banner banner banner
Холестериновый атеросклероз, или Как предупредить инфаркт. Немного о гипотезах старения нашего организма
Холестериновый атеросклероз, или Как предупредить инфаркт. Немного о гипотезах старения нашего организма
Оценить:
Рейтинг: 0

Полная версия:

Холестериновый атеросклероз, или Как предупредить инфаркт. Немного о гипотезах старения нашего организма

скачать книгу бесплатно

Читатель, преодолевший скучное, но очень важное содержание данного параграфа, может вправе считать, что он в самых общих чертах познакомился с фундаментальными понятиями биологической химии (науки, которая раскрывает химические основы жизнедеятельности нашего организма): циклом Кребса, тканевым дыханием и окислительным фосфорилированием – процессами, обеспечивающими выработку универсального источника энергии в организме – АТФ. Читатель смог убедиться в сложности процессов, протекающих в нашем организме, «пока мы живем». Из приведенных здесь сведений следует, что мы живем благодаря ни на миг не прекращающимся окислительно-восстановительным процессам в нашем организме.

В качестве афоризма мы привели высказывание великого Гете, который дал философское определение жизни как удивительной находки природы. Биологи, в полной мере осознающие сложнейшие процессы цикла Кребса, назвали этот цикл удивительнейшим изобретением природы.

Мы сочли целесообразным отметить основные положения процесса образования АТФ с тем, чтобы понять механизм инфаркта, на котором мы остановимся в следующем параграфе. Без понимания процессов энергообразования в миокарде понять особенности его работы в условиях ишемии, обусловленной образованием атеросклеротической бляшки, нельзя.

Без кислорода, постуающего в митохондрии, жизнь угасает через несколько минут (человек погибает от инфаркта). Теперь мы знаем, почему так происходит. Потому, что кислород обязательно участвует в одной из множества реакций, а именно – на завершающем этапе реакции в дыхательной цепи. Если в клетку не поступает кислород, то последний дыхательный фермент цепи не может освободиться от своего лишнего электрона, дыхательная цепь замирает, выработка АТФ прекращается. В этом и состоит главная биологическая роль кислорода в выработке энергии. Если нарушается работа переносчиков электронов в дыхательной цепи, то прекращается выработка энергии АТФ. Известно, что такой классический яд, как цианид, ингибирует цитохромоксидазу. Поэтому стоит человеку употребить цианистый калий, как сразу же прекращается работа последнего переносчика электронов на кислород – цитохромоксидазы, работа дыхательной цепи останавливается, выработка АТФ прекращается, и организм мигом погибает.

Итак, рассмотренный нами несколько в упрощенном, но не искаженном виде механизм образования универсального источника энергии позволяет понять, что прекращение поступления с кровью кислорода в митохондрии кардиомиоцитов (клетки миокарда) является причиной ишемического инфаркта миокарда. «Недостатком» созданного природой механизма преобразования энергии в человеческом организме является тот печальный факт, что природа не предусмотрела запаса АТФ в клетках. Клетки не обмениваются АТФ и производят это важнейшее соединение по эгоистическому принципу – каждая только для себя. Тем не менее клеткам свойственно реагировать на интенсивность клеточного метаболизма и поддерживать запасы АТФ на необходимом уровне. Человеческий организм синтезирует около 40 кг АТФ в сутки, однако в каждый конкретный момент содержится около 250 г АТФ. В клетке молекула АТФ расходуется в течение одной минуты после ее образования. При этом в нашем организме АТФ является одним из самых часто обновляемых веществ.

Для осуществления ресинтеза АТФ и предотвращения истощения ее запасов природа предусмотрела наличие еще одного макроэргического соединения – креатинфосфата, который в энергоснабжении сердечной мышцы занимает значимое место и является быстро мобилизуемым резервом для ресинтеза АТФ. Креатинфосфат при исчерпании запасов АТФ отдает свой фосфорильный остаток на АДФ с образованием АТФ.

В завершение еще раз отметим, что образование АТФ в митохондриях возможно только в случае, когда процессы тканевого дыхания и окислительного фосфорилирования сопряжены (связаны) между собой, разобщение этих процессов означает прекращение выработки АТФ, что для организма недопустимо. Разобщителями могут быть некоторые лекарства, а также некоторые метаболиты, образующиеся в организме в высоких концентрациях.

Однако в некоторых случаях такое разобщение является биологически выгодным для организма. В качестве разобщителя указанных процессов выступают жирные кислоты, которые накапливаются в бурой жировой ткани. Известно, что медведи, впадая в зимнюю спячку, запасают жиры как основной источник образования АТФ. При этом часть (около 3%) запасаемого жира имеет бурый цвет. Митохондрии бурого жира устроены таким образом, что процессы тканевого дыхания и процесс окислительного фосфорилирования разобщены, а поэтому вся энергия, высвобождающаяся в процессе тканевого дыхания рассеивается в виде тепла, и энергия АТФ не вырабатывается (ее производят митохондрии белого (обычного) жира. Таким образом, митохондрии белого жира производят необходимую для жизнедеятельности организма медведя АТФ, митохондрии же бурого жира обеспечивают его теплом, создавая комфортные условия для зимней спячки. Оказывается, бурый жир также в небольших количествах (2—4%) присутствует у новорожденных. Для чего «природа» предусмотрела наличие бурого жира у младенцев? Также для теплообразования и поддержания температуры тела. Теплообразование в организме новорожденного путем сокращения скелетных мышц невозможно (организм младенца еще не подготовлен), поэтому и природа позаботилась о другом источнике теплообразования – за счет работы митохондрий бурого жира.

Природа создала, как мы видим, очень сложную «машину» для выработки энергии, необходимой для жизнедеятельности организма. Надежна ли работа этой машины? Какие «поломки» присущи этой «молекулярной машине», снабжающей наш организм энергией?

Образование АТФ – тонко регулируемый организмом сложнейший процесс, и рассмотрение нарушений этого процесса, конечно, выходит за рамки нашего научно-популярного повествования о холестериновом атеросклерозе как главном предмете книги. Что касается главной «поломки» сложного устройства выработки энергии, благодаря которой мы живем, то таковой является недостаточное наличие одного из компонентов «топлива» – кислорода. Как работает сердце при наличии в коронарных сосудах атеросклеротической бляшки – главного виновника дефицита кислорода, – мы обсудим ниже, предварительно рассмотрев «применение» АТФ на примере работы мышц.

В заключение этого параграфа отметим, что Ханс Адольф Кребс – выдающийся немецко-английский биохимик, уволенный в свое время из Фрайбургского университета из-за еврейского происхождения, несомненно внес огромный вклад в понимание функционирования человеческого организма. В своей Нобелевской речи Кребс отметил, что «наличие одного и того же механизма образования энергии у всех живых существ позволяет сделать два вывода. Во-первых, этот механизм возник на ранних этапах эволюции и, во—вторых, жизнь в ее настоящем виде зародилась лишь однажды».

