Читать книгу Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования» (Станислав Львович Горобченко) онлайн бесплатно на Bookz (2-ая страница книги)
bannerbanner
Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования»
Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования»
Оценить:
Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования»

5

Полная версия:

Курс «Применение трубопроводной арматуры». Модуль «Арматура антипомпажной защиты и регулирования»


(1.12)


Однако, теория и экспериментальные исследования показывают, что критерием статической устойчивости в рабочей точке (

) является условие


(1.13)


где

;


(1.14)


где

– потери давления в сети,

где

– коэффициент сопротивления сети;

ρ k – плотность среды за компрессором;

Wk – скорость среды за компрессором.


Геометрический смысл условия (1.13) заключается в том, что угол наклона касательной к характеристике сети должен быть больше угла наклона касательной к характеристике компрессора (это условие выведено для низконапорных турбокомпрессоров, т.е. для вентиляторов и нагнетателей).

Практически это условие в основном не выполняется, т.е. имеется статическая неустойчивость, при расположении рабочих точек на восходящих участках характеристик компрессоров, при этом допустимо использование упрощенного условия статической устойчивости по (1.12).

Динамическая устойчивость турбокомпрессоров в отличии от статической связана не с величиной расхода среды и формой характеристик в зоне рабочей точки, а со скоростью изменения расхода среды.

Применительно к турбонагнетателям выведен критерий динамической неустойчивости в виде условия


, (1.15)


где La – акустическая масса трубопровода (сети),


, (1.16)


где

ρ – плотность среды;

l – длина трубопровода;

S – площадь сечения трубопровода;

Ca – акустическая гибкость,


(1.17)


где

U – объем трубопровода;

C – скорость звука в среде.


При этом условии самовозбуждение колебаний возможно и на нисходящих участках характеристики компрессора. Возбуждение возможно при сколько угодно малом возмущении (отклонении от равновесного режима), т.е. мягкое возбуждение с последующим нарастанием амплитуды колебаний.

Существует также возможность динамической неустойчивости при воздействии сильного возмущения на систему (жесткое возбуждение колебаний).

На практике помпаж, вызванный потерей динамической устойчивости, встречается довольно редко, а реализовать его подавление путем смещения рабочей точки сложно (устойчивость обеспечивается правильной увязкой компрессора и сети еще на стадии проектирования системы).

В основном системы антипомпажного регулирования направлены на подавление помпажа, вызванного статической неустойчивостью. При других видах помпажа, в том числе от динамической неустойчивости, которые могут происходить при работе на нисходящих участках характеристик (система статически устойчива), используют не антипомпажное регулирование, а защиту путем аварийного останова компрессора или байпасированием всего расхода.

Образование установившихся помпажных колебаний может быть пояснено с использованием характеристики компрессора для прямого и обратного хода при



Исходя из принятого условия статической устойчивости

,

на сетке размерных характеристик



или


возможно нанести теоретическую линию (границу) помпажа, проходящую через экстремумы характеристик (эта граница условная, т.к. не учитывается динамическая неустойчивость и влияние сети в системе компрессор-сеть).

Выходные характеристики зависят от частоты вращения ротора следующим образом:

– производительность пропорциональна частоте вращения;

– напор пропорционален квадрату частоты вращения;

– требуемая мощность пропорциональна кубу скорости вращения.

Этот закон вытекает из теории подобия при

и
.

На характеристике политропного напора граница помпажа соответствует точке, где степень сжатия максимальна. Эта точка располагает между точками, соответствующими максимальному политропному напору и максимальному политропному КПД.

Применение законов подобия показывает, что величина политропного напора на границе помпажа изменяется пропорционально квадрату соответствующего объемного расхода на всасывании. Поэтому принимают форму линии помпажа в виде квадратичной параболы (при этом следует проверять применимы ли законы подобия во всем диапазоне режимов по частоте вращения.

Помпаж является нестационарным процессом, вызванным глобальной потерей устойчивости. При этом помпажу предшествует вращающийся срыв, т.е. помпаж физически является следствием срывных течений, изучаемых аэродинамикой.

