Читать книгу Курс «Применение трубопроводной арматуры». Модуль «Арматура и оборудование морских платформ» (Станислав Львович Горобченко) онлайн бесплатно на Bookz (4-ая страница книги)
bannerbanner
Курс «Применение трубопроводной арматуры». Модуль «Арматура и оборудование морских платформ»
Курс «Применение трубопроводной арматуры». Модуль «Арматура и оборудование морских платформ»
Оценить:
Курс «Применение трубопроводной арматуры». Модуль «Арматура и оборудование морских платформ»

3

Полная версия:

Курс «Применение трубопроводной арматуры». Модуль «Арматура и оборудование морских платформ»


МСП свайного и крупноблочного типов

Основания из металлоконструкций свайного и крупноблочного типов в отечественной практике использовались очень широко. Эти конструкции установлены в районе Баку.

Основания свайного типа применяют при глубине воды до 10 м и при резких изменениях рельефа дна. Под сваи в дне моря со специального судна бурят скважины. В каждую такую скважину спускают сваю-трубу и цементируют ее. Затем трубы обрезают так, чтобы их концы были над водой на одинаковом уровне. Концы труб связывают плоскими металлическими фермами, а на них настилают пол, устанавливают вышку и буровое оборудование. Высота свай над уровнем воды должна превышать высоту самых больших волн.

На Каспии в 40 км от берега было открыто месторождение Нефтяные Камни, при глубине воды до 18–22 м. В 1949 г. на нем пробурили первую в СССР морскую скважину. Потом построили на крупноблочных основаниях целый город, отдельные сооружения которого соединены дорогами-эстакадами на сваях. Общая длина эстакад на Нефтяных Камнях составляет теперь сотни километров. На рис.1.15. показан принцип возведения морских сооружений на крупноблочных основаниях.




а)


б)


Рис.1.15. Схема буровой установки на море при крупноблочных основаниях:

а) схема установки

1 – опорные блоки; 2 – фермы-секции; 3 – пешеходный мост; 4 – бытовые помещения

б) общий вид установки


Опорные блоки представляют собой пространственные конструкции из телескопических опорных стоек с башмаками, связанные фермами, тягами и распорками. Их устанавливают на дно моря крановым судном. После установки блоков с помощью специального бурового агрегата в каждую стойку спускают бурильную колонну с долотом и в дне моря забуривают скважину. Затем на канате во все стойки спускают в скважины патрубки. Пространство между патрубками и стойками заливают цементным раствором для надежной связи блоков с донным грунтом. Образуемые таким путем буровые основания связывают эстакадами, основания под которые сооружаются аналогично описанному методу.

Буровое оборудование размещают на приэстакадных буровых площадках так же, как и на суше, но более компактно. Для укрытия оборудования и защиты буровиков от дождя, снега и ветра строят помещение, примыкающее к вышке. Для отдыха персонала на некотором удалении от буровой вышки строят специальное помещение.

Строительство свайных, крупноблочных оснований и протяженных эстакад возможно только на мелководье, при глубине моря до 20–40 м. Подобные сооружения, кроме Каспия, имеются также на оз. Маракаибо в Венесуэле, в Персидском заливе, вблизи побережья США.


Полупогружные МП

Самое современное поколение морских платформ – полупогружные. Это гигантские понтоны с вертикальными стабилизационными колоннами, остойчивость которых регулируют заполнением балластных емкостей в горизонтальных погружных поплавках. Осадка платформы в рабочем состоянии составляет 15–25 м. На рис.1.16.а показан внешний вид первого поколения полупогружных платформ, на рис. 1.16.б – вид современной платформы с улучшенными навигационными характеристиками. Полупогружные платформы используют для бурения скважин при глубине вод, не доступной для стационарных и самоподъемных буровых оснований. В 2000 г. эта глубина составляла уже 1100 м, а двумя десятилетиями раньше – всего 500 м.