АТФ и работа сердечной мышцы

Итак, мы рассмотрели в общем виде процесс образования АТФ. Энергия АТФ используется для осуществления самых разнообразных метаболических процессов, составляющих суть жизнедеятельности нашего организма. Рассмотрим применение АТФ на примере работы мышц и покажем, каким способом энергия химических связей АТФ преобразуется в механическую работу, которая обеспечивает «движение» в нашем организме. Мышечная ткань состит из мышечных волокон. В состав мышечных волокон входят миофибриллы, состоящие из саркомеров. Каждый саркомер содержит два типа белковых филаментов: тонкие филаменты состоят из белка актина, толстые филаменты состоят из белка миозина. В цетральной части сарокомера расположены толстые миозиновые нити, имеющие стержень и головки, а на обоих концах саркомера находятся тонкие актиновае нити, прикрепленные к Z-дискам саркомера. Кроме указанных белков аппарат миофибрилл содержит еще регуляторный белок – тропонин и структурный белок тропомиозин, функцию которых отметим ниже. Так каков же механизм сократительных движений мышц? – Он заключается во взаимодействии актиновых и миозиновых нитей и скольжении вдоль друг друга. Рассмотрим его суть.

В расслабленной мышце актиновые нити входят в пространство между миозиновыми нитями, но не контактируют друг с другом. Отсутствие взаимодействия объясняется тем, что тропомиозин – структурный белок актиновой нити – обволакивает ее и препятствует взаимодействию с миозином.

Инициация сокращения обеспечивается приходом нервного импульса (потенциала действия на двигательный нерв). Это приводит к высвобождению ацетилхолина – биохимического медиатора, передающего сигнал от нейрона на мышцу и запускающего цепочку реакций, способствующих образованию актомиозинового комплекса и высвобождению энергии АТФ. Каким образом? Ацетилхолин способствует выходу ионов кальция, и если в расслабленном состоянии, как мы отметили, контакт между нитями блокируется тропомиозином, то с открытием кальциевых каналов часть кальция присоединяется к тропонину, вызывая его структурное изменение таким образом, что открывается доступ к миозину. Головки миозина прикрепляются к актиновым нитям, образуя актомиозиновый комплекс, который и является универсальным двигателем для реализации мышечных сокращений. Чем же примечателен этот комплекс? Как этот «двигатель» потребляет энергию АТФ? Оказывается, что головкимиозина обладают АТФ-азной активностью, то есть способностью расщеплять молекулу АТФ с высвобождением энергии: АТФ + Н

О = АДФ+ Н

РО

+ энергия. Число митохондрий, расположенных цепочками вдоль миофибрилл, в которых вырабатывается энергия АТФ, очень велико. Активные центры АТФ-азы расположены на головках молекулы миозина, которые, собственно, и ответственны за «механизм скольжения», поскольку за счет высвободившейся энергии происходит скольжение тонких нитей актина вдоль толстых нитей миозина.

Взаимодействие головки миозина с активным участком молекулы актина называют циклом поперечного мостика. Такой цикл происходит многократно. При этом каждый миозин захватывает и тянет новый участок актина. Именно такое многократное повторение замыкания-размыкания мостика вызывает выраженное укорчение саркомера и генерирует большую силу, при этом миозиновые и актиновые нити не изменяют своей длины.

Таким образом, мышечное сокращение начинается со связывания ионов кальция с регуляторным белком – тропонином, в результате чего обнажается участок связывания миозина с актином. Присоединение актина к миозину мгновенно увеличивает АТФ-азную активность миозина, в результате чего происходит расщепление АТФ с высвобождением энергии, которая и обеспечивает движение миозиновых головок, сходных с опусканием весел лодки в воду (захват воды).

Итак, благодаря АТФ-азной активности миозина химическаяэнергия макроэргических связей АТФ превращается в механическую энергию мышечного сокращения.

Механизм сокращения миокарда существенно не отличается от рассмотренного нами выше «механизма скольжения» актиновых и миозиновых нитей. Клетка кардиомиоцита содержит ядро, знакомую нам митохондрию и миофибриллы. Функцию митохондрии мы уже знаем – в ней вырабатывается энергия АТФ. Кто является потребителем этой энергии в кардиомиоците? Основным потребителем энергии является сократительный аппарат, организованный также в виде рассмотренных выше миофибрилл, обеспечивающих, как мы показали выше, сокращение мышцы, а таким образом, насосную функциюмиокрда. В отличие от скелетной мышцы, сокращение сердечной не зависит от внешней иннервации, сердечная мышца обладает автоматией – способностью сердца ритмично сокращаться независимо от каких-либо внешних раздражителей. Это означает, что импульс, запускающий процесс сокращения, возникает в самом сердце, тогда как к скелетным мышцам он приходит к двигательным нервам из центральной нервной системы.

Для поддержания сократительной способности миокарда необходим кальций. Кальций является важнейшим фактором в регуляции силы сокращения миокарда. В сердечной мышце обмен кальцием более сложен по сравнению со скелетной, однако такие подробности мы опустим.

Итак, мы рассмотрели механизм мышечного сокращения. Разумеется, что здесь не ставилась задача детального рассмотрения этого процесса. Главная задача – показать пример использования энергии АТФ, образованию которой в митохондриях мы уделили много места. Если сравнить работу автомобильного двигателя и рассмотренного здесь сократительного мышечного аппарата, то свечу зажигания можно уподобить ферменту миозиновой «головки» актомиозинового комплекса. Подобно тому как свеча в нужный момент образует искру, которая воспламеняет горючую смесь и образует энергию взрыва, приводящую в движение поршни, миозиновая «головка» после поступления нервного импульса и ионов кальция гидролизует АТФ с высвобождением энергии, которая используется для изменения конформации головки миозина и последующего «механизма скольжения» – механизма мышечного сокращения. Ресинтез расходуемой в скелетных мышцах АТФ осуществляется за счет креатинфосфата, который образуется из АТФ и креатина в период расслабления мышцы, когда потребность в АТФ снижается. В период сокращения мышцы и потребности в АТФ фосфорильный остаток с креатинфосфата переносится на АДФ, в результате чего синтезируется АТФ. Креатин при этом превращается в креатинин. Ресинтез АТФ из креатинфосфата осуществляется буквально за доли секунды, обеспечивая мышце восстанавливать энергетику в процессе сокращений. Заметим здесь, что креатинурия (повышенное выделение с мочой креатина) является признаком патологического состояния мышечной ткани.

Представленный здесь материал имеет в основном познавательное значение. Приведем некоторые сведения, имеющие практическое значение. Можно поражаться сложностью структур и процессов, обеспечивающих «движение» в нашем организме. Однако сколь надежна работа этого актомиозинового «двигателя»? К сожалению, патология мышц – распространенное заболевание. Саркопения – возрастное дегенеративное изменение скелетных мышц, приводящее к потере мышечной массы и силы, – опасное заболевание. Его развитие характеризуется уменьшением количества и объема миофибрилл. Важную роль также играет белок миостатин, который подавляет рост и дифференцировку мышечной ткани. Исследование сердец кроликов, которых посадили в ограничивающие их движение тесные клетки на 70 суток, показало, что миофибриллы, благодаря которым мышца сокращается, атрофировались. Такое может случиться и с нами при длительном сидении на работе и комфортном пребывании перед телевизором на диване дома. Поэтому целесообразно еще в молодом возрасте самостоятельно обратиться к знаниям о том, как сохранить здоровье наших мышц, как части опорно-двигательного аппарата. Говоря о пользе тренировок, читателю важно понять, что в ответ на мышечное сокращение (то есть только при физической нагрузке) в скелетных мышцах вырабатываются гормонально активные вещества – миокины. Выделяемые в кровоток мышечными волокнами миокины действуют положительно как в самых мышцах, так и по принципу эндокринной регуляции, оказывая влияние на жировую ткань, печень, мозг и др. органы. Таким образом, мышцы выполняют в организме не только двигательную функцию, но и работают как эндокринный орган. Снижение двигательной активности отражается на всех органах и ведет к гиподинамическому синдрому.

