Читать книгу Свет во тьме. Черные дыры, Вселенная и мы (Хайно Фальке) онлайн бесплатно на Bookz (2-ая страница книги)
bannerbanner
Свет во тьме. Черные дыры, Вселенная и мы
Свет во тьме. Черные дыры, Вселенная и мы
Оценить:
Свет во тьме. Черные дыры, Вселенная и мы

4

Полная версия:

Свет во тьме. Черные дыры, Вселенная и мы

Время относительно

Как только мы попадаем на орбиту, наше представление о пространстве и времени меняется. Мы не просто по‐другому видим нашу родную планету – Землю, но меняется и наше восприятие течения дней, месяцев и лет. “Ибо тысяча лет в глазах твоих подобна только что прошедшему дню”[7], как говорится в одном из известных псалмов. Время относительно. Люди подозревали об этом с незапамятных времен, но нигде мы не ощущаем это так ясно, как в открытом космосе.

Когда я писал свою первую программу наблюдений для космического телескопа “Хаббл”, мне пришлось разделить последовательности команд на 95‐минутные блоки, потому что именно столько времени требовалось телескопу для обращения вокруг Земли. На его орбите Солнце восходит и заходит каждые 95 минут. Для телескопа сутки длятся 95 минут, и астронавты на Международной космической станции также наблюдают восходы Солнца каждые 95 минут. Я видел это в своем компьютере, готовя программу наблюдений и мысленно путешествуя по Вселенной.

Но относительность времени означает нечто большее, чем просто иная длина дня. В космосе часы идут не так, как на Земле, хотя вряд ли кто‐то думает, что это возможно. На орбите высотой 20 000 километров над Землей они за день убегают на 39 микросекунд. И, следовательно, за 70 лет наши земные часы отстанут от наших космических часов на одну секунду. Кажется, что это не так уж и много, и все же у нас сегодня нет проблем с тем, чтобы измерить эту представляющуюся ничтожной разницу, – разницу, которая является ключевым аспектом общей теории относительности Альберта Эйнштейна: время действительно относительно. Эта теория описывает не только нашу Солнечную систему, но и черные дыры, и пространственно-временную ткань всей Вселенной.

Путь к открытию был необычайно долог. В широком смысле он начался с фундаментальных открытий, таких как открытие строения нашей Солнечной системы и законов, которые ею управляют, а также с изучения структуры и законов всего космоса. В узком же смысле он начался с того, что мы поняли парадоксальную вещь: свет ведет себя и как волна, и как частица, – и это его свойство непосредственно связано со знаменитой специальной теорией относительности Эйнштейна.

Можно сказать, что глубокое понимание замечательных свойств света явилось ключом ко всему. Более прочего поражает здесь то, что свет не только дает нам возможность видеть все вокруг, позволяя, в частности, исследовать Землю, Луну и звезды, но еще и теснейшим образом связан со временем, пространством и гравитацией.

Давайте обратимся к истории современной физики. Для Исаака Ньютона – автора теории тяготения – свет состоял из маленьких корпускул, то есть мельчайших частиц. Позже, в XIX веке, шотландский физик Джеймс Клерк Максвелл, взяв за основу блестящую революционную работу Майкла Фарадея, доказал, что свет и все другие формы излучения представляют собой электромагнитные волны. И радиосигналы, используемые в технологии Wi-Fi, сотовых телефонах или автомобильных радиоприемниках, и тепловое излучение, регистрируемое приборами ночного видения, и рентгеновские лучи, которые мы используем, чтобы рассмотреть кости под кожей, и даже видимый свет, который воспринимают наши глаза, – все это, согласно теории Максвелла, суть колебания электрических и магнитных полей. Они отличаются друг от друга только своей частотой и способами, с помощью которых мы их производим и измеряем. Но по сути все эти колебания представляют собой одно и то же явление, а именно – свет: видимый свет, свет с длиной волны из радио-, инфракрасного или рентгеновского диапазона.

