
Полная версия:
Инициирование аномалий. Сход ледника Колка в 2002 году
Из окружающего пространства на Землю приходит «излучение», получившее название космических лучей. Уменьшение интенсивности излучения не наблюдалось ни ночью, ни во время солнечного затмения. Сведения о космических лучах основаны на данных радиоастрономии. Существование космических лучей было установлено в результате длительных исследований. Долгие годы этот вопрос оставался открытым. Основная часть космических частиц идет к Земле в вертикальных потоках. Изучение происхождения космических лучей составляет важную часть мировых научных исследований. Решить проблему происхождения первичных космических лучей, наблюдаемых у Земли, – значит указать источники как протонно-ядерной, так и электронной компоненты космических лучей; объяснить состав и высокую степень изотропии всех направлений в пространстве. Отсутствие надежных данных о космических лучах не давало возможности выяснить их происхождение. Излучение не задерживали даже толстые слои свинца. Большую проникающую способность космических лучей вначале объясняли разновидностью γ-лучей. Позже было выяснено, что в составе первичных космических лучей имеются заряженные частицы. Открытие было сделано в результате изучения тока в ионизационных камерах, расположенных вблизи земной поверхности. Ток наблюдался при отсутствии всяких искусственных источников ионизации (такой ток называется «темновым»). Космическое происхождение тока было доказано после опытов на воздушных шарах. При этом было убедительно показано, что скорость ионизации воздуха в герметически закрытых сосудах при удалении от земной поверхности (выше примерно двух километров) растет с высотой. На высоте около 5 км, достигнутой 7 августа 1912 г., скорость ионизации возросла уже в несколько раз. Виктор Гесс на основании своих исследований пришел к выводу: «Результаты наблюдений лучше всего объясняет предположение, что излучение с высокой проникающей способностью входят в нашу атмосферу сверху» [Hess V. Phys. Zs. 13 1084 (1912)]. В опытах, проведенных Кольхерстером в 1914 г., была достигнута высота в 9 км, ионизация оказалась во много раз больше, чем на уровне моря. Сомнение о существовании космических лучей отпали в 1925–1926 гг. В 1936 г. окончательно признали, что космические лучи – это заряженные частицы. Установили, что ионизационный ток по мере подъема падает лишь на небольших высотах, а затем начинает возрастать. Примерно через 40 лет после открытия Гесса было выяснено, что из мирового пространства к Земле приходят космические лучи – ионизирующее "излучение", состоящее из протонов и ядер с высокой энергией [80].
Роль протонов, как основной компоненты первичных космических лучей, была подкреплена прямыми измерениями на высотных баллонах. Позже (1948 г.) было обнаружено, что в составе первичных космических лучей имеются и ядра ряда элементов. Интенсивность первичной электронной компоненты измерить в этот период не удалось. Обозначилась некоторая трудность в отношении абсолютного значения интенсивности электронов, которая в несколько раз меньше необходимой для объяснения общего радиоизлучения Галактики. Например, при энергии Ε = 1–3 ГэВ, интенсивность электронов в космических лучах составляет величину порядка 1% по отношению к интенсивности протонов, т. е. плотность энергии электронной компоненты we = 10–14 эрг/см3 [81]. Поток космических лучей, падающих на земную атмосферу, зависит от геомагнитной широты. Движущиеся заряженные частицы отклоняются в магнитном поле Земли [82]. При одной и той же энергии частиц отклонение максимально в экваториальных областях и минимально вблизи магнитных полюсов. С увеличением геомагнитной широты пороговая энергия частиц быстро уменьшается, и в полярных областях Земли геомагнитный барьер практически отсутствует.