а)





б)





в)


Рис.1.16. Конструкции полупогружных платформ:

а – первые конструкции;

б – современные с улучшенными навигационными характеристиками

в – общий вид


Полупогружную платформу при бурении иногда крепят ко дну натяжными опорами. В этом случае обеспечивается хорошая фиксация платформы над точкой бурения. Одиночные скважины и кусты скважин, закрепленные на донных платах, обвязывают единой системой трубопроводов. Действующая система сбора продукции на морском промысле в Мексиканском заливе показана на рис.1.17.





Рис. 1.17. Схема подводного заканчивания скважин (Мексиканский залив):

1 – панель дистанционного управления; 2 –манифольд; 3 – замерное эксплуатационное оборудование; 4 – стояк 275мм; 5 – эксплуатационная платформа; 6 – поверхность моря; 7 – скважины; 8 – возможный вертикальный вход в скважину; 9 – насосно-компрессорные трубы; 10 – затрубное пространство; 11 – задвижки; 12 – подводное оборудование устья скважины для компрессорной эксплуатации; 13 –манифольд гидравлической линии для управляющих задвижек; 14 –пробка; 15 – продуктивный интервал; 16 – установочный патрубок; 17 – пакер; 18 – обсадная колонна; 19 – выкидные линии; 20 – дно океана; 21 – заглубленный трубопровод до берега или до центральной платформы; 22 – гидравлические линии для управляющих задвижек


Устьевое подводное оборудование может быть открытого или закрытого типа. Оборудование открытого типа устанавливают на устьях одиночных эксплуатационных скважин (рис. 1.18) или на донных платах для куста скважин (рис.1.19). На одиночных скважинах фонтанную елку монтируют на колонне обсадных труб. Донная плата для куста скважин требует дополнительного крепления ко дну с помощью свай.





а)





б)


Рис. 1.18. Устьевое подводное оборудование

а – одиночные эксплуатационные скважины

б – донные платы




Рис. 1.19. Конструкции устьевого подводного эксплуатационного оборудования

фирмы Ветко (США) для одиночных скважин:

1 – фонтанная елка с гидравлическими задвижками; 2 – подводное устье скважины; 3 – направляющая конструкция; 4 – ориентирующий сердечник





Рис. 1.20. Донная плата для куста скважин:

1 – гнезда для свай; 2 – направляющие для устьев скважин; 3 – спутник вспомогательный; 4 – основание подводного манифольда;


Буровые суда

Бурение опорных, параметрических и разведочных скважин на больших глубинах ведут с бурового судна. Устройство отечественного бурового судна «Пеликан» показано на рис. 1.21. Длина судна 150 м, высота вышки 73 м. Судно может работать без пополнения запасов горючего и материалов в течение нескольких месяцев. Буровое судно удерживается над скважиной несколькими якорями (если это возможно) и динамической системой стабилизации – двигателями. Двигатели являются частью контролируемой компьютером навигационной системы судна. Они расположены так, что могут вернуть судно в первоначальное положение, если его сдувает ветром или сносит волнами и течением.





а)





б)


Рис. 1.21. Буровые суда

а) Схема отечественного бурового судна «Пеликан»

1 – помещение для вычислительных машин; 2 – жилые помещения; 3 – трюмы для труб; 4 – пост бурового мастера; 5 – буровая вышка; 6 –погружная телевизионная система; 7 – помещение для буровых насосов; 8 – трюмы для хранения материалов и приготовления бурового раствора; 9 – машинное отделение; 10 – приводные механизмы

б) Общий вид бурового судна


Под буровой вышкой в днище судна имеется проем, в который вставляют райзер – обсадную трубу, соединяющую судно с морским дном. Внутрь райзера опускают бурильную колонну. Промывочная жидкость циркулирует по обсадной колонне и выносит разбуренную породу на судно. Здесь из бурового раствора отбирают образцы выбуренной породы и очищают раствор от шлама.

На современном уровне развития техники и технологии бурения возможно бурение скважин при глубинах моря до 2500 м.