В частотном диапазоне, используемом мобильными телефонами, волны колеблются миллиард раз в секунду, а их длина составляет больше 20 сантиметров. Волны видимого света колеблются секстиллионы раз в секунду, и их длина в сто раз меньше диаметра волоса. Поскольку световые волны определенного цвета и частоты всегда колеблются с одинаковой скоростью, свет является идеальным метрономом для часов и эталоном времени. Самые точные оптические часы на сегодня откалиброваны так, что их точность составляет более 10–19 секунд [8]. За все время существования Вселенной (на сегодня это примерно 14 миллиардов лет) такие часы отстанут всего примерно на полсекунды! Это такая степень точности, о которой предыдущие поколения даже не мечтали.

Но что именно вызывает эти колебания? Долго считалось, что все космическое пространство заполнено так называемым эфиром. Имелся в виду не тот эфир, который растворитель, а эфир – гипотетическая среда, в которой электромагнитные волны (или световые, или радиоволны) распространяются во все стороны, как звуковые волны в воздухе.

Одним из свойств уравнений Максвелла – самым обескураживающим и неожиданным для физиков, причем остающимся таковым и по сей день, – является представление о том, что свет с любой длиной волны, распространяющийся в пустом пространстве, должен всегда двигаться с одной и той же постоянной скоростью, не зависящей от того, как быстро двигается наблюдатель. Рентгеновский луч столь же быстр, как радиоволна или лазерный луч, и в уравнениях Максвелла скорость света не зависит от скорости приемника или излучателя. То, что свет распространяется с конечной скоростью, мы знали самое позднее с конца XVII века, когда Оле Рёмер измерил движение спутников Юпитера и использовал их в качестве часов [9]. Но разве не должна скорость света меняться в зависимости от того, летишь ли ты с большой скоростью сквозь таинственный эфир или стоишь на месте?

Допустим, я плыву на серфборде в океане. Сильный ветер дует в сторону берега, а я гребу от него перпендикулярно линии прибоя. Волны приближаются ко мне с большой скоростью – на самом деле почти так же быстро, как они набегают на берег. Но если я меняю направление и быстро гребу в ту же сторону, куда устремлены ветер и волны, моя скорость почти равняется скорости волн под моим серфбордом. По сравнению с ним скорость волн мала, однако скорость волн относительно берега очень высока.

То же самое относится и к звуковым волнам. Если я еду на велосипеде при попутном ветре, звук клаксона едущего за мной автомобиля достигает моих ушей несколько быстрее, чем когда ветра нет, – и я слышу предупреждение немного раньше. Если же я поеду навстречу ветру, то услышу гудок сзади несколько позже: звук тоже распространяется против ветра. Если бы я мог крутить педали со сверхзвуковой скоростью, я никогда не услышал бы гудка. Если бы я крутил педали еще быстрее и опередил собственные звуковые волны, то преодолел бы звуковой барьер и создал ужасный шум, поскольку многие из производимых мною звуков достигли бы человека, слышащего их, одновременно. Но, в отличие от пилотов реактивных самолетов, ни одному велосипедисту еще не удалось преодолеть звуковой барьер.

Радиоволны должны вести себя подобным же образом – по крайней мере так думали люди более ста лет назад. По их представлениям эфир, в точности как воздух в нашей атмосфере, заполняет пустоту космического пространства, а Земля, бороздящая эфир со скоростью 100 000 километров в час по орбите вокруг Солнца, схожа с моим велосипедом или серфбордом. Если вы измерите скорость света в направлении движения Земли вокруг Солнца, то эта “скорость света” должна быть на самом деле совершенно другой, чем скорость, измеренная под прямым углом или в точно противоположном направлении. Иными словами, она должна зависеть от того, при “попутном” или “встречном” ветре движется свет в эфире.

Именно этот эффект пытались измерить американские физики Альберт А. Майкельсон[10] и Эдвард У. Морли в конце XIX века. Для этого они измерили относительную скорость света в двух световых коридорах (или каналах), расположенных перпендикулярно друг другу. Эксперимент закончился полной неудачей. Ученые не смогли увидеть сколько‐нибудь существенного различия в скоростях света. Таким образом, не было найдено прямых доказательств существования эфира – он оказался просто иллюзией.