Еще одно замечание практического свойства. Выше мы отметили, что в состав аппарата миофибрилл кардиомиоцита входит регуляторный белок тропонин. В нормальных условиях тропонин не поступает в кровоток, однако при инфаркте миокарда концентрация сердечных тропонинов резко возрастает, и этот белок поступает в кровоток. Повышение уровня тропонина в крови отмечается через 4—6 часов после острого сердечного приступа, достигает своего максимального значения на 2-й день после инфаркта и сохраняется до 8—10 дней. Современные тесты определения сердечных тропонинов позволяют выявить мелкоочаговый инфаркт. Поэтому при подозрении перенесенного «на ногах» инфаркта имеется возможность подтвердить его наличие путем определения концентрации тропонина.

Историческая справка. Несомненно, что раскрытие механизма преобразования энергии химических связей АТФ в механическую работу мышц стало очередной разгадкой сложнейшего механизма фунционирования нашего организам, а исследователи этой разгадки достойны их упоминания.

АТФ-азную активность миозина впервые (1939 г.) обнаружил выдающийся русский биохимик В. А. Ангельгардт со своей женой и сотрудницей М. Любимовой-Энгельгардт, что приесло им научную известность и сталинскую премию. Одновременно в эти же годы венгерский биохимик Сент-Дьердьи выделил миозин из мышцы кролика и сформировал из него тонкие нити. Когда он добавил к ним АТФ, нити быстро сократились на треть, как при сокращении мышечного волокна. Позже Сент-Дьердьи говорил: «Увидеть, как миозин быстро сокращается и как впервые вне организма воспроизводится древний и таинственный признак живого – движение – было самым волнующим моментом в моей работе». Затем этот ученый с мировым именем (до этого он получил Нобелевскую премию за исследования в области биологического окисления) основал институт исследования мышц, открыл актомиозиновый комплекс и был удостоен еще одной очень престижной премии – Ласкеровской премиии.

Итак, в норме универсальный источник энергии АТФ поставляет «горючее» для универсального молекулярного двигателя – актомиозинового белкового комплекса, и наше сердце исправно «стучит». Однако в эту стройную картину энергообразования и работы сердца, к сожалению, часто вмешиваются рассмотренные нами выше атеросклеротические бляшки, которые нарушают рассмотренные процессы и являются главным патологическим фактором в формировании ишемической болезни сердца и развитии инфаркта миокарда. Так какие же процессы происходят при ишемии? Как обеспечивается выработка АТФ и жизнеспособность миокарда в условиях ишемии? Каким образом формируется опасный для жизни инфаркт? Эти вопросы мы обсудим в завершающем параграфе этой главы.

Энергоснабжение миокарда

в нормальных условиях и при ишемии. Инфаркт миокарда

Сущность грудной жабы как клинического синдрома сводится к двум основным пунктам: боль и смерть. Правилом можно считать положение, что каждый припадок грудной жабы может быть последним.

    Д. Д. Плетнев (1871—1941), выдающийся русский врач-терапевт, один из основоположников отечественной кардиологии

Приведенные в эпиграфе слова принадлежат знаменитому врачу и научному деятелю, исключительно образованному человеку – Дмитрию Дмитриевичу Плетневу, ученому с трагической судьбой (был расстрелян в 1941 году по ложному обвинению в «антисоветском» заговоре). В словах этого талантливого врача сквозит грустная мысль, что очередной припадок грудной жабы (приступ стенокардии) может быть последним, то есть привести к смерти (инфаркту миокарда).

С периода деятельности этого ученого прошло много времени. Остались ли забытыми сердечные приступы и связанная с ними преждевременная смерть? Далеко нет. Но так ли уж неизбежен инфаркт миокарда при возникшей стенокардии? Конечно же, сравнить положение современного «сердечника» с таким же пациентом более отдаленного времени никак нельзя. Сегодня разработаны и внедрены в практику различные лекарственные препараты, обеспечивающие не только жизнь, но и трудоспособность пациента с признаками ИБС. Разумеется, что разработка современных лекарств базируется на знании механизмов, протекающих в сердце в условиях ишемии. Так что же теперь известно о механизмах развития стенокардии и инфаркта миокарда?

В рамках обозначенной в книге темы мы рассмотрим только узкий вопрос: как возникает та самая «грудная жаба», которая может закончиться трагически – смертельным сердечным приступом. Почему ослабевает, а затем и прекращается работа сердечной мышцы? Конечно же, наш читатель, ознакомившийся с изложенными выше сведениями, может уже ответить на эти вопросы: причиной стенокардии является ишемия, ограничивающая доступ поставляемого кровью кислорода и приводящая к гипоксии. Однако это ответ в общем виде. Чтобы раскрыть природу явлений, лежащих в основе развития «грудной» жабы, необходимо понять, как изменяется энергоснабжение миокарда в условиях ишемии, как изменяется выработка энергии АТФ, которая обеспечивает, как мы уже знаем, работу нашего сердца.

Основными субстратами для выработки АТФ являются глюкоза и свободные жирные кислоты (СЖК), окисление которых и сопровождается высвобождением энергии.

Начнем с глюкозы и посмотрим, каким образом она участвует в снабжении миокарда энергией. Распад глюкозы приводит к образованию пирувата (пировиноградная кислота), который при аэробных условиях (при отсутствии дефицита кислорода) превращается в упоминаемый нами ранее ацетил-КоА, являющийся, как мы уже знаем, субстратом для цикла Кребса. После завершения всего комплекса окислительно-восстановительных реакций из одной молекулы глюкозы образуется 38 молекул АТФ. Этого количества энергии, образующейся при аэробном гликолизе, недостаточно для нормальной работы миокарда.

Основным энергетическим субстратом миокарда являются СЖК. В этом случае при окислении одной молекулы СЖК образуется 130 молекул АТФ. В нормальных условиях процессы превращения глюкозы и СЖК в энергию АТФ находятся в динамическом равновесии, однако решающий вклад в биоэнергетику сердца вносят СЖК. В норме около 30% вырабатываемой энергии АТФ осуществляется за счет окисления глюкозы, вклад СЖК в биоэнергетику сердца значительно больше и составляет около 70%. Существенное замечание, которое следует учесть в понимании механизма энергоснабжения миокарда в условиях ишемии, состоит в том, что если получение энергии АТФ за счет окисления СЖК возможно только в аэробных условиях (при отсутствии дефицита кислорода), то образование АТФ за счет метаболизма глюкозы возможно не только при аэробных условиях, но и при анаэробных условиях, то есть при дефиците кислорода. Подробнее об этом – ниже.