Первичное космическое излучение не обнаруживает какой-либо анизотропии, связанной с Галактикой или Метагалактикой. Лучи считают локально изотропными – это значит, что анизотропия может появиться лишь при учете пространственной неоднородности. Если анизотропия и существует, то по данным исследования [83] она не превышает точности измерений в 1% при энергиях Е < 1016 эВ и 3% при Ε > 1017 эВ. Один из аспектов проблемы происхождения космических лучей связан с тем, где расположены источники частиц, потоки которых наблюдают у Земли как космические лучи. Вопрос об источниках космических лучей вызывает разногласия в научной среде. Исторически сложились три модели или три теории происхождения космических лучей: солнечная, галактическая и метагалактическая. Модели происхождения космических лучей галактического происхождения развиты в работе [84]. Источники космических излучений в таких моделях расположены внутри самой Галактики. В качестве возможного источника высокоширотного излучения учеными рассматривается излучение Метагалактики. Предполагают, что космические лучи с самыми большими энергиями (Е > 1018 эВ) образуются в других галактиках. Метагалактические модели представляют как альтернативу моделям галактического происхождения космических лучей. Эти модели принципиально ничем не отличаются, разница сводится к масштабности и интенсивности первичного излучения.
Астрофизики высказывали предположение о влиянии Солнечной системы на процессы на Земле. [85, 86, 87, 88], что совокупность гравитационных сил тел Солнечной системы может оказывать динамическое воздействие на протекание солнечного цикла. Солнце является переменной звездой, изменение физических характеристик Солнца имеет весьма сложный характер. Солнечная радиация активно участвует в тепловом балансе и климате Земли. Все процессы, связанные с солнечной активностью, относятся к физической изменчивости Солнца. Для климатических процессов на Земле основным источником энергии является падающий на нее поток солнечного излучения. На среднем расстоянии Земли от Солнца его значение (I0) оказалось равным I0 = 1360 ± 20 Вт/м² [89]. Спутниковые измерения обнаружили кратковременные вариации I0 с периодами в дни – недели и амплитудами в десятые доли процента. Периодичности вариаций с циклом в 11,5 лет не обнаружено. В общей энергии испускаемого излучения 99.9 % находится в диапазоне от 3⋅103 до 1⋅105 Å (область частично ультрафиолетового, оптического и частично инфракрасного диапазонов). Влияние солнечной активности на изменение потока энергии в данной части спектра незначительно. Эта часть потока характеризуется «солнечной постоянной». Распространенным показателем солнечной активности является число Вольфа (W), которое связано с количеством солнечных пятен. Ход изменений аномалий солнечной активности за весь период наблюдений с середины 18-го века представлены в [79, рис. 1а]. Первые измерения солнечной постоянной относятся к 1837 г. В ранние времена эти измерения выполнялись на уровне земной поверхности, отличались сложной методикой и невысокой точностью. Графическое изображение ряда аномалий демонстрирует, что в период с 1908 по 1952 гг. этот показатель увеличился с W = 0 до W = 180, а в период 1952-2012 гг. снизился до W = 0. За последние 25 лет добились большого прогресса в части измерения солнечной постоянной, за счет разработки новых измерительных приборов и выноса измерительной техники за пределы атмосферы. Сейчас измерения выполняются с высокой точностью. Согласно астрономическим наблюдениям, в первой половине прошлого столетия солнечная постоянная изменялась в пределах ±1 %. Среднее значение этой величины в 1977–1999 гг. изменялось синхронно с солнечным циклом на ± 0.08 % [88].
Наблюдения за Солнцем выявили 11-, 22-, 33-, 180-летние и более продолжительные циклы солнечной активности. Большинство природных катастроф, а также крупных аварий на промышленных объектах и линейных коммуникациях, совпадает периодами наложения этих циклов солнечной активности [90]. В статье утверждают: «космобиоритмическая цикличность предопределяет возникновение и контролирует развитие опасных геодинамических явлений (землетрясений, горных ударов, селевых потоков, наводнений, подтоплений, карстовых и суффозионных провалов, засух, лесных пожаров и др.)». Вариации физических полей Земли в околоземном пространстве контролируют интенсивность проявления современных геодинамических процессов во времени. Космические циклы определяют периодичность усиления или уменьшения прямого воздействия физических полей на природные и природно-техногенные объекты.
