Читать книгу Buffon's Natural History, Volume I (of 10) (Georges Louis Leclerc Buffon) онлайн бесплатно на Bookz (14-ая страница книги)
bannerbanner
Buffon's Natural History, Volume I (of 10)
Buffon's Natural History, Volume I (of 10)Полная версия
Оценить:
Buffon's Natural History, Volume I (of 10)

3

Полная версия:

Buffon's Natural History, Volume I (of 10)

In the first class we distinguish two kinds of sands; the one, which is more abundant than any other matter of the globe, is vitrifiable, or rather is only fragments of actual glass; the other, whose quantity is much less, is calcinable, and must be looked upon as the powder of stone, and which differs only from gravel by the size of the grains. The vitrifiable sand is, in general, deposited in beds, which are often interrupted by masses of free-stone, granite, and flint; and sometimes these matters are also in banks of great extent.

By examining these vitrifiable matters, we find only a few sea shells there, and those not placed in beds, but dispersed about as if thrown there by chance. For example, I have never seen them in free-stone; that stone which is very plenty in certain places, is only composed of sandy parts, which are re-united, and are only met with in sandy soils; and the quarries of it are generally in peaked hills and in divided eminences. We may work these quarries in all directions, and if they are in large beds, they are much farther from each other than in quarries of calcinable stone or marble. Blocks of free-stone may be cut of all dimensions and in all directions, although it is difficult to work, it nevertheless has but a degree of hardness sufficient to resist powerful strokes without splitting; for friction easily reduces it into sand, excepting certain black pieces found therein, and which are so very hard, that the best files cannot touch them. Rock is vitrifiable as free-stone, and of the same nature, only it is harder and the parts more connected. This also contains many hard pieces, as may easily be remarked on the summits of high mountains, which cut and tear the shoes of travellers. This rocky stone, which is found at the top of high mountains, and which I look upon as a kind of granite, contains a great quantity of talky leaves, and is so hard as not to be worked but by an infinite deal of labour.

I have narrowly examined these sharp pieces which are found in free-stone and rock, and have discovered it to be a metallic matter, melted and calcined by a very violent fire, and which perfectly resembles certain substances thrown out by the volcanos, of which I saw a great quantity when I was in Italy, where the people called them Schiarri. They are very heavy black masses, on which neither water nor the file can make any impression, and the matter of which is different from that of the lava; for this is a kind of glass, whereas the other appears to be more metallic than vitreous. The sharp pieces in free-stone, and rock, resemble greatly the first matter, which seems still to prove that all these matters have been formerly liquified by fire.

We sometimes see on the upper parts of mountains, a prodigious quantity of blocks of this mixed rock; their position is so irregular that they appear to have been thrown there by chance, and it might be thought they had fallen from some neighbouring height, if the places where they are found were not raised above the other parts. But their vitrifiable nature, and their angular and square figures, like those of free-stone, discover them to be of one common origin. Thus in the great beds of vitrifiable sand, blocks of free-stone and rock are formed, whose figures and situations do not exactly follow the horizontal position of these strata. The rain, by degrees, carried away from the summits of the hills and mountains the sand which at first covered them, and then began to furrow and cut those hills into the spaces which are found between the nucleus in free-stone, as the hills of Fontainbleau are intersected. Each hilly point answers to a nucleus in a quarry of free-stone, and each interval has been excavated and loosened by the rain, which has caused the sand, they at first contained, to flow into the vallies; so likewise the highest mountains, whose summits are composed of rocks, and terminated by these angular blocks of granite, have formerly been covered with vitrifiable sand, and the rain having carried away the sand which covered them, they remained on the tops of the mountains in the position they were formed. These blocks generally present points; they increase in size in proportion as they descend; one block often rests upon another, the second upon a third, and so on, leaving irregular intervals between them: and as in time the rain washed away all the sand which covered these different parts on the top of the high mountains, they would remain naked, forming larger or lesser points; and this is the origin of the peaks or horns of mountains.

For supposing, as it is easy to prove by the marine productions we find there, that the chain of the Alps was formerly covered by the sea, and that above this chain there was a great thickness of vitrifiable sand, which rendered the whole mountains a flat and level country. In this depth of sand, there would necessarily be formed granite, free-stone, flint, and all matters which take their origin and figure in sand, nearly in a similar manner to that of the crystallisation of salts. These blocks once formed would support their original positions, after the rains and torrents had carried away the sand which surrounded them, and being left bare formed all those peaks or pointed eminences we see in so many places. This is also the origin of those high and detached rocks found in China and other countries, as in Ireland, where they are called the Devil's stones, and whose formation as well as that of the peaks of mountains, had hitherto appeared so difficult to explain; nevertheless the explanation which I have given is so natural, that it directly presents itself to the mind of those who examine these objects, and I must here quote what Father Tatre says, "From Yanchu-in-yen, we came to Hoytcheou, and on the road met with something particular, rocks of an extraordinary height, of the shape of a large square tower, and situate in the midst of vast plains: I cannot account for it, unless by supposing they were formerly mountains, from which the rain having washed away the earth that surrounded them, thus left the rocks entirely bare. What strengthens this conjecture is, that we saw some which, towards the base, are still covered with earth to a considerable height."