Какие изменения в энергообеспечении миокарда возникают при гипоксии? Чтобы понять характер этих изменений, следует принять во внимание тот факт, что с позиций гипоксии (нехватки кислорода, вызванной ишемией) СЖК, по сравнению с глюкозой, являются менее «выгодным» источником АТФ, поскольку при их окислении на выработку одного и того же количества АТФ требуется кислорода на 14% больше, чем при окислении глюкозы. Другими словами, «кислородная стоимость» молекулы АТФ, полученной от окисления глюкозы, ниже, чем у молекулы АТФ, полученной от окисления СЖК. Такой дисбаланс между потребностью кислорода при окислении глюкозы и СЖК в сторону последних приводит к тому, что уже в случае умеренной ишемии в митохондриях кардиомиоцитов накапливается большое количество недоокисленных жирных кислот, при этом аэробное окисление обоих субстратов снижается, а таким образом и уменьшается выработка АТФ. Однако даже при выраженной ишемии, несмотря на усиление утилизации глюкозы, преимущественным субстратом окисления остаются СЖК.

Что происходит по мере усиления ишемии? Аэробный синтез АТФ осуществляется в основном за счет СЖК, но, как мы уже отмечали, такой путь требует больших затрат кислорода и в условиях развития ишемии становится метаболически все более невыгодным, и поэтому происходит дальнейшее накопление недоокисленных жирных кислот, что нарушает работу митохондрий и выработку АТФ. В условиях развивающейся гипоксии глюкоза расщепляетcя преимущественно путем анаэробного гликолиза, когда конечный продукт гликолиза – пируват – не вовлекается в цикл Кребса, а превращается в лактат (молочная кислота). Поясним сказанное. Суть в том, что если сама реакция образования пирувата не зависит от наличия кислорода, то дальнейшая судьба образовавшегося пирувата полностью определяется кислородом. В нормальных условиях пируват поступает в митохондрии, и в результате всех происходящих там процессов вырабатывается, как мы отметили, 38 молекул АТФ из одной молекулы глюкозы.

При развитии тяжелой ишемии (окклюзия коронарной артерии) включается анаэробный гликолиз, который становится единственным источником образования АТФ. В условиях энергодефицита кардиомиоцит начинает использовать глюкозу из эндогенного гликогена, однако запасы гликогена в кардиомиоците ограничены, и возникает необходимость активации резервных путей образования АТФ. Таким «спасительным» путем образования АТФ и является анаэробный гликолиз. Хотя при анаэробном расщеплении одной молекулы глюкозы образуется всего лишь две молекулы АТФ (почти в 20 раз меньше, чем при полном сгорании глюкозы в цикле Кребса), тем не менее этот компенсаторный механизм имеет большое значение при ишемии. Образующееся при анаэробном гликолизе небольшое количество АТФ используется в основном для энергетического обеспечения процессов возбуждения, автоматии и проводимости миокарда. Однако функция сократительного аппарата сердечной мышцы при этом резко падает, уменьшается количество связей-мостиков между миозиновыми и актиновыми нитями и уменьшается зависящая от них сила сокращения. Тем не менее происходит определенная адаптация к гипоксии, продолжается частичная поставка энергии и сердце продолжает работать. Однако такая адаптация ограничена во времени.

Объясняется это прежде всего тем, что конечным продуктом гликолиза в отсутствии кислорода является лактат. Если при доступе кислорода лактат можно окислять до конца, то острая гипоксия создает условия, при которых содержание лактата значительно возрастает. Избыток лактата формирует тканевый лактатацидоз, который разобщает окислительное фосфорилирование (вспомним, что это основной процесс образования АТФ) и вызывает ряд других негативных явлений.

В этой связи вспомним о мышечных болях, возникающих после интенсивных физических нагрузок. Чем они обусловлены? При интенсивной физической нагрузке клетки организма не успевают насытиться кислородом и начинает включаться анаэробный гликолиз, который, как мы отметили, сопровождается образованием молочной кислоты – токсического соединения для мышечных клеток. Появляются мышечные боли.

Таким образом, адаптация по рассмотренному механизму лимитирована, поскольку гипоксия усиливает гликолиз, гликолиз же порождает ацидоз, ацидоз тормозит гликолиз. Порочный круг! На этой стадии гипоксии в клетке формируется настоящий дефицит АТФ: аэробный механизм не работает из-за кислородного дефицита, анаэробный – из-за ацидоза. В кардиомиоците нарушаются все АТФ-зависимые процессы. Резкое снижение выработки АТФ, клеточный ацидоз лежат в основе нарушения работы миокарда и развития его инфаркта. В некоторых случаях, когда уровень выработки АТФ снижается до 10% от нормы, эти процессы могут приобрести необратимый характер, вызвать некроз клеток миокарда и привести к инфаркту.

Так в упрощенном виде выглядит картина энергообеспечения нашего миокарда в условиях ишемии. Выше мы достаточно подробно рассмотрели работу актомиозинового комплекса, обеспечивающего сократительную способность сердечной мышцы. В этой связи интересно отметить, что на начальном этапе ишемии активируются некоторые защитные механизмы, один из которых связан с подавлением сократительной активности сердечной мышцы. Оказывается, уже на начальной стадии ишемии уменьшается вход ионов кальция (их роль мы уже знаем) в кардиомиоциты, что приводит к очень резкому снижению уровня сократительной функции сердца, тогда как уровень АТФ снижается гораздо в меньшей степени. Сократительный аппарат – основной потребитель энергии в кардиомиоцитах – как бы жертвует своей функцией, чтобы сохранить жизнеспособность миокарда в целом в течение более длительного времени через ограничение своих затрат в условиях ишемии.

Рассмотренная в сокращенном виде схема энергообразования в клетках сердечной мышцы позволяет сделать заключение, что устойчивая и длительная работа сердца невозможна без постоянного притока кислорода. Еще раз отметим, что нарушение энергоснабжения миокарда связано именно с недостаточностью кислорода, а не с дефицитом субстратов окисления (глюкозы и СЖК). Основной причиной гибели кардиомиоцитов является гипоксия, обусловленная нарушением коронарного кровотока вследствие стенозирования или тромбирования сосуда. Гипоксия, таким образом, приводит к резкому нарушению энергоснабжения миокарда и состоянию организма, которое именуется предынфарктным.

Гипоксия – одно из самых распространенных патологических состояний и являющейся причиной широкого спектра нарушений в организме. Предотвращение и адаптация организма к гипоксии имеет большое значение для качества жизни и ее продолжительности. Хорошо известно, что жители горных райнов в меньшей степени подвержены инфарктам миокарда и отличаются долголетием. Чем оно обусловлено? Среди факторов, обусловливающих долголетие, существенное значение имеет адаптация к гипоксии. С первых дней жизни организм ребенка, родившегося и проживающего в горах, адаптируется к пониженному уровню кислорода, предотвращая сбой работы дыхательной цепи митохондрий и снижение выработки АТФ.

