Читать книгу Живи долго! Научный подход к долгой молодости и здоровью (Майкл Грегер) онлайн бесплатно на Bookz (56-ая страница книги)
bannerbanner
Живи долго! Научный подход к долгой молодости и здоровью
Живи долго! Научный подход к долгой молодости и здоровью
Оценить:
Живи долго! Научный подход к долгой молодости и здоровью

3

Полная версия:

Живи долго! Научный подход к долгой молодости и здоровью

1923

Song B, Wang H, Xia W, Zheng B, Li T, Liu RH. Combination of apple peel and blueberry extracts synergistically induced lifespan extension via DAF-16 in Caenorhabditis elegans. Food Funct. 2020;11(7):6170–85. https://pubs.rsc.org/en/content/articlelanding/2020/FO/D0FO00718H

1924

Pallauf K, Giller K, Huebbe P, Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxid Med Cell Longev. 2013;2013:707421. https://pubmed.ncbi.nlm.nih.gov/24069505/

1925

Wu X, Cao N, Fenech M, Wang X. Role of sirtuins in maintenance of genomic stability: relevance to cancer and healthy aging. DNA Cell Biol. 2016;35(10):542–75. https://pubmed.ncbi.nlm.nih.gov/27380140/

1926

Khazdouz M, Daryani NE, Alborzi F, et al. Effect of selenium supplementation on expression of SIRT1 and PGC-1a genes in ulcerative colitis patients: a double blind randomized clinical trial. Clin Nutr Res. 2020;9(4):284–95. https://pubmed.ncbi.nlm.nih.gov/33204668/

1927

Stranges S, Marshall JR, Natarajan R, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23. https://pubmed.ncbi.nlm.nih.gov/17620655/

1928

Fusi J, Bianchi S, Daniele S, et al. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds. Biomed Pharmacother. 2018;101:805–19. https://pubmed.ncbi.nlm.nih.gov/29525677/

1929

Yang Y, Duan W, Lin Y, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65:667–79. https://pubmed.ncbi.nlm.nih.gov/23880291/

1930

Heshmati J, Golab F, Morvaridzadeh M, et al. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor ¿ coactivator 1a gene expression in polycystic ovarian syndrome (PCOS) patients: a randomized placebo-controlled clinical trial. Diabetes Metab Syndr. 2020;14(2):77–82. https://pubmed.ncbi.nlm.nih.gov/31991296/

1931

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med. 2019;19(1):59. https://pubmed.ncbi.nlm.nih.gov/30871514/

1932

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom increases Sirtuin-1 and reduces inflammation in overweight or obese patients with non-alcoholic fatty liver disease: a double-blind randomized placebo-controlled clinical trial. Nutr Metab (Lond). 2018;15:63. https://pubmed.ncbi.nlm.nih.gov/30263038/

1933

Zhong Y, Chen AF, Zhao J, Gu YJ, Fu GX. Serum levels of cathepsin D, sirtuin1, and endothelial nitric oxide synthase are correlatively reduced in elderly healthy people. Aging Clin Exp Res. 2016;28(4):641–5. https://pubmed.ncbi.nlm.nih.gov/26462844/

1934

Kumar R, Mohan N, Upadhyay AD, et al. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–80. https://pubmed.ncbi.nlm.nih.gov/25100619/

1935

Kumar R, Chaterjee P, Sharma PK, et al. Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS One. 2013;8(4):e61560. https://pubmed.ncbi.nlm.nih.gov/23613875/

1936

Yanagisawa S, Papaioannou AI, Papaporfyriou A, et al. Decreased serum sirtuin-1 in COPD. Chest. 2017;152(2):343–52. https://pubmed.ncbi.nlm.nih.gov/28506610/