The summits of the highest mountains are composed of rocks, of granite, free-stone, and other hard and vitrifiable matters, and this often as deep as two or three hundred fathoms; below which we often meet with quarries of marble, or hard stone, filled with fossil-shells, and whose matter is calcinable; as may be remarked at Great Chartreuse, in Dauphiny, and on Mount Cenis, where the stone and marble, which contains shells, are some hundred fathoms below the summits, points and peaks of high mountains; although these stones are more than a thousand fathom above the level of the sea. Thus mountains, whereon we see points or peaks, are generally vitrifiable rock, and those whose summits are flat, mostly contain marble and hard stones filled with marine productions. It is the same with respect to hills, for those containing granite, or free-stone, are mostly intersected with points, eminences, cavities, depths, and small intermediate valleys; on the contrary, those which are composed of calcinable stone are nearly equal in height, and are only interrupted by greater and more regular vallies, whose angles are correspondent; and they are crowned with rocks whose position is regular and level.

Whatever difference may appear at first between these two species of mountains, their forms proceed from the same cause, as we have already observed; only it may be remarked, that the calcinable stones have not undergone any alteration nor change since the formation of the horizontal strata; whereas those of vitrifiable sand have been changed and interrupted by the posterior production of rocks and angular blocks formed within this sand. These two kinds of mountains have cracks which are almost always perpendicular in those of calcinable stones; but those of granite and free-stone appear to be a little more irregular in their direction. It is in these cracks metal, minerals, crystals, sulphurs, and all matters of the second class are found, and it is below these cracks that the water collects to penetrate the earth, and form those veins of water which are every where found below the surface.

ARTICLE X.

OF RIVERS

We have before said that, generally speaking, the greatest mountains are in islands and in the projections in the sea. That in the old continent the greatest chains of mountains are directed from west to east, and that those which incline towards the north or south are only branches of these principal chains; we shall likewise find that the greatest rivers are directed as the greatest mountains, and that there are but few which follow the course of the branches of those mountains. To be assured of this, we have only to look on a common globe, and trace the old continent from Spain to China. We shall find, by beginning at Spain, that the Vigo, Douro, Tagos, and Guadiana run from east to west, and the Ebro from west to east, and that there is not one remarkable river whose course is directed from south to north, or from north to south, although Spain is entirely surrounded by the sea on the west side, and almost so on the north. This observation on the directions of rivers in Spain not only proves that the mountains in this country are directed from west to east, but also that the southern lands, which border on the straits, are higher than the coasts of Portugal; and on the northern coast, that the mountains of Galicia, the Asturias, &c. are only a continuation of the Pyrennees, and that it is this elevation of the country, as well north as south, which does not permit the rivers to run into the sea that way.

It will also be seen, by looking on the map of France, that there is only the Rhone which runs from north to south, and nearly half its course, from the mountains to Lyons, is directed from the east towards the west; but that on the contrary all the other great rivers, as the Loir, the Charantee, the Garonne, and even the Seine, have a direction from east to west.

It will be likewise perceived, that in Germany there is only the Rhine, which like the Rhone shapes the greatest part of its course from north to south, but that the others, as the Danube, the Drave, and all the great rivers which fall into them, flow from the west to east into the Black Sea.

It will be perceived that this Black Sea, which should rather be considered as a great lake, has almost three times more extent from east to west than from north to south, and consequently its direction is similar to the rivers in general. It is the same with the Mediterranean, whose length from east to west is about six times greater than from north to south.

The Caspian Sea, according to the chart drawn by the order of Czar Peter I. has more extent from the south to the north than from east to west; whereas in the ancient charts it appears almost round, or rather more broad from east to west than from south to north; but if we consider the lake Aral as a part of the Caspian Sea, from which it is separated only by plains of sand, we shall find the length is from the western coast of the Caspian Sea as far as the greatest border of Lake Aral.

So likewise the Euphrates, the Persian gulph, and almost all the rivers in China run from west to east; all the rivers in Africa beyond Barbary flow from east to west, or from west to east, and there are only the rivers of Barbary and the Nile which flow from south to north. There are, in fact, great rivers in Asia which partly run from north to south, as the Wolga, the Don, &c. but by taking the whole length of their course, we find, that they only turn from the south to run into the Black and Caspian seas, which are only inland lakes.

