banner banner banner
Курс «Трубопроводная арматура». Модуль «Пневмоприводы и приборы управления пневмоприводами»
Курс «Трубопроводная арматура». Модуль «Пневмоприводы и приборы управления пневмоприводами»
Оценить:
Рейтинг: 0

Полная версия:

Курс «Трубопроводная арматура». Модуль «Пневмоприводы и приборы управления пневмоприводами»

скачать книгу бесплатно


Плотность твердых загрязнений воздуха составляет от 0,1 до 8 г/см

.

Газообразные загрязнения

Основную часть газообразных загрязнений, попадающих в системы вместе с атмосферным воздухом, составляют:

– дымовые газы от сжигания топлива;

– газы, образующиеся при химических процессах;

– пары кислот и щелочей; растворители и др.

Наиболее часто в сжатом воздухе содержится сернистый газ SO

, который при соединении с конденсатом образует серную кислоту и сернистый ангидрид, разрушающий наряду с другими растворами кислот, щелочей и озоном поверхности устройств и уплотнений.

Воздействие загрязнений

Анализ данных эксплуатации свидетельствуют о том, что загрязнения сжатого воздуха значительно снижают надежность и долговечность пневматических систем, приводят к нарушению технологических процессов.

Воздействие загрязнений на пневматические системы и устройства можно разделить на:

– физическое,

– химическое

– электролитическое.

Физическое воздействие загрязнений заключается:

– в закупорке отверстий и сопел влагой, льдом и твердыми частицами,

– в смывании смазки,

– в повреждении рабочих поверхностей клапанных пар, мембран, золотников, в износе и заклинивании трущихся деталей и т. п.

Химическое воздействие загрязнений проявляется в:

– коррозии металлических деталей,

– разрушении покрытий и резиновых деталей, растворами кислот, щелочей и других химически активных компонентов.

Электролитическому воздействию загрязнений подвержены устройства с контактирующими деталями из разных материалов или покрытий. В этом случае кислотные и щелочные растворы являются электролитом, а детали – электродами; в результате происходит разрушение их поверхностей, даже если они выполнены из легированных сталей, латуни или бронзы.

Выбор степени очистки сжатого воздуха

Для повышения долговечности и надежности пневматических систем управления было бы идеальным полное удаление загрязнений сжатого воздуха. Однако присутствие определенного количества загрязнений в ряде устройств практически не сказывается на их работоспособности.

Поэтому полная очистка сжатого воздуха, связанная со значительными затратами, в большинстве случаев экономически нецелесообразна.

Требования к очистке воздуха зависят от конструктивного исполнения и материала элементов систем управления и механизмов, размеров и точности, величины зазоров и отверстий,

от требований к надежности и долговечности, от эксплуатационных условий и характера воздействия загрязнений.

Установлено, что интенсивность износа устройств тем выше, чем выше твердость частиц, а увеличение твердости и пористости трущихся поверхностей повышают износостойкость.

Определение необходимой тонкости очистки сжатого воздуха

Абразивный износ и заклинивание могут быть значительно снижены, если размер твердых частиц, поступающих в устройства с воздухом, не превышает 3/4 величины наименьшего зазора трущихся пар.

Примерные величины зазоров подвижных деталей различных устройств даны в табл.2.

Табл. 2. Примерные величины зазоров подвижных деталей различных устройств

Определение требуемой степени осушки сжатого воздуха на основных участках промышленных систем

Требуемая степень осушки сжатого воздуха зависит от чувствительности конкретных устройств к содержанию влаги. К группе устройств, для которых не требуется строгая регламентация

содержания влаги в жидком состоянии, относятся коммуникации систем, емкости, оборудование силовых приводов мембранного типа и сильфонные устройства, имеющие надежное антикоррозийное покрытие, в которых трущиеся поверхности непосредственно со сжатым воздухом не соприкасаются.

Содержание жидкой влаги в сжатом воздухе рекомендуется ограничивать для пневмооборудования систем автоматизации производственных процессов (цилиндров, моторов и аппаратуры).

Не допускается содержание жидкой влаги в сжатом воздухе, используемом для питания пневматических систем управления с повышенными требованиями к надежности для станков, прессов, автоматических линий и других устройств; пневматических приборов и средств автоматизации, на которые распространяются требования ГОСТ 11882–73; систем, работающих

при минусовых температурах окружающей среды. Для этой группы устройств воздух должен быть подготовлен согласно нечетных классов по ГОСТ 17433–80.

Способы очистки сжатого воздуха

В промышленности для очистки сжатого воздуха нашли применение силовые поля, фильтрация и осушка. В схемах и устройствах очистки часто последовательно используют несколько способов очистки.