Сегодня в научных публикациях, затрагивающих тему гипоксии, большое внимание уделяется так называемому индуцированному гипоксией фактору HIF-1, за открытие которого в 2019 г. трое исследователей из США и Великобритании Уильям Кэлин, Питер Рэтклифф и Грэг Семенца были удостоены Нобелевской премии в области медицины. Чем же знаменит этот фактор, открытие которого оценено столь высоко? Оказалось, что ведущая роль в формировании адаптации организма к гипоксии принадлежит некоторму специфическому белковому фактору, индуцируемому при гипоксии – HIF-1. Найдено, что мишенями HIF-1 являются более чем 180 генов, экспрессирующих специфические белки, необходимые в условиях пониженного снабжения кислородом для активации альтернативных компенсаторных реакций, ответственных за синтез АТФ. Этот фактор играет главную роль в системном ответе организма на гипоксию и синтезируется во многих тканях организма, в том числе и в нервной ткани, где его экспрессия максимальна в нейронах. Оказалось, что повышение уровня HIF-1 c развитием гипоксии отражается прежде всего на работе дыхательной цепимитохондрий, что становится понятным, поскольку до 98% кислорода, поступающего в организм, связано с митохондриальным дыханием, в результате которого генерируется АТФ. В условиях гипоксии происходит регуляторное репрограммирование работы дахательной цепи: обратимое подавление электронно-транспортной функции первого митохондриального ферментного комплекса (МФКI) и переключение путей окисления субстратов дыхательной цепи от NАД-зависимого (его суть мы уже рассмотрели) на МФК II – окисление сукционата. Заметим, что в норме (отсутствии гипоксии) вклад выработки АТФ через МФКI составляет 55—65% и только 25—30% митохондриального дыхания связано с МФК II (окислением сукцината). В результате переключения путей окисления субстратов резко возрастает содержание сукцината в тканях и вклад сукцинатоксидазного окисления в общее тканевое дыхание возрастает до 70—80%, что способствует резистентности организма к дефициту кислорода.

Разумеется, что рядовому читателю можно и не знать такого рода тонкостей. Фактор гипоксии мы упомянули из тех соображений, чтобы показать читателю «запрограммированное» участие самого организма (без внешних воздействий) к дефициту кислорода. Переключение окисления NАД-зависимых субстратов в дыхательной цепи на окисление сукцината является обязательным эволюционно сформированным срочным сигнальным компенсаторным механизмом адаптации, который реализуется в условиях дефицита кислорода в большинстве таней (миокард, мозг, печень, почки) и благодаря которому обеспечивается сохранение энергосинтезрующей функции дыхательной цепи при кислородной недостаточности.

Открытие HIF-1 и изучение его механизма воздействия на организм указывает на возможность изыскания лекарственных препаратов, выступающих в роли индуктора его синтеза. При ИБС и ишемии головного мозга оправдано усиление активности HIF-1. Так, повышение экспрессии фактора роста эндотелия сосудов через активацию HIF-1 способствует образованию новых кровяных сосудов в области ишемии сердца и мозга, усиливает кровоток и кислородное обеспечение, тем самым, уменьшая ишемию.

На этом мы завершим обсуждение темы гипоксии и формирования инфаркта. Конечно же, о необходимости срочного обращения к врачебной помощи при признаках инфаркта знают почти все. Здесь очень важна величина промежутка времени «от звонка до иглы». Чем раньше больной будет доставлен в больницу, тем больше шансов остаться живым. Отмечается, что общая летальность при инфаркте составляет 30— 35%.

Итак, мы показали, что в основе развития атеросклероза лежит нарушение рецепторного механизма метаболизма холестерина. Однако такого рода нарушения генетической природы встречаются у какой-то части населения, тогда как атеросклерозу подвергнута значительно большая часть. В основе приобретенной холестеринемии (в отличие от наследственной) лежат так называемые факторы риска развития атеросклероза, к обсуждению которых мы и приступим.

Глава 3. Факторы риска

развития атеросклероза

Чего не понимают, тем не владеют.

    И. Гете

Дислипидемия – главный фактор риска развития атеросклероза

В предыдущей главе мы на достаточном для обычного читателя научном уровне рассмотрели механизм развития атеросклероза. Глава в силу ее содержания получилась, может быть, несколько «научной» и сложной для восприятия, однако читатель в меру своих медицинских познаний и интереса к предмету сумеет выделить из приведенного материала наиболее важные интересующие его сведения.

Настоящая глава носит более практический характер. Несомненно, что главнейшим для читателя вопросом рассмотрения атеросклероза как заболевания является вопрос о лечении и предупреждении этого заболевания. Сегодня научной концепцией возникновения сердечно-сосудистых заболеваний, связанных с атеросклерозом, стала концепция факторов риска, под которыми понимают факторы, способствующие развитию и прогрессированию атеросклероза. Большинство из этих факторов хорошо изучено, и они являются достоянием всего медицинского сообщества. К сожалению, население почти всех стран во всем мире не знает этих факторов риска, располагая лишь самыми поверхностными представлениями о роли «плохого» холестерина. Между тем понимание этих факторов и лежит в основе профилактики рассматриваемого заболевания. В этой связи мы посчитали необходимым достаточно подробно рассмотреть факторы риска развития атеросклероза, которые делятся на неуправляемые (возраст, пол, наследственность) и управляемые (такие заболевания, как сахарный диабет, артериальная гипертензия, ожирение и т.д.). Заметим, что факторы риска отражают лишь вероятность развития атеросклероза, однако они не являются ни абсолютными, ни диагностическими характеристиками. Наличие какого-то фактора риска не означает, что у данного индивидуума обязательно разовъется атеросклероз, равно как и не обозначает, что человеку без какихлибо факторов риска наверняка удастся его избежать. Факторы риска – индивидуальные особенности, которые влияют на вероятность развития атеросклероза у конкретного человека.

Сегодня главным фактором риска развития атеросклероза рассматривают дислипидемию (ДЛП). В чем заключается суть ДЛП? ДЛП – это изменение соотношения отдельных фракций липидов в крови всего липидного спектра. Мы уже знаем, что главными «виновниками» развития атеросклероза являются ЛПНП. Однако существенная роль принадлежит и другим липидам. Наиболее частым вариантом ДЛП является так называемая «липидная триада», включающая высокий уровень ЛПНП, высокий уровень триглицеридов (ТГ) и низкий уровень ЛПВП. При этом каждая составляющая этой триады представляет собой независимый фактор риска, а наличие всех трех компонентов увеличивает риск развития атеросклероза и ИБС в 3—5 раз. Некоторые авторы научных публикаций считают, что гиперхолестеринемия (ГХЕ) является не фактором риска атеросклероза, а фактором, непосредственно обусловливающим развитие этого заболевания. Однако тот факт, что ГХЕ не всегда влечет развитие атеросклероза, позволяет отнести ее к числу факторов риска.

В настоящем параграфе мы рассмотрим роль уровня общего холестерина (ХС), холестерина ЛПНП (кратко – ЛПНП), холестерина ЛПВП (ЛПВП) и триглицеридов (ТГ) в развитии атеросклероза.

Начнем с роли ХС. Среди наиболее убедительных и научно обоснованных доказательств связи ГХЕ и развитием ИБС – результаты Фремингемского исследования, проведенного в США. Это масштабное и авторитетное исследование выявило наличие четкой связи между содержанием ХС в крови и распространенностью атеросклероза. Характерно, что кривая, отражающая зависимость между концентрацией ХС в крови и возникновением случаев ИБС, имеет характерный излом (резкое нарастание случаев ИБС), соответствующий уровню ХС, равному 200 мг/дл. В настоящее время в большинстве современных руководств верхней границей нормы ХС считается уровень 200 мг/дл. При этом отмечается, что дальнейшее снижение уровня ХС сопровождается уменьшением риска ИБС.