Неудачи могут быть прорывными, и этот неудачный эксперимент стал одним из тех немногих, которые принято называть ключевыми, так как они направили развитие физики и астрономии по ее нынешнему пути. Дело в том, что совершенно неожиданный крах теории эфира обрушил всю систему взглядов и потому пришлось, отбросив старые модели, начать искать новые идеи. Лучшими из них оказались идеи молодого Альберта Эйнштейна[11], который был готов радикально все переосмыслить и создать новую теоретическую основу физики. Пока другие физики все еще пытались пробить головой стену, Эйнштейн стремительно ворвался в новую эру, в которой пространство и время больше не были абсолютными. Возникла смелая теория – теория относительности Эйнштейна, существенно изменившая веками доминировавшую концепцию мироздания.

Мальчик мечтает о Луне

Совершив достаточное количество оборотов вокруг Земли, мы можем начать следующую фазу протокола, составленного для полета нашей космической капсулы, и направить эту капсулу на Луну. Путешествие на Луну было древней мечтой человечества. 20 июля 1969 года Нил Армстронг ступил на ее поверхность, совершив, возможно, самый известный шаг, когда‐либо сделанный человеком, – и мечта стала реальностью. Даже спустя несколько лет я все еще ощущал значимость этого момента.

Жаркий летний день 1971 года в маленьком городке Штромбах в горном районе земли Северный Рейн-Вестфалия. До самого горизонта тянутся мягкие зеленые холмы и леса. В небольшом районе частных домов на улице играют и веселятся дети. Ведерки и лопатки, трехколесный велосипед с родительской ручкой для толкания и пара мячей – все, что им нужно для счастья. Взрослые сидят во дворе в шезлонгах и наблюдают за детьми.

Но один маленький пухлощекий мальчик не играет со сверстниками, а сидит в темной комнате и как завороженный смотрит на мерцающие размытые черно-белые картинки на экране большого лампового телевизора. Лунный модуль “Аполлона-15” “Фалькон” только что “прилунился” и передает свои изображения на Землю. После первых захватывающих и очень успешных космических полетов воодушевление взрослых членов семьи Фальке, вызванное посадками на Луну, довольно быстро испарилось.

И только мальчик никак не может оторваться от экрана. Ему всего четыре года, и он еще не имеет ни малейшего представления о размерах космоса или расстоянии, которое астронавты НАСА должны были преодолеть, чтобы добраться до Луны. Он даже вообразить себе не может, сколько энергии потребовал данный технологический прорыв и насколько значительным является это научное достижение. И все же где‐то в глубине души он чувствует, каким захватывающим и грандиозным является это смелое предприятие. Мальчик наслаждается каждой секундой космического приключения, и его воображение разыгрывается все больше. Что вообще в этом мире может быть неосуществимым, если человек смог ходить по Луне, прыгать на ее поверхности и даже управлять лунным вездеходом (а именно это и делали астронавты “Аполлона-15”)? Что еще предстоит открыть человечеству в бесконечно огромном небе?

Этим мальчиком, конечно же, был я. Тогда мы провели несколько дней в гостях у моей двоюродной бабушки Герды. Астронавты, отправившиеся под командованием Дэвида Скотта на Луну, казались мне в детстве героями из комиксов. Командир Скотт и член экипажа Джеймс Ирвин прилунились на модуле “Фалькон” очень близко к Апеннинам – одному из крупнейших лунных горных хребтов, – в то время как третий астронавт, Альфред Уорден, облетал Луну в командном модуле. Когда Скотт ступил на поверхность Луны, он произнес нечто глубоко человеческое: “Я вроде как понял, в чем состоит фундаментальная сущность нашей природы. Человек должен открывать новое!” “Да! – подумал я. – Это про меня”. И сегодня так можно сказать обо всех людях.

Как и многие дети, я хотел быть космонавтом, но позже (в основном интуитивно) пришел к пониманию, что на самом деле не создан для этого. Я был довольно разносторонне развит: умел работать в коллективе, был стрессоустойчивым и спортивным, разбирался в технике, был хорош в теоретической и экспериментальной работе. Но у меня легко начинали дрожать руки, и под давлением ситуации я допускал очень много ошибок. Годы спустя, на конференции по космическим путешествиям, мне довелось поговорить об этом с немецкими астронавтами Ульрихом Вальтером и Эрнстом Мессершмидом. Они оба знали себе цену, но при этом не были заносчивыми. “Нам, астронавтам, приходится без конца проходить отбор, и все показатели должны быть в норме”, – сказал мне один из них. В моем случае в норме были не все показатели. И все же моя мечта – подобраться ближе к Луне – никогда не умирала.