Материалы наблюдений за деятельностью Солнца демонстрируют многообразие и сложность процессов в системе Солнце – Земля и в отдельных ее частях. Вариации некоторых процессов в гелио и геосферах протекают синхронно с солнечным циклом, например, изменение электронной концентрации в регулярных ионосферных слоях. Состояние солнечно-земных связей отражают характеристики потока плазмы. В работе [88, рис. 3] приведены графики временных вариаций среднегодовых значений температуры плазмы и плотности потока на уровне орбиты Земли. Среднегодовая температура плазмы в 1974 достигала максимальной величины (200000 К) и достаточно быстро понижалась (80000 К) до 1980 года. В период с 1994 по 2002 гг. температура плазмы снизилась с 160000 К до 60000 К. С 1969 по 1992 гг. плотность потока плазмы увеличилась более 2-х раз. За следующие 8 лет плотность плазмы снизилась на 40%. График временных вариаций среднегодовых значений глобальной температуры показывает глубокий минимум в 1908–1910 гг. [88, рис. 5] и понижение температуры в 1950–1980 годах.
Ощутимое таяние вечных льдов (за последнее десятилетие три крупнейших ледника Антарктиды, например, потеряли до 50 метров в толщину) привело к увеличению уровня воды в Мировом океане, что сказалось на силе и ширине Гольфстрима. Этот теплый экваториальный поток доходил раньше до берегов Ньюфаундленда, благотворно влияя на климат всей Европы. Теперь же пресная вода ледников на 20% охладила Гольфстрим, замедлив процесс его циркуляции [91]. Изучение ледниковых образований Гренландии и Антарктиды позволяет ученым получить информацию о закономерностях изменения климата на Земле. В 2008–2012 гг. в Гренландии (проект NEEM) был пробурен и извлечен ледяной керн из скважины высотой 2450 м (77,45° с. ш., 51,06° з. д.). Этот керн льда (керн NEEM) уходит к последнему межледниковому периоду (Эемскому) на 130–115 тыс. лет назад. Эволюция Гренландского ледового щита является результатом атмосферного и океанского воздействий, работающих вместе. Все-таки океан является основным стимулятором роста ледникового щита (наступления). Используя отношения благородных газов (Kr/N2, Xe/N2, Xe/Kr), захваченных в ледяных кернах, ученые провели реконструкцию глобальной температуры океана. Реконструкция океанической температуры обеспечивает точность и временное разрешение для интегрированного глобального океана, не достижимые другими методами. Установили, что средняя глобальная океанская температура в течение последнего ледникового перехода (от 20000 до 10000 лет назад), увеличилась на 2.57 ± 0.24 °С. По данным исследований керна льда (стабильных изотопов кислорода и водорода со станции Восток) в Антарктиде у глобальной температура воды в океане наблюдается слабый нисходящий тренд и понижение температуры. По данным, полученным при исследовании керна льда, летняя арктическая температура воздуха снизилась на 0,3 °С относительно глобальной температуры 1961–1990 гг. в течение 1900 лет от начала эры [92, рис. 3б]. В течение 2-х тысячелетий главная климатическая тенденция устойчиво сохраняла похолодание, но что-то подействовало и резко изменило ее характер. Отрицательный тренд поменялся на противоположный в ~ 1902 году. В течение последующих 100 лет температура воздуха выросла на 1,5 °С. В работе [92] утверждают, что современное потепление, прослеживаемое в реконструкциях на других континентах, не превышает естественных изменений температуры в прошлом; потепление в Антарктиде за последние 100 лет не превышает естественных осцилляций температуры на исследованном интервале времени 2000 лет. Вывод ученого о «естественном» повышении температуры на Земле ничем не подкрепляется. Он не желает замечать явные нестыковки с наблюдениями.
Рассмотренные ранее примеры показывают, что за последние 100 лет изменений в поступлении энергии от внешних источников в геосферу Земли не происходило. Природа физического механизма воздействия солнечной активности на биосферу до сих пор остается не раскрытой, поскольку попадающее в нижнюю атмосферу видимое излучение, как и полный поток солнечного излучения, изменяется всего лишь на доли процента. Вариации плотности потока солнечной плазмы и ее температуры не совпадают по времени с периодами аномального роста температуры на планете. Часть излучения Солнца, способная существенно влиять на геофизические процессы, поглощается в верхней атмосфере Земли и не доходит до ее поверхности. Нас убеждают [93], что за счет процессов турбулентной диффузии эффект частично передается в нижнюю атмосферу.