Факты, свидетельствующие в пользу «холестеринового» атеросклероза, были получены в другом крупном исследовании, проведенном в 7 странах. Результаты показали, что в Финляндии, для жителей которой характерен высокий уровень ХС в крови (около 260 мг/дл), количество сердечных приступов на 1000 мужчин за 10-летний период составило 70, тогда как в Японии, население которой характеризуется низким уровнем ХС (не более 160), это количество составило всего 5. Подчеркивается, что низкая распространенность ИБС у жителей Японии имела не генетический характер, а связана с действием внешних факторов, в частности с особенностями питания по сравнению с финнами.

Что касается уровня ЛПНП, роль которого мы подробно рассмотрели в предыдущей главе, то позиция большинства специалистов сводится к тому, что «…чем ниже, тем лучше». Действительно, имеется много результатов, свидетельствующих в пользу снижения ЛПНП. Наиболее убедительные данные были получены при использовании статинов – современных антихолестериновых лекарственных препаратов, о которых мы расскажем далее. Было показано, что уменьшение содержания ЛПНП на 25% достаточно для того, чтобы снизить летальность от ИБС на 30—40% в течение 5-летнего периода лечения. Анализ большого числа исследований показал, что уменьшение содержания ЛПНП на каждые 40 мг/ дл. (1 ммоль/л) соответствует снижению риска ИБС на 20%.

Самый главный вопрос при обсуждении роли ХС ЛПНП заключается в установлении безопасного уровня этих липидов в крови. Какого уровня ЛПНП следует добиваться, чтобы исключить развитие атеросклероза? Вряд ли имеется однозначный ответ на этот вопрос, однако сам факт снижения уровня ЛПНП в большинстве случае коррелирует с меньшей вероятностью развития ИБС. Установлено, например, что снижение уровня ЛПНП в крови у пациентов, перенесших инфаркт, ниже 70 мг/дл сопровождалось большим снижением риска повторных явлений, чем снижение до уровня 100 мг/дл. Таких сведений сегодня накоплено достаточно много. Общий вывод многочисленных исследований в этой части таков: у пациентов с достигнутым низким уровнем ХС ЛПНП (около 70 мг/дл) прогрессирование атеросклероза имеет более медленный характер. Таким образом, сегодня имеется много данных, свидетельствующих о главенствующей роли уровня ЛПНП в развитии атеросклероза. Вместе с этим хорошо известен и тот факт, что атеросклероз и ИБС развиваются у людей с нормальным уровнем ЛПНП. Важно здесь отметить, что это не единичные случаи – к этой категории относится около 1/3 пациентов с ИБС. Почему же у 35% пациентов с нормальным уровнем холестерина развивается атеросклероз и ИБС?

Одним из факторов, объясняющих развитие ИБС при нормальном уровне ХС ЛПНП, является выраженная неоднородность фракции ХС ЛПНП. Сегодня установлено, что эти частицы неоднородны, имеют много разновидностей и подклассов: большие с низкой плотностью, промежуточные и маленькие плотные частицы. При этом маленькие плотные частицы наиболее атерогенны и составляют около 30% общей фракции ЛПНП. Для этих частиц характерны плохое сродство к рецепторам ЛПНП, увеличение времени пребывания в крови, большая способность проникать в эндотелий и т. д. Одним словом, маленькие плотные частицы являются наиболее «вредными». Неоднородность фракции ЛПНП означает, что у двух разных лиц при одинаковом уровне ЛПНП могут быть разные уровни мелких плотных частиц ЛПНП, а отсюда и различные риски и разная тяжесть атеросклероза. Заметим здесь, что у долгожителей состав ЛПНП характеризуется наличием частиц ЛПНП большого размера. Отсюда следует весьма существенный вывод, заключающийся в том, что уровень ЛПНП в крови не всегда отражает риск атеросклероза. А ведь именно этот показатель мы имеем в нашем анализе крови на липиды, именно он интересует как больного, так и здорового человека. Если уровень ЛПНП не является надежным показателем, то какой же показатель может быть более надежным? Таким показателем может быть количество частиц ЛПНП. Можно ли их определить? Можно. В предыдущей главе мы рассказали, что частицы ЛПНП имеют в своем составе специальные сигнальные белки, именуемые апоВ. Каждая частица ЛПНП, независимо от размера, имеет в своем составе только одну молекулу апоВ. Поэтому уровень апоВ прямо отражает количество частиц ЛПНП. Высокий уровень апоВ при относительно нормальном содержании ЛПНП отражает наличие значительного количества мелких плотных частиц ЛПНП (наиболее опасных), поэтому уровень апоВ является более достоверным предиктором сердечно-сосудистых событий, поскольку риск атеросклероза связан не столько с концентрацией холестерина, сколько с количеством циркулирующих в кровяном русле этих атерогенных частиц. Поэтому при одинаковом содержании ЛПНП у лиц с заметным увеличением доли мелких плотных частиц ЛПНП риск возникновения ИБС повышен. Таким образом, прогностическая и диагностическая значимость определения апоВ существенно превосходит значимость определения только уровней холестерина. По-видимому, методологические сложности и высокая цена определения апоВ не позволяют внедрить в практику определение этого показателя, поэтому в биохимическом анализе крови все пациенты находят значение показателя ХС ЛПНП, который не утратил своей диагностической ценности.

Обратимся теперь к роли ЛПВП. Ранее мы лишь отметили, что они являются «хорошим» холестерином, однако их функции и роль в развитии (предупреждении) атеросклеротического процесса мы не затронули. Главная функция ЛПВП – перенос холестерина из тканей обратно в печень и предупреждение его накопления. Тем самым ЛПВП препятствуют развитию атеросклероза. Однако этим функции ЛПВП не ограничиваются. Сегодня достоверно установлено, что помимо своей главной функции ЛПВП обладают дополнительными антиатерогенными свойствами. К числу таких свойств ЛПВП относятся их противовоспалительное и антиоксидантное действие. Что касается оптимального уровня ХС ЛПВП для предупреждения развития атеросклеротического поражения, то считается, что он не должен быть ниже 45 мг/дл. Лица с ЛПВП менее 35 мг/дл в 8 раз чаще болеют сердечно-сосудистыми заболеваниями, чем лица, имеющие уровень ЛПВП более 65 г/дл. Отмечается, что связь уровня ЛПВП с ИБС более выражена у лиц пожилого возраста. Долгожители (о которых мы будем говорить в дальнейшем) характеризуются повышенным уровнем ЛПВП. Снижение уровня ЛПВП на 1 мг/дл соответствует повышению риска развития сердечно-сосудистых заболеваний на 2—3%. Однако специалисты отмечают, что изолированное значение уровня ХС ЛПВП (без связи с показателями других липидов) не всегда характеризует его проявление в предупреждении атеросклероза. К числу таких липидов относятся триглицериды.