1937

Kazemi S, Yaghooblou F, Siassi F, et al. Cardamom supplementation improves inflammatory and oxidative stress biomarkers in hyperlipidemic, overweight, and obese pre-diabetic women: a randomized double-blind clinical trial. J Sci Food Agric. 2017;97(15):5296–301. https://pubmed.ncbi.nlm.nih.gov/28480505/

1938

Shekarchizadeh-Esfahani P, Arab A, Ghaedi E, Hadi A, Jalili C. Effects of cardamom supplementation on lipid profile: a systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res. 2020;34(3):475–85. https://pubmed.ncbi.nlm.nih.gov/31755188/

1939

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med. 2019;19(1):59. https://pubmed.ncbi.nlm.nih.gov/30871514/

1940

Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70. https://pubmed.ncbi.nlm.nih.gov/18174544/

1941

Caito S, Rajendrasozhan S, Cook S, et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 2010;24(9):3145–59. https://pubmed.ncbi.nlm.nih.gov/20385619/

1942

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

1943

Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides. 2018;71:54–60. https://pubmed.ncbi.nlm.nih.gov/30007474/

1944

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

1945

Potthast AB, Nebl J, Wasserfurth P, et al. Impact of nutrition on short-term exercise-induced sirtuin regulation: vegans differ from omnivores and lacto-ovo vegetarians. Nutrients. 2020;12(4):1004. https://pubmed.ncbi.nlm.nih.gov/32260570/

1946

Brenner C. Sirtuins are not conserved longevity genes. Life Metabolism. Published online September 22, 2022. https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/loac025/6711379. Accessed December 27, 2022.; https://academic.oup.com/lifemeta/article/1/2/122/6711379

1947

Boccardi V, Mecocci P. Telomerase activation and human health-span: an open issue. Aging Clin Exp Res. 2018;30(2):221–3. https://pubmed.ncbi.nlm.nih.gov/28470632/

1948

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/

1949

Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis. 2020;7(3):29. https://pubmed.ncbi.nlm.nih.gov/32781553/

1950

Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol. 2007;8(9):715–22. https://pubmed.ncbi.nlm.nih.gov/17717516/

1951

Bonafè M, Sabbatinelli J, Olivieri F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res Rev. 2020;59:101027. https://pubmed.ncbi.nlm.nih.gov/32068123/

1952

Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A. Telomere length and the cancer – atherosclerosis trade-off. PLoS Genet. 2016;12(7):e1006144. https://pubmed.ncbi.nlm.nih.gov/27386863/

1953

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/

1954

Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem. 2018;90:221–308. https://pubmed.ncbi.nlm.nih.gov/30779012/

1955

Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging Sci. 2014;7(3):161–7. https://pubmed.ncbi.nlm.nih.gov/25612739/

1956

Wang J, Liu Y, Xia Q, et al. Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol. 2020;163:1060–78. https://pubmed.ncbi.nlm.nih.gov/32673712/

1957

Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/

1958

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

1959

Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/

1960

Zhou J, Wang J, Shen Y, et al. The association between telomere length and frailty: a systematic review and meta-analysis. Exp Gerontol. 2018;106:16–20. https://pubmed.ncbi.nlm.nih.gov/29518479/

1961

Cohen S, Janicki-Deverts D, Turner RB, et al. Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA. 2013;309(7):699–705. https://pubmed.ncbi.nlm.nih.gov/23423415/

1962

Zhan Y, Clements MS, Roberts RO, et al. Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging. 2018;69:111–6. https://pubmed.ncbi.nlm.nih.gov/29870951/

1963

Smith L, Luchini C, Demurtas J, et al. Telomere length and health outcomes: an umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Res Rev. 2019;51:1–10. https://pubmed.ncbi.nlm.nih.gov/30776454/

1964

Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis. 2020;7(3):29. https://pubmed.ncbi.nlm.nih.gov/32781553/

