программой, которая запускается внешними факторами.

При апоптозе клетка теряет все специализированные структуры на своей поверхности (микроворсинки и межклеточные соединения), происходит уплотнение цитоплазмы и ядра. Конденсация цитоплазмы приводит ко все более компактному расположению органелл, которые в отличие от некроза сохраняют свою целостность.

Изменения в ядре включают только кариопикноз и кариорексис (без разрушения кариолеммы), кариолизис отсутствует; хроматин в ядре укладывается в виде крупных полулуний, после чего ядро распадается на фрагменты.

Плазмолемма клетки образует многочисленные вздутия и выпячивания, содержащие органеллы и фрагменты ядра, которые отшнуровываются, формируя округлые или овальные апоптозные тела. Последние захватываются соседними клетками посредством фагоцитоза и перевариваются ими.

Апоптоз – один из фундаментальных и универсальных механизмов тканевого гомеостаза, который наблюдается в различных тканях человека и животных в норме, патологии, эмбриональном развитии и у взрослого.

Тесты и вопросы для самоконтроля

Выберите правильные ответы.

1. Плазматическая мембрана:

а) связана с определенными компонентами цитоскелета;

б) состоит из трех липидных слоев;

в) содержит на наружной поверхности гликокаликс;

г) не дает возможности белкам перемещаться в толще мембраны.

2. Ядерная пора:

а) шестиугольная;