Вращающийся срыв на передних кромках лопаток порождается срывом потока с лопаток при углах атаки i1 больше критических. Для центробежного компрессора срывные углы атаки соответствуют

.


При постоянной частоте вращения и уменьшении объемного расхода и, соответственно, абсолютной скорости C1 на входе в компрессор возрастает угол вектора относительной скорости W1, т.е. угол атаки на входе в лопатки i1, что вытекает из анализа треугольника скоростей. Исходя из этого можно полагать, что граница помпажа соответствует углам атаки

, что в принципе обуславливает возможность теоретического определения границы помпажа по треугольникам скоростей на входе в компрессор.

Однако, на фактическую границу помпажа влияет система "компрессор-сеть" в целом. Поэтому в каждом конкретном случае требуется проведение испытаний для уточнения границы помпажа.

Характер помпажа, т.е. его амплитудно-частотные характеристики, зависит от параметров системы "компрессор-сеть" (в основном от параметров сети). С увеличением объема сети (трубопровода) за компрессором до дросселя частота колебаний уменьшается, а амплитуда возрастает. С увеличением частоты вращения ротора амплитуда увеличивается.

1.3. Характеристика компрессора и работа компрессора в сети

Характеристика компрессора

Характеристики центробежных компрессоров представляют собой графики зависимостей отношения давления ек (давление рк или напор Н компрессора), мощности на валу и КПД компрессора от производительности его при n=const. Массовая G или объемная V производительность на выходном патрубке приводится к условиям всасывания и представлена осью абсцисс, рис. 1.1.



Рис. 1.1. Характеристика центробежного компрессора


Характеристики компрессорных машин обычно получают опытным путем, изменяя режим работы с помощью дроссельного клапана, установленного перед компрессором или после него. Для каждого режима Vi производится измерение параметров ∆рi =(pk -pn)i т.е. Hi и Ni вычисляют ᶇi при n =const, строят графические зависимости этих параметров от V и получают характеристики компрессора.

Наибольший интерес для анализа работы компрессора представляют зависимость рк = f(V), H = f(V). Последнюю обычно называют напорной характеристикой.

При необходимости характеристики можно приблизительно пересчитать на другие начальные условия всасывания, а также для газа с другими физическими свойствами.

Энергия, сообщаемая газу в компрессоре, расходуется на обеспечение требуемых условий работы системы, т.е. на преодоление статического противодавления рст и сопротивления Δр в системе.

Режим работы компрессора существенно зависит от характеристики системы, в которой он должен работать. Уравнение характеристики сети в общей форме имеет вид



где V – объемный расход в сети

рст – постоянное статическое давление в сети

а – коэффициент, зависящий от размеров и конструкции сети.


При изменении коэффициента а, например, при изменении сечения трубопровода, давления или температуры, характеристика сети смещается. Так, при увеличении коэффициента а, например, при прикрытии заслонки, установленной в трубопроводе, характеристика сети становится круче.

Требуемое при эксплуатации изменение режимов работы может быть достигнуто или изменением характеристики сети или изменением характеристики машины.

При малых расходах, учитывая, что скорость потока в трубопроводах ограничивается, вторым членом уравнения пренебрегают и таким образом, количество потребляемого газа практически не зависит от давления в системе.


Характеристика сети

Режим работы машины зависит от ее газодинамической характеристики и характеристики сети. Сетью будем называть совокупность всех устройств, через которые проходит газ от машины до потребителя, а характеристикой сети – зависимость между расходом газа через сеть и давлением, которое необходимо обеспечить в начале сети для реализации этого расхода. Точка пересечения характеристики сети с характеристикой машины определяет установившийся режим работы и называется рабочей точкой.

Возможные характеристики систем представлены на рис. 1.2.



Рис. 1.2. Характеристики давления в сети трубопроводов (в системе)

а) сеть с постоянным противодавлением

б) сеть с динамическим противодавлением

в) – сеть со статическим и динамическим противодавлением


Сеть с постоянным противодавлением имеет характеристику параллельно оси абсцисс. Ими обладают, например, компрессорные установки в химической, металлургической и других отраслях промышленности, рис. 1.2. а.