Область применения этих способов и их эффективность для промышленной очистки воздуха определяются характеристиками очистных устройств, реализованных на указанных способах. Поэтому перед рассмотрением основных способов очистки воздуха приведем основные понятия

о важнейших параметрах очистных устройств.

Из-за сложности определения действительного значения дисперсного состава загрязнений в сжатом воздухе и фракционного коэффициента очистки возникает необходимость выражать эффективность очистки косвенными параметрами:

– для устройств очистки с применением силовых полей – минимальным диаметром задерживаемых частиц;

– для устройств очистки фильтрующего типа – номинальной и абсолютной тонкостями фильтрации.

Для устройств осушки эффективность очистки определяется точкой росы сжатого воздуха на выходе.

Способы очистки имеют много разновидностей, эффективность которых может изменяться в указанных пределах в зависимости от конструктивных параметров, концентрации,

дисперсности и вида загрязнений.

Очистка воздуха путем фильтрации

Процесс очистки сжатого воздуха от загрязнений вследствие их взаимодействия с элементами пористой перегородки называется фильтрацией.

Фильтрующие материалы (пористые перегородки) условно разделяют на два вида:

– поверхностные (частицы удерживаются поверхностью фильтрующего материала)

– объемные (частицы удерживаются не только на поверхности, но и в толще фильтрующего материала).

К поверхностным фильтрующим материалам относятся сетки, бумага, ткани; к объемным – картон, металлокерамика, керамика, войлок и т. д., а также пакеты, состоящие из нескольких слоев поверхностных фильтрующих материалов.

Металлокерамические фильтры с порами размером 0,5–3 мкм, как и другие фильтрующие материалы с аналогичной пористостью, можно при достаточно низких скоростях фильтрации применять для очистки от мелких капель масла (тумана) и воды.

Важным преимуществом металлокерамических фильтроэлементов по сравнению с бумажными, волокнистыми и тканевыми является возможность восстановления пропускной способности

путем очистки от загрязнений обратным потоком воздуха или химического растворителя, либо прокаливанием фильтроэлемента в потоке горячего газа.

Металлические проволочные сетки применяют в основном для очистки всасываемого компрессором атмосферного воздуха, а также для предварительной очистки сжатого воздуха от твердых частиц размером более 80 мкм.

Волокнистые фильтрующие материалы в основном применяют для очистки атмосферного воздуха (на всасывающих линиях компрессоров).

Бумажные фильтрующие элементы объемного типа используются в фильтрах-влагоотделителях контактного типа для очистки сжатого воздуха от воды и масла в жидком состоянии и от твердых загрязнений.

Инерционный способ очистки

Очистка сжатого воздуха с использованием инерционных сил проводится в центробежных, аэродинамических устройствах и с ударом воздуха в перегородку.

Наибольшее применение получили центробежные очистители, в которых загрязнения выходят из потока, совершающего круговое (спиральное) движение, под действием центробежных сил.

Благодаря характеру движения потока воздуха большая группа устройств этого типа получила название циклонных очистителей. Циклонные очистители обладают довольно высокой эффективностью (таблица 2).

Табл. 3. Эффективность циклонных очистителей

Эффективность циклонов возрастает с увеличением концентрации загрязнений на входе, хотя при этом на выходе концентрация несколько повышается.

На рис. 15 показана кривая фракционной эффективности циклонов. Зона А содержит частицы, которые должны были бы пройти через циклон, но улавливаются вследствие коагуляции или

в результате столкновений с более крупными частицами. В зоне Б находятся частицы, которые должны были бы улавливаться, но остаются в воздушном потоке из-за его турбулентности или

срыва частиц со стенок вихрем.

Рис. 15. Кривые фракционной эффективности ?

циклонов в зависимости от размера d

(-) – теоретическая;

(– ) – экспериментальная

При применении очистных устройств циклонного типа для очистки сжатого воздуха, содержащего воду, масло и твердые загрязнения, эффективность улавливания твердых частиц

должна увеличиваться вследствие усиления эффекта столкновения и коагуляции в зоне А и уменьшения эффекта срыва частиц вихрем от влажной стенки в зоне Б.

Потери давления в устройствах циклонного типа, используемых в пневматических системах, обычно составляют 500–5000 Па. В фильтрах-влагоотделителях центробежного типа с фильтроэлементом они больше – до 15–103 Па при номинальном расходе.

Преимущества очистителей инерционного типа:

– постоянство степени очистки (при номинальном расходе, при уменьшении расхода степень отчистки уменьшается),

– незначительные потери давления и эффективное удаление основной части загрязнений в процессе длительной эксплуатации при высокой долговечности, небольших размерах

низкой первоначальной и эксплуатационной стоимости.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 1 форматов)