Напомним, что если в структуре ЛПНП присутствует сигнальный белок апоВ, о котором мы вели речь выше, то в структуре ЛПВП присутствует белок апоА-1, который, как сейчас установлено, и определяет кардиопротекторный эффект ЛПВП. С учетом важной роли частиц ЛПНП и ЛПВП в общем балансе холестерина, наиболее достоверным предиктором развития ИБС в настоящее время считают отношение апоВ/апоА-1. Уровень апоВ/апоА-1 в норме составляет 0,3— 0,4, значение 0,6—0,7 означает низкий риск развития инфаркта, а величина 1—1,1 свидетельствует о высоком риске заболевания.

Триглицериды (ТГ). Всем, кто следит за своим холестерином, хорошо известно, что в анализе крови «на холестерин» кроме показателей ХС ЛПНП, ХС ЛПОНП (липопротеиды очень низкой плотности), а также ХС ЛПВП присутствует уровень триглицеридов. ТГ представляют собой эфиры высших жирных кислот и глицерина и являются главной формой накопления жирных кислот в организме и одним из основных источников энергии. Здесь нам более важно отметить, что уровень триглицеридов в крови также имеет значение для оценки риска атеросклероза. Сегодня накоплено достаточно много убедительных данных, свидетельствующих об атерогенности частиц, богатыми ТГ. Результаты исследований показывают корреляцию между уровнем ТГ в плазме крови натощак и риском развития ИБС. Следует обратить серьезное внимание, если уровень ТГ в вашем анализе крови превышает 200 мг/дл. При рассмотрении роли ХС ЛПВП мы отметили, что уровень этого показателя следует учитывать в совокупности с другими липидами. Оказывается, уровень ТГ находится в обратной связи с уровнем ХС ЛПВП – высокому уровню ТГ сопутствует низкий уровень ХС ЛПВП. Другими словами, риск атеросклероза следует определять совокупно значениями ТГ и ХС ЛПВП. Так, даже при нормальном уровне ХС ЛПНП риск ИБС оставался высоким при сочетании содержания ХС ЛПВП ниже 35 мг/дл и ТГ – выше 200 мг/дл. При уровне ТГ выше 200 мг/дл более важным с позиций развития атеросклероза становится уровень ЛПВП, а не ЛПНП.

Таким образом, при оценке риска развития атеросклероза необходимо учитывать комбинацию липидных факторов. Показано, что увеличенное содержание в крови ТГ является предиктором летального исхода ИБС даже в сочетании с низким уровнем ХС ЛПНП. Только при достижении уровня ХС ЛПНП ниже 70 мг/дл повышенное содержание ТГ (более 200 мг/дл) считается неопасным. В другом исследовании показано, что даже при достижении уровня ХС ЛПНП ниже 70 мг/дл уменьшение содержания в крови ТГ ниже 150 мг/дл сопровождалось дальнейшим снижением риска тяжелых коронарных событий.

Вывод, который можно сделать о роли ТГ, заключается в том, что этот параметр следует рассматривать в паре с ХС ЛПВП, при этом повышение уровня ТГ и снижение уровня ХС ЛПВП являются самостоятельными параметрами для предсказания ИБС, независимыми от содержания ХС и ХС ЛПНП. Комплекс нарушений, сопровождающийся гипертриглицеридемией, уменьшением уровня ХС ЛПВП и возрастанием количества мелких плотных частиц ЛПНП, обозначается как «дислипидемическая триада», крайне нежелательная для здоровья сосудов.

Представленных данных о роли дислипидемии в развитии атеросклероза и ИБС вполне достаточно, чтобы читатель смог сделать анализ своей «холестериновой истории». В самом деле, здесь приведены оптимальные значения всех видов липидов, участвующих в холестериновом обмене. В то же время в вашем анализе крови на липиды также представлены количественные значения ХС, ХС ЛПНП, ХС ЛПВП, ТГ. (Иногда уровень холестерина указывается в ммоль/л, в этой связи отметим, что для перевода значений ХС в моль/л значение ХС в мг/л надо разделить на 38,5, а значение ТГ – на 88,5.) Разумеется, простое сравнение имеющихся индивидуальных показателей с показателями «нормы» еще не позволяет самостоятельно сделать вывод о наличии риска ИБС или состоянии полного здоровья. Правильное заключение может быть сделано при непосредственном участии вашего семейного врача и учете других факторов, влияющих на возможность развития атеросклероза.

У читателя может возникнуть вполне обоснованный вопрос: так какова же роль значений ХС ЛПНП в оценке риска развития ИБС? Некоторые из специалистов утверждают, что эпоха ХС ЛПНП как главного виновника развития атеросклероза и как ведущей мишени терапевтических вмешательств у лиц с ИБС уже закончилась. Однако большинство исследователей продолжают рассматривать ХС ЛПНП как стержневой фактор в развитии коронарного атеросклероза, а антихолестериновую терапию – как основной путь предупреждения его прогрессирования.

Существуют ли какие-либо дополнительные предикторы развития атеросклероза кроме уровней холестерина? Одним из маркеров развития ИБС, который уже много лет применяется в клинической практике, является С-реактивный белок (СРБ).

С-реактивный белок как маркер воспалительного процесса и атеросклероза

Последнее десятилетие в терапевтической науке характеризуется признанием ведущей роли хронического воспаления низкой интенсивности в развитии многих заболеваний. Ранее мы отмечали, что в настоящее время атеросклероз рассматривается как длительное вялотекущее хроническое воспаление в интиме сосуда. Атеросклеротическую бляшку – угрозу жизни – можно в настоящее время выявить посредством ангиографии. А как с воспалением? Возможно ли дать количественную оценку воспалительного процесса, который может вызвать эндотелиальную дисфункцию и атеросклероз? – Возможно.

Как только в нашем организме появляется чужеродный агент и возникает воспаление, одной из реакций организма является выработка так называемых белков острой фазы воспаления. Оказалось, что центральным участником острой фазы воспалительного процесса является С-реактивный белок (СРБ). В условиях воспаления СРБ синтезируется преимущественно гепатоцитами (в печени) под контролем провоспалительных цитокинов. Этот белок известен с 1930 года, и сегодня он приобрел репутацию неспецифического, но чувствительного маркера воспаления. Установлено, что при воспалении концентрация СРБ в крови увеличивается в 10—100 раз. Повышенный уровень СРБ может наблюдаться при различных заболеваниях: почечная недостаточность, нервное истощение, у людей с метаболическим синдромом, ревматоидным артритом, опухолями и т. д.

Классический метод определения уровня СРБ предназначен для выявления повышенной концентрации СРБ при остром воспалении в пределах диапазона концентраций 5—500 мг/л. Долгое время считали, что СРБ ниже 5 мл/л свидетельствует об отсутствии воспалительных процессов в организме. Ситуация изменилась, когда был разработан так называемый высокочувствительный метод измерения СРБ, позволяющий выявлять воспаление низкой интенсивности, характерное для атеросклероза. Это измерение обозначается как hsСРБ (high sensitive), при этом диапазон измеряемых концентраций СРБ составляет от 0,05 до 3 мг/л.

Совершенствование метода измерения СРБ позволяет выявить малоактивное воспаление, поэтому маркером атеросклеротического воспалительного процесса является СРБ, измеренный в высокочувствительном диапазоне.