Для газоперекачивающих станций магистральных трубопроводов характерна параболическая форма характеристики, проходящая через начало координат (сопротивление в элементах системы) (рис .1.2. б).

Для случая потребления газа с постоянным давлением газа при наличии сопротивлений в системе характерна комбинированная характеристика (рис. 1.2. в).

Точка пересечения характеристики компрессора рк = f(V) называется рабочей точкой или рабочим режимом компрессорной установки. Точка пересечения А определяет условия материального и энергетического баланса системы, как показано на рис. 1.3.



Рис. 1.3. Совместные характеристики компрессора и сети (системы)


Компрессор, работающий в системе эффективен, если рабочей точке соответствует максимальный или близкий к максимальному КПД компрессора.

Работа компрессора устойчива, если при изменении производительности системы по любой причине компрессор восстанавливает первоначальный режим работы. В противном случае работа компрессора неустойчива и может возникнуть явление помпажа.

При рассмотрении вопроса устойчивой работы центробежного или осевого компрессора большое значение имеет аккумулирующая способность системы, определяемая ее емкостью. Малая аккумулирующая способность характерна для системы с малым объемом или малым изменением плотности газа.

Газ поступает в компрессор с начальным давлением рн и сжимается в нем до конечного давления рк. Величина рк может изменяться в пределах


рн < pк < pмакс.


Однако, вблизи точки V0

Напорная характеристика компрессора однозначно определяет зависимость между производительностью по всасыванию и конечным давлением в устойчивой зоне работы при постоянной частоте вращения. Она в большинстве случаев определяет границу помпажа компрессора.

Для обеспечения эффективной, в первую очередь экономии энергии привода, и надежной работы компрессора рабочая точка его должна совпадать с оптимальным режимом ᶇ макс или находиться вблизи него при снижении КПД на 2-5% по сравнению с максимальным.

1.4. Явление помпажа

Условия работы компрессора в системе при широком диапазоне изменения режимов в значительной степени зависят от взаимной согласованности характеристик компрессора и системы.



Рис. 1.4. Работа компрессора в сети и определение границы помпажа


На режимах работы компрессора, близкого к оптимальному, имеет место хорошее согласование потока газа с формой элементов проточной части. При существенном отклонении режимов от оптимального из-за возникновения ударного натекания и отрывов параметры потока газа не соответствуют геометрическим характеристикам проточной части. В потоке возникают различные вторичные течения и сложные физические процессы.

Рассмотрим работу компрессора в системе в случае, когда характеристики компрессора в и системы пересекаются в одной точке, рис. 1.5.



Рис. 1.5. Работа компрессора в системе


В этих случаях точки пересечения характеристики компрессора в системе обеспечивают устойчивый режим работы компрессора. Если рабочая точка А расположена справа от точи К – максимума характеристики компрессора, то при кратковременном увеличении производительности ∆ V давление рс системы становится больше давления рк компрессора.

Кинетическая энергия газа, выходящего из компрессора, а, следовательно, и производительность компрессора уменьшается, т.е. восстанавливается первоначальный режим работы в точке А.

Кратковременное уменьшение производительности на ∆ V создает условия, когда рк>рс. В этом случае кинетическая энергия газа, выходящего из компрессора, а, следовательно, и производительность увеличиваются, т.е. восстанавливается первоначальный режим работы в точке А. Таким образом, любая режимная точка на нисходящем участке характеристики компрессора обеспечивает устойчивую работу компрессора.

Аналогичный ход рассуждений применяется для участка характеристики слева от точка К (важно, чтобы было одно пресечение характеристик компрессора и системы). Если в точке А кратковременно изменяется производительность (увеличивается или уменьшается), то аналогично предыдущему случаю приходим к выводу, что режимная точка может переместиться по характеристике системы в точки В или С. Следовательно в точках А, В и С работа компрессора в системе устойчива.

Работа компрессора устойчива на всем участке С-В характеристики компрессоров. Для рассмотренных случаев условием устойчивой работы компрессора в системе является условие


dpc/dV>dpk/dV


Рассмотрим работу компрессора в точке А на восходящем участке характеристики, рис. 1.6.