It may therefore in general be said, that in Europe, Asia, and Africa, the rivers, and other mediterranean waters, extend more from east to west than from north to south, which proceeds from the chains of mountains being for the most part so directed, and that the whole continent of Europe and Asia is broader in this direction than the other; for there are two modes of considering the direction of mountains. In a long and narrow continent like South America, in which there is only one principal chain of mountains which stretches from south to north, the river not being confined by any parallel range, necessarily runs perpendicular to the course of the mountains, that is from east to west, or from west to east; in fact, it is in this direction all the rivers of America flow. In the old as well as the new continent most of the waters have their greatest extent from west to east, and most of the rivers flow in this direction; but yet this similar direction is produced by different causes; for instance, those in the old continent flow from east to west, because they are bounded by mountains whose direction is from west to east; whereas those in America preserve the same course from there being only one chain of mountains that extends from north to south.

In general, rivers run through the centre of vallies, or rather the lowest ground betwixt two opposite hills or mountains; if the two hills have nearly an equal inclination, the river will be nearly in the middle of the intermediate valley, let the valley be broad or narrow. On the contrary, if one of the hills has a more steep inclination than the other, the river will not be in the middle of the valley, but much nearer the hill whose inclination is greatest, and that too in proportion to the superiority of its declivity: in this case, the lowest ground is not in the middle of the valley, but inclines towards the highest hill, and which the river must necessarily occupy. In all places where there is any considerable difference in the height of the mountains, the rivers flow at the foot of the steepest hills, and follow them throughout all their directions, never quitting their course while they maintain the superiority of height. In the length of time, however, the steepest hills are diminished by the rain acting upon them with a greater degree of force, proportionate to their height, and consequently carry away the sand and gravel in more considerable quantities, and with greater violence; the river is then constrained to change its bed, and seek the lowest part of the valley: to this may be added, that as all rivers overflow at times, they transport and deposit mud and sand in different places, and that sands often accumulate in their own beds, and cause a swell of the water, which changes the direction of its course. It is very common to meet in vallies with a great number of old channels of the river, particularly if it is subject to frequent inundations, and carries off much sand and mud.

In plains and large vallies, where there are great rivers, the beds are generally the lowest part of the valley, but the surface of the water is very often higher than the ground adjacent. For example, when a river begins to overflow, the plain will presently be inundated to a considerable breadth, and it will be observed that the borders of the river will be covered the last; which proves that they are higher than the rest of the ground, and that from the banks to a certain part of the plain, there is an insensible inclination, so that the surface of the water must be higher than the plain when the river is full. This elevation on the banks of rivers proceeds from the deposit of the mud and sand at the time of inundations. The water is commonly very muddy in the great swellings of rivers; when it begins to overflow, it runs very gently over the banks, and by depositing the mud and sand purifies itself as it advances into the plain; so that all the soil which the currents of the river does not carry along, is deposited on the banks, which raises them by degrees above the rest of the plain.

Rivers are always broadest at their mouths; in proportion as we advance in the country, and are more remote from the sea, their breadth diminishes; but what is more remarkable, in the inland parts they flow in a direct line, and in proportion as they approach their mouths the windings of their course increase. I have been informed by M. Fabry, a sensible traveller, who went several times by land into the western part of North America, that travellers, and even the savages, are seldom deceived in the distance they are from the sea if they follow the bank of a large river; when the direction of the river is straight for 15 or 20 leagues, they know themselves to be a great distance from the coast; but, on the contrary, if the river winds, and often changes its direction, they are certain of not being far from the sea. M. Fabry himself verified this remark in his travels over that unknown and almost uninhabited country. In large rivers there is a considerable eddy along the banks, which is so much the more considerable as the river is less remote from the sea, which may also serve as a guide to judge whether we are at a great or short distance from the mouth; and as the windings of rivers increase in proportion as they approach the sea, it is not surprising that some of them should give way to the water, and be one reason why great rivers generally divide into many arms before they gain the sea.

The motion of the waters in rivers is quite different from that supposed by authors who attempt to give mathematical theories on this subject; the surface of a river in motion is not level when taken from one bank to the other, but according to circumstances the current in the middle is considerably higher or lower than the water close to the banks; when a river swells by a sudden melting of snow, or when by some other cause its rapidity is augmented, if the direction of the river is straight, the middle of the water where the current is rises, and the river forms a convex curve, of a very sensible elevation. This elevation is sometimes very considerable; M. Hupeau, an able engineer of bridges, once measured the river Avieron, and found the middle was three feet higher than near the bank. This, in fact, must happen every time the water has a very great rapidity; the velocity with which it is carried, diminishing the action of its weight in the middle of the current, so that it has not time to sink to a level with that near shore, and therefore remains higher. On the other hand, near the mouths, it often happens that the water which is near the banks is higher than that of the middle, although the current be ever so rapid. This happens wherever the action of the tides is felt in a river, which in great ones often sensibly extends as far as one or two hundred leagues from the sea; it is also a well known fact that the current of a river preserves its motion in the sea to a considerable distance; there is, in this case, therefore, two contrary motions in a river; the middle, which forms the current, precipitates itself towards the sea, and the action of the tide forms a counter-current, which causes the water near the banks to ascend, while that in the middle descends, and as then all the water must be carried down by the current in the middle, that of the banks continually descends thereto, and descends so much the more as it is higher, and counteracted with more force by the tide.