1965

Zhan Y, Liu XR, Reynolds CA, Pedersen NL, Hägg S, Clements MS. Leukocyte telomere length and all-cause mortality: a between-within twin study with time-dependent effects using generalized survival models. Am J Epidemiol. 2018;187(10):2186–91. https://pubmed.ncbi.nlm.nih.gov/29961868/

1966

Christensen K, Thinggaard M, McGue M, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262. https://pubmed.ncbi.nlm.nih.gov/20008378/

1967

Christensen K, Thinggaard M, McGue M, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262. https://pubmed.ncbi.nlm.nih.gov/20008378/

1968

Zhan Y, Hägg S. Association between genetically predicted telomere length and facial skin aging in the UK Biobank: a Mendelian randomization study. GeroScience. 2021;43(3):1519–25. https://pubmed.ncbi.nlm.nih.gov/33033864/

1969

Astuti Y, Wardhana A, Watkins J, Wulaningsih W. Cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9. https://pubmed.ncbi.nlm.nih.gov/28704792/

1970

Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci. 2018;373(1741):20160436. https://pubmed.ncbi.nlm.nih.gov/29335375/

1971

Whittemore K, Vera E, Martínez-Nevado E, Sanpera C, Blasco MA. Telomere shortening rate predicts species life span. Proc Natl Acad Sci U S A. 2019;116(30):15122–7. https://pubmed.ncbi.nlm.nih.gov/31285335/

1972

Fick LJ, Fick GH, Li Z, et al. Telomere length correlates with life span of dog breeds. Cell Rep. 2012;2(6):1530–6. https://pubmed.ncbi.nlm.nih.gov/23260664/

1973

Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun. 2019;10(1):4723. https://pubmed.ncbi.nlm.nih.gov/31624261/

1974

Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. https://pubmed.ncbi.nlm.nih.gov/26785477/

1975

Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019;20(1):1–16. https://pubmed.ncbi.nlm.nih.gov/30229407/

1976

Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. https://pubmed.ncbi.nlm.nih.gov/26785477/

1977

Tsuji A, Ishiko A, Takasaki T, Ikeda N. Estimating age of humans based on telomere shortening. Forensic Sci Int. 2002;126(3):197–9. https://pubmed.ncbi.nlm.nih.gov/12062940/

1978

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

1979

Blackburn EH. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chemie Int Ed Engl. 2010;49(41):7405–21. https://pubmed.ncbi.nlm.nih.gov/20821774/

1980

Laberthonnière C, Magdinier F, Robin JD. Bring it to an end: does telomeres size matter? Cells. 2019;8(1):30. https://pubmed.ncbi.nlm.nih.gov/30626097/

1981

Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem. 2018;90:221–308. https://pubmed.ncbi.nlm.nih.gov/30779012/

1982

Boccardi V, Mecocci P. Telomerase activation and human health-span: an open issue. Aging Clin Exp Res. 2018;30(2):221–3. https://pubmed.ncbi.nlm.nih.gov/28470632/

1983

Flanary BE, Kletetschka G. Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva. Biogerontology. 2005;6(2):101–11. https://pubmed.ncbi.nlm.nih.gov/16034678/

1984

Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9. https://pubmed.ncbi.nlm.nih.gov/8934879/

1985

Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33(5):787–91. https://pubmed.ncbi.nlm.nih.gov/9282118/

1986

Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep. 2020;47(9):7181–8. https://pubmed.ncbi.nlm.nih.gov/32876842/

1987

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

1988

Chen W, Kimura M, Kim S, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9. https://pubmed.ncbi.nlm.nih.gov/21310811/

1989

Epel ES, Merkin SS, Cawthon R, et al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 2008;1(1):81–8. https://pubmed.ncbi.nlm.nih.gov/20195384/

1990

Tedone E, Arosio B, Gussago C, et al. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians’ offspring. Exp Gerontol. 2014;58:90–5. https://pubmed.ncbi.nlm.nih.gov/24975295/