Наша солнечная система в пределах Галактики не представляется какой-то особо выделенной системой. Звезды, типа Солнца, не могут служить первичными источниками космических лучей в Галактике. Такими источниками должны быть какие-то весьма мощные и особо эффективные объекты. Ближайшая к нам звезда может быть ответственна за появление только некоторой, небольшой части космических лучей с весьма малой энергией. Солнечная модель потеряла актуальность, когда стало ясно, что космические лучи равномерно заполняют всю галактику. Равномерному природному распределению тепла над сушей противоречит аномальное превышение температуры в 2,5 раза над локальными областями, например, над территорией России. Необъяснимым остается факт неравномерного увеличения температуры океанских вод в Северном полушарии. Можно предположить, что все эти экстремумы были результатом какого-то общего внешнего воздействия на климатическую систему.
13. Динамика развития чрезвычайных ситуаций на фоне общего потепления на планете
Изменения климата на Земле проявляется в росте частоты и интенсивности климатических аномалий. В XX веке с 1975 г. начался ускоренный рост численности природных бедствий, причина которых остается неизвестной. С повышением средней температуры на планете увеличивается активность экстремальных погодных явлений, таких как торнадо, ураганы, штормы, число сильных землетрясений, извержений вулканов и цунами. За период с 1962 по 1992 гг. количество катастроф с высоким экономическим ущербом возросло в мире в 4,1 раза; количество погибших – в 2,1 раза; а количество пострадавших – в 3,5 раза [94]. В последние 40 лет экономические потери в мире удваивались примерно каждые семь лет. По информации страховой компании «Swiss Re», число аварий с ущербом более 67 миллионов долларов с 1970 по 2000 гг. возросло более чем втрое [95]. При этом они происходили в 1,7 раза чаще, чем чрезвычайные ситуации природного характера сопоставимой разрушительности. Аналогичная статистика подтверждается международной базой данных по бедствиям и катастрофам, собираемой Центром эпидемиологии катастроф (OFDA–CRED) в Брюсселе. Экономическое развитие мировой системы в последние десятилетия сопровождается устойчивой тенденцией роста количества разрушительных для хозяйственных систем чрезвычайных ситуаций, наносимого ими экономического ущерба. За период с 1900 по 2015 гг. материальный ущерб от природных катастроф в мире вырос с нескольких миллиардов долларов в год до 355 миллиардов в 2012 г. [96, рис 4].
Согласно исследованию Swiss Re, в 1980-х годах ущерб от природных катастроф в среднем составлял около 30 миллиардов долларов в год [97]. В 1990-х гг. ущерб увеличился до 104 миллиардов долларов в год. Количество крупномасштабных чрезвычайных ситуаций природного характера, в которых погибло или пострадало более 100 человек, за период 1970–2000 гг. выросло в 3,5 раза. Число техногенных аварий и катастроф за период с 1980 по 2000 гг. увеличилось с 50 до 300 (в 6 раз). Потери от наиболее сильных катастрофических событий достигают гигантских размеров. При землетрясении в феврале 1995 г. (Кобе, Япония) пострадало 1,8 млн. человек, экономические потери составили 131,5 миллиарда долларов. Вследствие землетрясения северо-восточной части Индийского океана в декабре 2004 г. и цунами на острове Суматра (Индонезия) погибло более 200 тыс. человек, ущерб около 10 млрд. долларов. В результате землетрясения, произошедшего в Китае в мае 2008 г., погибло более 69 тысяч, а пострадали 2,4 миллиона человек, экономические потери достигают 150–200 миллиардов долларов [98]. Развитые страны, такие как Япония, тратят на борьбу с природными катастрофами 23-25 млрд. долларов в год, Китай тратит в среднем до 19 млрд. долларов в год. В последнем десятилетии XX века затраты возросли до 36 мдрд, долларов (1998 г.) [94].