There are two kinds of ebbings in rivers; the first above-mentioned is a strong power occasioned by the tide, which not only opposes the natural motion of the river, but even forces a contrary and opposite current. The other arises from an inactive cause, such as a projection of land, an island, &c. This does not commonly occasion a very sensible counter-current, yet it is sufficient to impede the progress of boats and craft, and necessarily produces what is called a dead water, which does not flow like the rest of the river, but whirls about in such a manner that when boats are drawn therein they require great strength to get them out. These dead waters are very perceptible at the arches of bridges in rapid rivers. The velocity of the water increases in proportion as the diameter of the channel through which it passes diminishes, the impelling force being the same; the velocity of a river, therefore, increases at the passage of a bridge, in an inverse proportion of the breadth of the arches to the whole breadth of the river; the rapidity being very considerable in coming through the arch, it forces the water against the banks, from whence it is reflected with such violence as to form dangerous eddies and whirlpools. In going through the bridge St. Esprit, the men are forced to be careful not to lose the stream, even after they are past the bridge, for if they suffer the boat to go either to the right or left, it might be driven against the shore, or forced into the whirling waters, which would be attended with great danger. When this eddy is very considerable, it forms a kind of small gulph, the middle of which appears hollow and to form a kind of cylindrical cavity, around which the water whirls with rapidity: this appearance of a cylindrical cavity is produced by the centrifugal force, which causes the water to endeavour to remove itself from the centre of the whirlpool. When a great swell of water happens, the watermen know it by a particular motion; they then say the water at the bottom flows quicker than common: this augmentation of rapidity at the bottom, according to them, always announces a sudden rise of the water. The motion and weight of the upper water communicates this motion to them; for in certain respects we must consider a river as a pillar of water contained in a tube, and the whole channel as a very long canal where every motion must be communicated from one end to the other. Now, independent of the motion of the upper waters, their weight alone might cause the rapidity of the river to increase, and perhaps move it at bottom; for it is known, that by putting many boats at one time into the water, at that instant we increase the rapidity of the under part of the river, as well as retard that of the upper.

The rapidity of running waters does not exactly, nor even nearly, follow the proportion of the declivity of their channels. One river whose inclination is uniform and double that of another, ought, according to appearance, to flow only as rapid again, but in fact it flows much faster. Its rapidity, instead of being doubled, is sometimes triple, quadruple, &c. This rapidity depends much more on the quantity of water and the weight of the upper waters than on the declivity. When we are desirous to hollow the bed of a river, we need not equally distribute the inclination throughout its whole length, in order to give a greater rapidity, as it is more easily effected by making the descent much greater at the beginning, than at the mouth, where it may almost be insensible, as we see it in natural rivers, and yet they preserve a rapidity so much the greater as the river is fuller of water; in great rivers, where the ground is level, the water does not cease flowing, and even rapidly, not only with its original velocity, but also with the addition of that which it has acquired by the action and weight of the upper waters. To render this fact more conceivable, let us suppose the Seine between the Pont-neuf and Pont-royal to be perfectly level, and ten feet deep throughout: let us then suppose that the bed of the river below Pont-royal and above Pont-neuf were left entirely dry, the water would instantly run up and down the channel, and continue to do so until it had recovered an equilibrium; for the weight of the water would keep it in motion, nor would it cease flowing until its particles became equally pressed and have sunk to a perfect level. The weight of water therefore greatly contributes to its velocity, and this is the reason that the greatest rapidity of the current is neither of the surface nor at the bottom of the water, but nearly in the middle of its depth, being pressed by the action of its weight at its surface, and by the re-action from the bottom. Still more, if a river has acquired a great rapidity, it will not only preserve it in passing a level country, but even surmount an eminence without spreading much on either side, or at least without causing any great inundation.

We might be inclined to think that bridges, locks, and other obstacles raised on rivers, considerably diminishes the celerity of the water's course; nevertheless that occasions but little difference. Water rises on meeting with any obstacle, and having surmounted it, the elevation causes it to act with more rapidity in its fall, so that in fact it suffers little or no diminution in its celerity, by these seeming retardments. Sinuosities, projections, and islands, also but very little diminish the velocity of the course of rivers. A considerable diminution is produced by the sinking of the water, and, on the contrary, its augmentation increases its velocity; thus if a river is shallow the stream passes slowly along, and if deep with a proportionate rapidity.

bannerbanner