Чтобы долететь до Луны, космический корабль должен преодолеть расстояние от 356 000 до 407 000 километров – в зависимости от того, в какой именно части своей эллиптической орбиты она находится. Для большинства автомобилей это расстояние равно примерно их максимальному пробегу, а вот свету, чтобы его преодолеть, требуется всего около 1,3 секунды. Осознание того факта, что даже самые лучшие автомобили за свою жизнь способны проехать расстояние, ненамного превышающее световую секунду (важная астрономическая мера), здорово отрезвляет.

Скорость света – единственная во Вселенной по‐настоящему постоянная величина. Размеры космического пространства принято выражать в световых единицах, и световой год на самом деле является мерой длины, а не времени, как можно было бы предположить, исходя из слова “год”. И представление об истинных космических масштабах мы получаем, когда, говоря о расстояниях, оперируем иногда расстояниями, равными многим миллиардам световых лет. Так что для астрономов Луна не является нашим космическим двором – ни задним, ни передним: она от силы порог, который мы переступаем, готовясь к путешествию по Вселенной.

То, что нас с Луной разделяет расстояние, примерно равное одной световой секунде, также означает, что все то, что мы сейчас видим на Луне с Земли, случилось там секунду назад. Когда мы смотрим в космос, мы всегда видим его прошлое. В случае с Луной это немногим больше секунды, но в случае с галактиками, которые мы изучаем, мы наблюдаем события, произошедшие миллионы и миллиарды лет назад.

Свет всегда достигает нас “с задержкой” – небольшой задержкой, если источник света находится где‐то здесь, на Земле, и чрезвычайно большой, если свет идет к нам из глубин космоса. В результате мы никогда не можем точно знать, что происходит где‐то в другом месте в данный момент – ни во Вселенной, ни даже здесь, на Земле.

Между прочим, есть очень простой способ измерить и использовать задержку прихода света от Луны. Мой голландский коллега решил провести свою свадебную церемонию в диспетчерской радиотелескопа и с помощью радиоволн отправил на Луну брачный обет. Слова клятвы отразились от поверхности Луны и через 2,6 секунды вернулись в диспетчерскую. Это произошло так быстро, что невеста не успела сбежать, и брак официально зарегистрировали. Вероятно, это была первая в мире свадьба с участием Луны [12].

По несколько менее торжественным поводам, а на самом деле – с чисто научными и технологическими целями мы сегодня регулярно стреляем лазерными лучами в Луну. Они отражаются от зеркал, которые были размещены там во время миссии “Аполлон” и теперь работают так же, как и тогда (вопреки заявлениям сторонников теории заговора, утверждающих, что НАСА никогда не сажала корабли на Луну). По задержке светового эха можно чрезвычайно точно измерить движение Луны и ее расстояние до нас, и мы можем проверить предсказания, сделанные в рамках общей теории относительности.

Еще мы можем заметить, что с каждым годом Луна становится на четыре сантиметра дальше от нас, а Земля немного замедляет свое вращение. Гравитационные силы привязывают Землю и Луну друг к другу, а приливные силы заставляют каждую из них несколько замедлять вращение другой. Ежегодно каждый лунный месяц и земной день увеличивают свою длину на крошечную долю секунды. Теоретически мы в результате стареем несколько медленнее, но и умираем немного раньше – если, конечно, наш возраст выражается в месяцах и днях. Четыре с половиной миллиарда лет назад в сутках было всего шесть часов[13] – для таких трудоголиков, как я, жизнь была бы непереносимой.

Вращение Луны вокруг своей оси уже очень сильно замедлилось. За время оборота по орбите вокруг Земли она поворачивается вокруг собственной оси ровно один раз и, следовательно, всегда показывается нам одной и той же стороной. Вот почему людям привычен один и тот же улыбающийся и дружелюбный лунный лик. Обратную же сторону Луны мы смогли увидеть только после первых лунных миссий. И хотя это не темная сторона, как ее часто поэтически называют (поскольку Солнце освещает ее в течение двух недель каждый месяц), она все же остается загадочным и малоизведанным миром.