В абсолютных цифрах экономические потери за 35 лет в Азии составили 412, Америке – 234 и Европе – 210 млрд. долларов. Наряду с природными бедствиями наблюдается рост технических катастроф. Как и в целом мире, для России характерен рост количества катастроф, особенно в последние годы. По данным МЧС России, за последние 10 лет (1990-1999) было зарегистрировано 2877 событий, связанных с природными опасными процессами. Среднегодовое количество катастроф в последнее десятилетие XX века достигло 288 в год, в то время как в предыдущее десятилетие оно составляло 110–130 катастроф, рост более чем в 2 раза [99]. Ущерб от наводнений в странах Западной и Центральной Европы в 2002 году составил 22 миллиарда долларов. В России ежегодно подвергается затоплению около 50 тыс. км² территорий. Среднемноголетний ущерб от наводнений оценивается в 41,6 млрд. руб. в год (в ценах 2001 г.). Замечено, что на земном шаре с повышением температуры растет частота и размеры площади наводнений. Из 142 лет метеорологических наблюдений десять самых жарких лет выпали на последнее годы XX и начало XXI века. Первая тройка наиболее теплых лет: 1998, 2001, 2002 гг.
Лесной фонд России составляет почти 1,2 млрд. га и занимает 70% площади земель. По данным Центра по проблемам экологии и продуктивности лесов, в России ежегодно происходит от 12 до 37 тыс. лесных пожаров, которыми уничтожается от 400 тысяч до 4 млн. га лесов. Ущербы от лесных пожаров достигают 470 млн. долларов в год (1998 г.). Ежегодный прирост ущербов стране от природных катастроф составляет около 6%, а темпы роста глобального валового продукта около 2,2% в год [100]. В 1972 г. площадь, охваченная пожарами, достигла 1,5 млн. га, в 1998г. – 4,3 млн. га, а в 2002 г. – чуть более 1 млн. га. По данным Министерства природных ресурсов, в лесах России с начала 2002 года произошло около 38000 пожаров, возгорания наблюдались до конца октября. Обычно сезон пожаров в стране заканчивался 1 октября. В 2002 г. пожароопасный период в России начался значительно раньше, чем в предыдущие годы. Уже в феврале пожары возникали в Алтайском, Ставропольском краях, Еврейской автономной и Читинской областях. Число пожаров в 2 раза больше, чем за аналогичный период прошлого года. Общий ущерб от лесных пожаров, уничтоживших миллионы кубометров древесины, еще предстоит определить. Когда чиновники утверждают, что большинство возгораний в лесу происходило по вине людей – это выглядит не убедительно.
В двадцати двух районах Московской области в начале сентября 2002 г. была объявлена чрезвычайная ситуация. В Подмосковье огнем было охвачено 595 гектаров лесов и торфяников. Ночью 5 сентября Москву накрыл сильнейший смог. На основных магистралях столицы образовались огромные пробки. Самая высокая концентрация вредных веществ была в центре города. Дым ощущался не только внутри домов и офисов, но и на станциях столичного метро. Борьба с пожарами на сухих торфяниках является проблематичной. Министерство природных ресурсов выступило с предложением к руководству субъектов Российской Федерации разработать комплекс мер по обводнению заброшенных торфяников. На основе этих разработок предполагалось утвердить план первоочередных действий. Но 13 мая 2003 года начался пожароопасный сезон. На территории России возникло 6681 лесных пожаров, огонь охватил площадь почти в 134000 га. В Амурской области лес горел на 44263 га, в Хабаровском крае – на площади в 7736 га, в Сахалинской области – на площади 1422 га, в Приморском крае – на площади более 1100 гектаров. В Республике Тыва площадь, охваченная огнем, составляла 3420 га.
В августе 2010 года в Москве сложилась чрезвычайная экологическая ситуация. В городе наблюдался сильнейший смог. Предельно допустимая концентрация (ПДК) угарного газа утром достигла своих максимальных значений. Санитарные врачи говорили, что содержание вредных веществ в воздухе в разных районах Москвы превышало допустимые нормы от 2 до 4 раз [91]. Максимальные часовые значения концентрации газов в приземном воздухе на территории Москвы превышали ПДК: по угарному газу (СО) в 6 раз, по диоксиду азота (NO2) – в 10 раз. Отмечалась массовая гибель диких животных в московских парках и подмосковных лесах. Основная масса очагов пожаров (данные спутника Terra/MODIS) расположились между меридианами λ = 37° и λ = 43° в. д., протянувшись от φ = 43,5° до φ = 56,5° с. ш. Причиной смога называют [101] природные пожары. Однозначная трактовка явления учеными – ошибочная, они следствие принимают за причину. Во время антициклона, принесшего холодную и безветренную погоду в Англию, с 5 по 9 декабря 1952 г. Лондон окутал толстый слой смога при отсутствии пожаров. Загрязняющие вещества собрались в воздухе над городом, большое число людей (по разным оценкам, от 4000 до 12000 человек) получили отравления. По проведенной реконструкции во время лондонского смога у тумана была высокая кислотность (рН = 1,6).