Средняя стоимость бурения 1 км нефтегазовой скважины зависит от глубины и климатического пояса. Она составляет на суше 1–1,8, а на море 5–12 млн. долл. Стоимость работ в арктических морях может в десять раз превышать стоимость бурения на суше.


Самоподъемные плавучие буровые установки

Самоподъемные плавучие буровые установки (СПБУ) также относят к гидротехническим сооружениям типа МП в период выполнения ими буровых операций, когда понтон СПБУ с оборудованием поднят над водой и опирается на три- четыре металлических решетчатых опоры, установленные на дно моря при глубине воды до 100м.

Судно для добычи, хранения и отгрузки нефти FPSO (Floating Production Storage and Offloading Vessel)

FPSO суда добывают сырую нефть из глубоководных буровых скважин и хранят ее в своих танках до тех пор, пока она не будет перекачана на танкеры-челноки, либо океанские нефтеналивные баржи для дальнейшей транспортировки на берег. Также перекачка нефти на континент может осуществляется через специальную систему трубопроводов, однако этот вариант приемлем, когда освоение месторождений происходит в непосредственной близости от берега.





Рис. 1.22. Судно FPSO


В дополнение к судам FPSO используются также специализированные суда (без производственного оборудования) FSO (Floating Storage and Offloading). Работают они в тех же районах для обеспечения нефтяных и газовых разработок.

Огромным преимуществом эксплуатации судов FPSO является исключение затрат на прокладку километров трубопроводов от месторождения до берегового терминала. Производственное оборудование судов FPSO позволяет производить освоение небольших месторождений нефти, либо глубоководных месторождений вдали от уже существующей подводной инфраструктуры. Причем при производстве на небольших месторождениях, запасы которых могут быть исчерпаны уже через 1,5-2 года, отпадает необходимость установки дорогостоящих нефтяных платформ. Когда месторождение отработано, судно переходит к разработке следующего.

На плавучей базе FPSO может происходить сепарация нефти. Однако, предпочтительнее осуществлять первичную сепарацию на нефтепромысловой платформе для экономии места в танках судна.

Суда типа FPSO используются для разработки нефтяных полей по всему миру с конца 70-х годов. В большинстве своем они работают в районах Северного моря, Бразилии, Южно-Китайского моря, Средиземного моря, Австралии и западного побережья Африки.

На сегодняшний день самым большим судном этого типа является Kizomba A – 2004 года постройки, вместимостью 2.2 миллиона баррелей. Цена судна превышает 800 млн. USD, построено оно на верфях Hyundai Heavy Industries в Ульсане, Корея. Дедвейт судна: 340.000 т, длина 285 м, ширина 63 м.

1.5. Технико-экономическая целесообразность применения морских платформ

Обычные платформы на стационарном стальном или железобетонном основании экономически целесообразны для месторождений, расположенных в акваториях с глубиной моря до 300 м. Приблизительная стоимость этих платформ может составлять до 80 млн. долл., срок ввода в эксплуатацию доходит до трех лет. В акваториях с глубиной более 300 м стоимость и масса обычных платформ сильно возрастают, и наиболее экономичной становится платформа на растяжках. Проектная стоимость таких платформ при глубинах 300-500 м составляет 75-150 млн. долл.

Зоны технико-экономической эффективности применения платформ приведены ниже, рис. 1.23.





Рис. 1.23. Области целесообразного применения разных типов платформ в зависимости от глубины моря

а) – жесткие морские стационарные платформы

б) – стальные платформы с натяжными опорами

в) – полупогружные платформы с избыточной плавучестью

г) – плавучие средства для эксплуатации скважин с подводным оборудованием

1.6. Будущие потребности в технологии

В следующем десятилетии ожидается, что отрасль будет все больше ориентироваться на глубоководные и сверхглубоководные разработки, при глубине свыше 3000 м. С увеличением глубины воды возникают новые технические задачи, решения по которым будут определять возможности разработки таких месторождений.

Цели будущих разработок просматриваются уже сегодня. Некоторые из них перечислены далее.