1991

Tedone E, Huang E, O’Hara R, et al. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell. 2019;18(1):e12859. https://pubmed.ncbi.nlm.nih.gov/30488553/

1992

Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: retrospective analysis and future prospects. Life Sci. 2020;257:118115. https://pubmed.ncbi.nlm.nih.gov/32698073/

1993

Boccardi V, Paolisso G. Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev. 2014;15:1–5. https://pubmed.ncbi.nlm.nih.gov/24561251/

1994

Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Res. 2016;5:89. https://pubmed.ncbi.nlm.nih.gov/27081482/

1995

Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell. 2008;135(4):609–22. https://pubmed.ncbi.nlm.nih.gov/19013273/

1996

Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/

1997

Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun. 2014;5:5863. https://pubmed.ncbi.nlm.nih.gov/25519492/

1998

Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science. 2000;287(5456):1253–8. https://pubmed.ncbi.nlm.nih.gov/10678830/

1999

Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun. 2014;5:5863. https://pubmed.ncbi.nlm.nih.gov/25519492/

2000

Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/

2001

Eitan E, Tichon A, Gazit A, Gitler D, Slavin S, Priel E. Novel telomerase-increasing compound in mouse brain delays the onset of amyotrophic lateral sclerosis. EMBO Mol Med. 2012;4(4):313–29. https://pubmed.ncbi.nlm.nih.gov/22351600/

2002

Gilson E, Ségal-Bendirdjian E. The telomere story or the triumph of an open-minded research. Biochimie. 2010;92(4):321–6. https://pubmed.ncbi.nlm.nih.gov/20096746/

2003

Suram A, Herbig U. The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses. Aging Cell. 2014;13(5):780–6. https://pubmed.ncbi.nlm.nih.gov/25040628/

2004

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/

2005

Hornsby PJ. Telomerase and the aging process. Exp Gerontol. 2007;42(7):575–81. https://pubmed.ncbi.nlm.nih.gov/17482404/

2006

Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52. https://pubmed.ncbi.nlm.nih.gov/9454332/

2007

Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/

2008

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

2009

Broer L, Codd V, Nyholt DR, et al. Meta-analysis of telomere length in 19713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8. https://pubmed.ncbi.nlm.nih.gov/23321625/

2010

Maugeri A, Barchitta M, Magnano San Lio R, et al. The effect of alcohol on telomere length: a systematic review of epidemiological evidence and a pilot study during pregnancy. Int J Environ Res Public Health. 2021;18(9):5038. https://pubmed.ncbi.nlm.nih.gov/34068820/

2011

Ip P, Chung BHY, Ho FKW, et al. Prenatal tobacco exposure shortens telomere length in children. Nicotine Tob Res. 2017;19(1):111–8. https://pubmed.ncbi.nlm.nih.gov/27194546/

2012

Zhao B, Vo HQ, Johnston FH, Negishi K. Air pollution and telomere length: a systematic review of 12,058 subjects. Cardiovasc Diagn Ther. 2018;8(4):480–92. https://pubmed.ncbi.nlm.nih.gov/30214863/

2013

Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci. 2018;373(1741):20160436. https://pubmed.ncbi.nlm.nih.gov/29335375/

2014

Galiè S, Canudas S, Muralidharan J, García-Gavilán J, Bulló M, Salas-Salvadó J. Impact of nutrition on telomere health: systematic review of observational cohort studies and randomized clinical trials. Adv Nutr. 2020;11(3):576–601. https://pubmed.ncbi.nlm.nih.gov/31688893/

2015

Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet. 1990;336(8708):129–33. https://pubmed.ncbi.nlm.nih.gov/1973470/

2016

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/

2017

U.S. National Library of Medicine. Can lifestyle changes reverse early-stage Alzheimer’s disease. ClincalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04606420. Updated October 28, 2020. Accessed July 17, 2021.; https://clinicaltrials.gov/ct2/show/NCT04606420

2018

Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/

2019

Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/

2020

bannerbanner