В глобальном потеплении 20 века выделяют три интервала: потепление 1910-1945 гг., слабое похолодание1946–1975 гг., наиболее интенсивное потепление после 1976 г. [102. С. 23.]. В работе [102. С. 27] пришли к выводу, что потепление климата в последние 30–40 лет обусловлено увеличением концентрации парниковых газов (диоксида углерода) вследствие сжигания органического топлива. Интенсивность потепления в период 1976–2011 гг. значительно выше, чем в среднем на Земле за 100 лет. В то время, как на земном шаре и на суше Северного полушария среднегодовая температура увеличилась на 1,9–1,5 °С, размах аномалий среднегодовых температур в РФ достигает 3–4 °С. Хотелось бы знать, что подразумевали авторы [102. С. 23] под чувствительностью воздействия климата на территории России. В 2010 г. в России был зафиксирован абсолютный максимум летних температур за весь период инструментальных наблюдений. Среднемесячная норма в июле была превышена на +7,8 °С [102. С. 99]. Ученые утверждают, что в настоящее время не существует надежного научного метода прогноза изменения климатообразующих факторов (естественного и антропогенного происхождения).
Природа непостоянства климата окончательно не выяснена. Проблема понятия антропогенно обусловленного «изменения климата» состоит в отсутствии объективных количественных оценок вклада антропогенных факторов в формирование глобального климата. Ученые не могут однозначно утверждать, что тренд (линейный или экспоненциальный) связан только с антропогенными выбросами и увеличением содержания парниковых газов в атмосфере [57].
Увеличение количества природных катастроф в мире и ущерб от них, по мнению автора [100], связан с рядом глобальных процессов в социальных и природных сферах. Одной из причин роста социальных и материальных потерь, по мнению академика В. Осипова, является рост человеческой популяции на Земле. Рост техногенного воздействия человека на природную среду – другая причина, которая приводит к интенсификации опасных природных процессов. Аналогичную точку зрения выражает другой академик в работе [103]. Уважаемые и авторитетные ученые трактуют рост катаклизмов и происшествий на планете, руководствуясь ошибочными критериями. Их выводы не адекватны взаимодействиям, наблюдаемым между различными компонентами климатической системы (океана с атмосферой) и геофизическими полями. Руководствуясь общими соображениями и избегая конфликта с западными теориями, ученые утверждают ложные представления о причинах, провоцирующих аномальные явления. Более точное мировоззрение высказывает академик Кондратьев К.Я., оно согласуется с научными наблюдениями. Воззрения Осипова В.И. и Котлякова В.М не имели бы такого резонансного значения, если бы они не являлись руководителями Института геоэкологии и Института геологии РАН, не задавали сотрудникам учреждения вектор научного поиска причин негативных закономерностей.
В современной научной среде разучились конфликтно мыслить, отказываясь признавать ложные теоретические построения. После не долгих поисков, в течение нескольких недель подберут ответ с поверхностным решением вопроса в русле устоявшейся парадигмы. Либо они не понимают глобальных закономерностей аномальных явлений. Исследователи и аналитики не пытаются установить: источник причины роста теплосодержания во всех океанах; появление по всем континентам разрушающих пожаров, проливных дождей, длительных засух, крупных оползней и провалов земной поверхности. За рамками анализа природных аномалий остаются непонятные аварии с летательными аппаратами, обломков которых не могут найти, отклонение ракетоносителей от заданной траектории и многое другое. В своей истории Российская государственность прошла испытание управления, якобы, под идеологией коммунистической партии. Догмат, построенный на доминировании одной политической силы и ложных теоретических и экономических принципах, после семи десятков лет привел СССР к упадку и распаду. Если в академической науке не создадут равных условий для конкурентной борьбы, позволяя свободно развиваться альтернативным представлениям, то ее ожидает крах и полная дискредитация.