Рис. 1.6. Работа компрессора на восходящем участке


При уменьшении давления в системе производительность компрессора становится меньше, чем требуется в системе при новом давлении (V'A

Так как расход системы V'B больше производительности компрессора (V'B>VB), давление в системе должно уменьшаться. Однако, незначительное уменьшение давления в системе приводит к переходу компрессора из режима в точке В в режим в точке С. Так как производительность компрессора становится больше требуемой для системы (VС> V'B), давление в системе растет, пока режим работы компрессора не достигнет точки К, а в системе точки К'. При незначительном увеличении давления в системе режим работы компрессора из точки К переместится в точку Е.

Так как производительность компрессора в точке Е меньше требуемой в системе точки К' (VB

В результате в системе – "компрессор – трубопровод" возникнут автоколебания газа, сопровождаемые внезапными изменениями производительности и давления нагнетания компрессора. Такое явление известно под названием "помпаж" компрессора, рис. 1.7.



Рис. 1.7. Развитие помпажа во времени


Говоря проще, скорость движения газа меняет свое направление на противоположное. При этом на противоположную меняется и аэродинамическая сила. Можно просто представить порядок величин аэродинамических сил, поскольку их момент относительно оси ротора требует для вращения последнего эффективной мощности приводного двигателя. При изменении таких больших сил и момента на противоположные механические нагрузки на вал, подшипники, диафрагмы и корпус компрессора в целом превышают допустимые величины.

Из-за нелинейности характеристик компрессора его рабочая точка ускоряется, приближаясь к помпажу, независимо от того двигается ли она вдоль характеристики при неизменных оборотах или скорость вращения меняется под влиянием системы автоматического регулирования (САР). Чтобы уменьшить расстояние между границей помпажа и линией настройки, САР должна учитывать влияние этого ускорения. Способность антипомпажного клапана обеспечивать быстрый выпуск газа является одной из его важнейших характеристик.

Практика эксплуатации знает случаи, когда даже непродолжительная работа на режиме помпажа приводила к разрушению компрессора. Из-за высокой частоты возникающих автоколебаний в диапазоне 05-2Гц, развитие помпажа происходит очень быстро. Чаще всего на устранение помпажа есть не более 2-3 сек, после чего происходят необратимые повреждения компрессора.

Помпаж является следствием неконтролируемого развития квазистационарных процессов в центробежном компрессоре, когда достаточно стабильное течение потока переходит в фазу вращающегося срыва и далее в помпаж. Так, в области квазистационарного течения разбросы давления и расхода (дисперсия потока по этим параметрам) слабо зависят от расхода и числа оборотов. Переходные процессы в условиях наброса и сброса нагрузки практически не влияют на дисперсию, незначительно увеличивая последнюю. В области вращающегося срыва дисперсия возрастает в среднем в 2-2,5 раза. При помпаже наблюдается ее активный рост в 20 и более раз. Темп роста дисперсии составляет на первой гармонике порядка 150 единиц в секунду. Пульсации перепада давления в области помпажа представляет собой синусоиду. Этот факт говорит о том, что помпаж – это резонансный процесс.

Исследования, проведенные в Казанском НПО "Компрессор", показали, что в области устойчивой работы ступени колеса компрессора наблюдаются низкоамплитудные пульсации давления, составляющие в основном менее 1%, в частотный диапазон пульсаций занимает практически всю область. В области вращающегося срыва амплитуда пульсаций перепада давления возрастает по отношению к первоначальной примерно на 6%. Частота пульсаций здесь не превышает 2,5 Гц. На участках помпажа частота пульсаций снижается до 1 Гц, а амплитуда возрастает до 38% по перепаду давления и 5% по давлению в диффузоре.