Здесь мы основное внимание уделим СРБ как маркеру сердечно-сосудистых заболеваний, поскольку этот вопрос для читателя более важен. Установлено, что повышение СРБ отражает патологическое событие, при этом концентрация этого предиктора соответствует количественному показателю относительного риска развития атеросклероза и его тяжести.

Увеличение базовой концентрации СРБ на фоне нормальных уровней ХС ЛПНП указывает на вероятность острых коронарных событий. При значениях СРБ 1,1—1,9 риск событий считается низким, при 2—2,9 – умеренным, а при значениях больше 3 мг/л – высоким. Отмечается, что среди больных с нестабильной стенокардией, у которых в последующем развился острый инфаркт миокарда, уровень СРБ был высоким практически у всех пациентов. При инфаркте миокарда уровень СРБ резко возрастает, через 2—4 недели достигает пика и затем снижается.

Результаты исследований показывают, что присоединение показателя СРБ к традиционному определению уровней ХС ЛПНП, ХС ЛПВП у пациентов, относящихся к группе с высоким сердечно-сосудистым риском, позволило снизить смертность на 20%. Установлено, что риск развития коронарных событий у лиц с низким уровнем ХС ЛПНП, но высоким уровнем СРБ значительно выше, чем у лиц с высоким уровнем ХС ЛПНП, но низким значением СРБ.

Значения СРБ, превышающие 3 мг/л, указывают на высокую вероятность развития заболевания. Таким образом, при отсутствии каких-либо других очевидных причин воспаления (инфекция, травма, опухоль) повышенные базовые концентрации СРБ отражают воспаление сосудистой стенки, связанное с атеросклерозом, и достаточно достоверно предсказывают сердечно-сосудистые события.

Снижают уровень СРБ повышенная физическая активность, нормализация веса, умеренное употребление алкоголя. Из лекарственных препаратов наиболее эффективно снижают уровень СРБ аспирин и статины (роль этих препаратов в профилактике и лечении атеросклероза мы подробно обсудим в следующей главе). Исследования показывают, что применение статинов, позволившее наряду со снижением ХС ЛПНП уменьшить значение hsСРБ ниже 2 мг/л, снижает вероятность сердечного приступа на 50%. Специалисты отмечают, что повышенный уровень СРБ является основанием для назначения статинов при низком уровне ХС ЛПНП, а американская кардиологическая ассоциация рекомендует для оценки риска сердечно-сосудистых заболеваний наряду с другими показателями включать hsСРБ, поскольку увеличенное значение этого параметра может быть маркером риска развития инфаркта миокарда и внезапной сердечной смерти даже у лиц без явных признаков гиперхолестеринемии.

Повышенный гомоцистеин как фактор развития атеросклероза

В этом параграфе мы рассмотрим влияние на развитие атеросклероза еще одного вещества – гомоцистеина. Гомоцистеин – это аминокислота, образующаяся в процессе метаболизма метионина. Получаемый с пищей в составе белка метионин метаболизируется с образованием некоторого вещества, которое затем превращается в гомоцистеин. В процессе метаболизма самого гомоцистеина важную роль играют витамины В

, В

и особенно фолиевая кислота. Нарушение превращения гомоцистеина в метионин и цистеин приводит к повышению его уровня в плазме крови. В норме уровень гомоцистеина в крови составляет 5—15 мкмоль/л, при концентрации в пределах 15— 30 единиц говорят об умеренном повышении концентрации гомоцистеина, а уровень гомоцистеина более 100 единиц свидетельствует о тяжелой гипергомоцистеинемии.

В чем опасность повышенного содержания гомоцистеина? Опасность заключается в том, что это вещество обладает высокой цитотоксичностью и может поражать интиму артерии, что, как мы уже знаем, является важнейшим фактором инициирования атеросклеротического процесса. Полностью молекулярный механизм воздействия гомоцистеина на эндотелий мы рассматривать не будем и укажем лишь тот факт, что в присутствии гомоцистеина сосуды теряют свою эластичность, происходит нарушение дилатации коронарных артерий. При воздействии гомоцистеина происходит не только повреждение клеток эндотелия и нарушение их функций, но и окисление ЛПНП, которое, как мы неоднократно отмечали, является важнейшим фактором развития атеросклеротического процесса.

Что же касается связи повышенного содержания гомоцистеина с ИБС и смертностью, то такая связь в ряде исследований с участием большого количества пациентов подтверждается. Отмечается, что среди мужчин, у которых сердечно-сосудистые заболевания возникли в молодом возрасте, повышенный гомоцистеин был отмечен у 42% пациентов. Отмечается также, что у лиц при концентрациях гомоцистеина, превышающих норму на 12%, в последующем имело место троекратное увеличение частоты возникновения инфарктов миокарда по сравнению с лицами, имевшими нормальный уровень гомоцистеина. Повышение концентрации гомоцистеина в крови на 5 мкмоль/л может повысить риск развития атеросклероза в той же степени, что и увеличение содержания ХС ЛПНП на 20 мг/дл. Уровень гомоцистеина (в норме) – 15—30 мкмоль/л.

Приведенных сведений вполне достаточно, чтобы сделать вывод о гипергомоцистеинемии как важном факторе развития атеросклероза. Полезно заметить, что высокий уровень гомоцистеина является одним из факторов повышения тяжести диабетической нейропатии у пациентов с сахарным диабетом второго типа.

Какие же причины обусловливают повышенное содержание гомоцистеина? Генетические факторы, являющиеся причиной гипергомоцистеинемии и приводящие к атеросклерозу и смерти в молодом возрасте, встречаются крайне редко. Сегодня надежно установлено, что основной причиной повышенного содержания гомоцистеина является дефицит витаминов В

, В

и фолиевой кислоты. Одной из причин витаминодефицитных состояний являются заболевания желудочно-кишечного тракта, сопровождающиеся нарушением всасывания витаминов (синдром мальабсорбции). Мы не будем перечислять длинный перечень других известных заболеваний, связных с повышенным уровнем гомоцистеина, однако отметим тот интересный факт, что наблюдается выраженная положительная корреляция между состояниями враждебности, злости и уровнем гомоцистеина.

Среди факторов, влияющих на содержание гомоцистеина, отмечается повышенное употребление кофе. Отмечается, что употребление мужчинами в возрасте 40 лет 6 чашек крепкого кофе в день приводит к концентрации гомоцистеина на 19% выше, чем у не употребляющих этот напиток. У женщин эта разница еще выше и достигает 28%. Очень сильно влияет на уровень гомоцистеина курение. Исследования показывают, что каждая выкуренная сигарета увеличивает уровень гомоцистеина на 0,5% у мужчин и на 1% у женщин. У лиц, страдающих хроническим алкоголизмом, содержание гомоцистеина в крови почти вдвое выше по сравнению с непьющими (этанол снижает содержание витамина В

).

Сегодня установлено, что терапия фолиевой кислотой и витаминами В

и В

позволяет снизить концентрацию гомоцистеина в крови, при этом нормализация уровня при приеме указанных витаминов происходит в пределах 4—6 недель после начала витаминотерапии. Коррекция гипергомоцистеинемии подразумевает также ограничение потребления продуктов с высоким содержанием метионина.