– Разработка готовых подводных систем и плавучих производственных платформ с возможностью хранения готовой продукции и добычей с глубин свыше 3000 м.

– Разработка новых способов якорения платформ из полимерных и композитных материалов.

– Минипроизводственные платформы для глубоководных малодебитных месторождений.

– Использование райзеров больших диаметров.

– Долгосрочные гарантии целостности интактных и поврежденных гибких райзеров.

– Новые системы райзеров, в том числе с использованием гибридных и композитных райзеров.

– Развитие технологий обработки углеводородов на дне.

– Повышение надежности и оптимизации технологии обработки в надводных системах.

– Разработка новых концепций верхних строений плавучих платформ для глубоководной добычи с целью избежать проблемы подъема скважинной продукции и тяжелых морских монтажных и пусконаладочных работ.

– Получение гидрометеорологических данные и их оценка для глубоководных участков.

– Развитие концепции самоустанавливающихся глубоководных конструкций.

– Обеспечение добычи и подъема скважинной продукции с сверхвысоких глубин.

Многое изменилось в отрасли после первой установки платформы на шельфе в 1947 году. Сегодня отрасль является по-настоящему международной и высокопрофессиональной. Многие проблемы морских технологий были решены за последние десятилетия, во многом таким же образом, существующие и будущие проблемы будут решены в будущем с развитием новых разработок.


КЕЙС

АВАРИЯ НА МОРСКОЙ ПЛАТФОРМЕ ОСЕБЕРГ ИЗ-ЗА ПЛОХОЙ РАБОТЫ АРМАТУРЫ. ДОКЛАД НОРВЕЖСКОЙ ИНСПЕКЦИОННОЙ СЛУЖБЫ О РЕЗУЛЬТАТАХ РАССЛЕДОВАНИЯ

Этот отчет о расследовании инцидента относится к утечке углеводородов, который произошел в сентябре 2008 года на платформе Осеберг компании Статойл Гидро. Утечка произошла в производственных манифольдах. Первоначальные утечки были оценены в 26 килограммов в секунду. Непосредственной причиной этого стало внезапное и не санкционированное открытие клапана тестового манифольда, приведшего к сбросу давления в нем.

Последующий гидроудар вырвал два дюйма трубопровода уравнивания давления между тестовым и производственным манифольдами. Непосредственной причиной гидравлических ударов было быстрое открытие скважины на тестовый манифольд, в котором произошел сброс давления.

Клапан открылся благодаря сигналу регулятора на перевод в безопасное положение, в то время как из-за деактивации привода произошло закрытие клапана. Это означало быстрое и непреднамеренное открытие клапана, когда гидравлическая жидкость была введена в блок управления. Общий объем углеводородов оценивался в 1500 кг. Персонал не получил ранений, материальный ущерб был незначительным.

Платформа Осеберг была введена в эксплуатацию в декабре 1991 года. Нефть добывается из 18 скважин. Многофазный трубопровод подает нефть из трех скважин на платформу Осеберг для обработки. Вода впрыскивается в трех скважинах и газ в пяти, чтобы улучшить восстановление расхода. Добыча нефти составляет около 30.000 баррелей в сутки. Нефть проходит через блок сепараторов, и уже в виде стабилизированной сырой нефти поступает по трубам в береговой терминал Стуре. Платформа Осеберг оборудована для одновременного бурения и добычи.

Скважинная продукция от каждой скважины может быть отправлена в любой тестовый или производственный манифольды, расположенных в 30 м в приустьевой зоне (см. рисунок ниже).





Рис. 1. Общий вид платформы Осеберг


Арматура манифольда перекрывает или открывает трубопровод для скважинной продукции из каждой скважины в тестовый или рабочий манифольд (см. рисунок ниже).

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Вы ознакомились с фрагментом книги.

Для бесплатного чтения открыта только часть текста.

Приобретайте полный текст книги у нашего партнера:


Полная версия книги
bannerbanner