Я никогда полностью не отказывался от своей мечты, связанной с Луной, и в некотором отношении эта мечта осуществилась, когда на какое‐то время я стал руководителем радиотелескопа LOFAR[14] в Нидерландах. Название LOFAR расшифровывается как “низкочастотная антенная система”. Радиотелескоп представляет собой сеть радиоантенн, работающих в низкочастотном диапазоне. Они связаны между собой и образуют единый астрономический инструмент – благодаря суперкомпьютеру, объединяющему данные, полученные с помощью разных антенн; таким образом создается виртуальный телескоп. Считалось, что с его помощью мы сможем углубиться в прошлое Вселенной вплоть до Большого взрыва и найти все активные черные дыры во Вселенной.

Сегодня сеть LOFAR состоит из 30 000 антенн, раскиданных по всей Европе, – то есть LOFAR стал континентальным телескопом. Но идеальное место для приема радиоволн из космоса без помех – это обратная сторона Луны. Дело в том, что на Земле самыми большими проблемами для астрономов являются рассеянное излучение, создаваемое наземными радиопередатчиками, и искажение космических радиоволн в самом верхнем слое атмосферы – ионосфере. С Земли мы никогда не видим обратную сторону Луны, а следовательно, там нет помех от какого‐либо рассеянного земного излучения. “Луна может быть лучшим местом на Земле для работы радиоастрономов”, – обычно говорю я в шутку. Но долгое время идея установить там антенны казалась мне несбыточной мечтой.

И в космическом путешествии, и в науке нужно быть очень терпеливым. Если набраться терпения и подождать, то может случиться нечто совершенно невероятное. Я, например, дождался приятного сюрприза в октябре 2015 года, когда во время государственного визита король Нидерландов Виллем-Александр и глава КНР Си Цзиньпин договорились о совместных проектах в области космических полетов. В рамках подписанного соглашения китайцы предложили взять с собой в космос лунную антенну, разработанную нами для программы LOFAR. Это был первый голландский прибор, включенный в китайскую лунную миссию. В мае 2018 года с космодрома Сичан стартовала ракета китайского космического агентства КНКА с нашей антенной на борту, и за запуском именно этой ракеты я, будучи в отпуске в Ирландии, следил в прямом эфире. Однако тогда же синтезировалось самое первое изображение черной дыры, и вся моя энергия и мои мысли были сосредоточены исключительно на получении этого изображения. То был самый напряженный период моей научной жизни, и потому я, хоть и неохотно, препоручил исполнение своей детской мечты о Луне коллегам.

Наша станция наблюдения LOFAR установлена на китайском спутнике связи “Цюэцяо”. Спутник, название которого переводится как “сорочий мост”, находится на расстояниях от 40 000 до 80 000 километров за Луной. Основная функция “Цюэцяо” – ретранслировать радиосигналы на Землю с обратной стороны Луны. Осенью 2019 года мы раскрыли нашу антенну и с тех пор слушаем космические сигналы. Совсем недавно мы занимались поиском чрезвычайно слабых радиошумов, которые, согласно современным теориям, должны были появиться в какой‐то момент так называемых “темных веков Вселенной”, то есть миллиарды лет назад, до рождения первых звезд. Они содержат радиоэхо Большого взрыва, являющегося началом пространства и времени. Вероятно, нам потребуется много лет, чтобы завершить чрезвычайно сложный анализ массива данных, и вполне возможно, что только будущие космические миссии смогут что‐то такое обнаружить.

Но когда “Цюэцяо” еще только направлялся к своей орбите, он подарил мне невероятный эмоциональный всплеск. Его небольшой бортовой камере удалось сделать уникальный снимок, на котором были видны Луна, а за ней – почти такого же размера – Земля. В углу фото красовалась наша все еще нераскрытая антенна. Рассматривая снимок, я снова почувствовал себя тем маленьким мальчиком, что сидел у старого черно-белого телевизора. Передо мной предстала таинственная обратная сторона Луны, за которой виднелось маленькое и размытое изображение нашей собственной голубой планеты, где я сейчас сидел. Сам я никогда не летал на Луну, но в тот момент я словно был там – был “дома”. С тех пор каждый раз, когда я смотрю на Луну, мне кажется, будто теперь там поселилась маленькая частичка меня.