Помпаж может возникнуть при следующих ситуациях:

– Пуск компрессора и останов компрессора

– Работа на низких нагрузках или резкие изменения нагрузки

– Нестандартные режимы и ситуации, в частности, это "горячий пуск", изменение режима работы нагнетателя до значительного уменьшения расхода газа (приблизительно до 60% расчетного значения), -снижение частоты вращения нагнетателя ниже допустимой;

– Ложные срабатывания автоматики и электронных сигнализаторов помпажа (Так, анализ сигналов в предпомпажной зоне показывает, что спектральные составляющие, характеризующие собственно помпажные колебания, лежат в диапазоне 0,5-6 Гц. Спектральные составляющие сигнала датчика, лежащие выше 5-7 Гц, являются помехами).

– Колебаний давления газа в газопроводе, например, при изменении характеристики сети (газопровода) вследствие влияния параллельно включенных, но более напорных нагнетателей; появление разрежения во всасе компрессора из-за снегопада, образования гидратов и пр.

–– Изменения состава газа

–– Резкие технологические возмущения

–– Засорение фильтров

–– Неисправность обратного клапана

–– Самопроизвольное закрытие клапанов в нагнетании

или всасывании или закрытие этих клапанов из-за ошибки оператора, например, неправильное или несвоевременная перестановка кранов в трубной обвязке

–– Неисправность холодильника

–– Неисправность привода

––Попадание посторонних предметов на защитную решетку нагнетателя и ее обледенение и др.

Внешне помпаж проявляется в виде хлопков, сильной вибрации нагнетателя, отдельных периодических толчков, в результате чего возможны разрушение рабочего колеса нагнетателя, повреждение упорного подшипника, разрушение лабиринтных уплотнений и т.д.

Возникновение помпажа в нагнетателе вызывает колебания частоты вращения и температуры газа, и, как следствие, к возникновению неустойчивой работы осевого компрессора, что, в свою очередь, приводит к аварийной остановке ГПА.

Помпажные явления в осевом компрессоре могут охватить компрессор в целом и проявляться в виде периодического изменения давления воздуха на линии нагнетания, температуры воздуха, частоты вращения, а также повышенной вибрации агрегата и шума.

В каждом конкретном случае помпаж может вызываться различными причинами. Например, в условиях работы ГТУ на компрессорных станциях наблюдаются случаи появления помпажа при обмерзании входной части осевого компрессора при повышенной влажности наружного воздуха в период сильных туманов, снегопадов и метелей.

Аварийные остановки агрегатов из-за обмерзания входной части компрессора приводят к нарушению работы станции, уменьшают подачу товарного газа и отрицательно сказываются на работоспособности отдельных узлов и деталей ГТУ.

Помпаж осевого компрессора при обледенении входной кромки осевого компрессора может сопровождаться мощным хлопком и выбросом воздуха во всасывающий тракт агрегата. Следует отметить, что помпаж здесь наступает прежде всего в результате внезапного возмущения потока воздуха в момент отрыва кусков льда или налипшего снега со стенок конфузора или направляющих лопаток компрессора. В момент отрыва кусков льда с направляющего аппарата компрессора, возросшая при обледенении в межлопаточных каналах осевая составляющая скорости резко падает, вследствие быстрого увеличения проходного сечения решетки и лопатки как бы не успевают «подхватить» поток воздуха, что вызывает нарушение целостности потока и увеличение местных сопротивлений и, как следствие этого, выброс остатков льда во всасывающий патрубок.

Частота пульсаций достаточно жестко связана с емкостью сети и длиной трубопроводов. Амплитуды колебаний также зависят от емкости сети, ее инерционных и демпфирующих свойств. Зависимость от сети настолько велика, что один и тот же компрессор при одинаковых режимах по расходу газа и частоте вращения может работать как в режиме помпажа, так и без его проявления. Изменение емкости по расходу рабочего тела вызывает отклонение момента начала помпажа. Этим, в частности, объясняется то, что линия совместной работы компрессора и газовой турбины в установках с регенерацией теплоты отходящих газов проходит ближе к линии помпажа, чем в установках без регенерации теплоты отходящих газов.

Пример реальной картины помпажа в реальных производственных условиях компрессора полипропиленового производства представлен ниже.



Рис. 1.8. Картина помпажа пропиленового компрессора

а) Перепад давления на диафрагме ΔPo во всасе 1-й ступени

bannerbanner