2

Солнечная система и наши изменяющиеся представления о Вселенной

Солнце – наша ближайшая звезда

Теперь мы покидаем Луну и направляемся к Солнцу. Если мы вылетим с Земли, то до цели нам нужно преодолеть расстояние в 150 миллионов километров. Свет может справиться с этим за 8 минут, а это значит, что мы находимся в 8 световых минутах от Солнца и, смотря на него, видим то, что происходило на нем 8 минут назад.

Солнце – звезда, благодаря которой мы существуем, и это утверждение носит универсальный характер, ибо ни на одном другом небесном объекте, кроме Земли, нет условий для человеческой жизни. Солнце влияет на погоду и на человеческую культуру, а также упорядочивает нашу повседневную деятельность, задавая ритм дня и ночи. Мы начинаем понимать важность Солнца, только когда нам приходится какое‐то время жить без него. Поэтому неудивительно, что и в доисторические времена, и в древности солнечное затмение вызывало у людей серьезную тревогу. Да и сегодня оно может заставить нас беспокоиться, хотя обычно не слишком сильно.

Лето 1999 года. Я стою перед директрисой нашей местной начальной школы, чуть ли не умоляя ее позволить моей дочери отправиться со мной в путешествие. Сегодня, 11 августа, в некоторых областях Германии и Франции должно наблюдаться полное солнечное затмение. В течение нескольких дней немецкие СМИ рекламировали это событие. Специальные защитные очки распроданы, и вся Германия ждет наступления космического таинства. Для нас с дочерью это уникальная возможность увидеть редкое событие вместе: к тому времени, когда в 2081 году произойдет следующее наблюдаемое в наших краях подобное солнечное затмение, меня уже не будет в живых.

Но строгие правила обязательного посещения школ в Германии не учитывают всякие сентиментальные мотивы. Наши законы в сфере образования позволяют отменять уроки, если объявляется высокий уровень опасности из‐за жары или холодов, но никак не в дни солнечного затмения. Сочувствующая нам директриса мнется и говорит мне, что по школьным правилам она не может отпускать детей из школы ради солнечных затмений, которые случаются раз в столетие, даже если это дети астрономов. “Однако, – задумчиво добавляет она, – пропустить занятия можно, если из‐за вашей работы вам приходится временно менять место жительства. В этом случае вы могли бы взять Яну с собой”. Я благодарю ее за информацию и на один день меняю место жительства – во всяком случае, на бумаге.

Взволнованный и охваченный нетерпением, я сажаю в машину свою шестилетнюю дочь и прыгаю за руль. Иногда ученые в поисках тайн Вселенной и удовлетворения собственной любознательности готовы отправиться хоть на край земли. Вот и мы отправляемся в нашу небольшую семейную экспедицию.

Тень затмения будет проходить около полудня лишь по узкой полосе, протянувшейся через несколько областей на юго-западе Германии. Именно сюда я и хочу попасть, потому что только здесь можно будет пережить самый захватывающий момент полного солнечного затмения: зловещий мрак, который наступает, когда мир внезапно посреди дня погружается в темноту. Став тому свидетелем, вы никогда не забудете ощущение важности солнечного света для нашей жизни и для жизни вообще. Есть только одна проблема, которая может нам помешать и с которой астрономы – увы! – хорошо знакомы: капризы погоды. 11 августа небо во всей Германии окутано облаками.

Мы едем на запад от моего родного города Фрехен, расположенного недалеко от Кёльна, в поисках подходящего места. Мы отчаянно мечемся, гоняясь за солнечным светом, то здесь, то там пробивающимся сквозь облака. Наконец мы оказываемся во Франции, в поле, неподалеку от города Мец. До начала затмения осталось всего несколько минут… и тут небо очищается и из него проливается свет Солнца. Иногда в жизни тебе просто должно повезти, даже если ты скромный ученый. Медленно, величественно диск Луны начинает скользить перед Солнцем, пока наконец полностью не закрывает его. Мы попали точно в нужное место в нужное время. Это необычное и прекрасное зрелище, редкий момент “коллективного озарения” в полной темноте.

bannerbanner