banner banner banner
Performance Under Pressure
Performance Under Pressure
Оценить:
Рейтинг: 0

Полная версия:

Performance Under Pressure

скачать книгу бесплатно


We can view the structure of the brain in terms of three parts, or levels.

The first level, located at the base of the brain – at the top of the spine – is the brainstem, which is responsible for our major physiological drives and functions and our basic survival responses. It is fully developed at birth. We share this part of the brain with reptiles and other mammals.

The second level, sitting at the heart of the brain, is the limbic system, which is responsible for processing information about our emotional and physical state, and emotional information about those around us. It develops after the brainstem, going through significant change in the first year of life. A set of nuclei (nerve centres) located around the limbic system, called the basal ganglia, are closely associated with our unconscious physical habits.

The third level is the cerebral cortex – the outer layers of the brain – made up of two halves: the left and right hemispheres, joined by a thick bundle of fibres called the corpus callosum. The cerebral cortex, which controls advanced mental processes such as language and reflection, is the last part of the brain to develop, and is still maturing in our mid-20s.

THE HUMAN BRAIN

External structure

From the outside, the brain is dominated by two large cerebral hemispheres.

Although nearly all mental tasks are based on a combination of left- and right-hemisphere activity, one will dominate, because they function very differently in terms of the types of information they process.

Right-hemisphere processes are automatic, fast, and largely unconscious. The right hemisphere works in the here and now, using non-verbal information such as images, and has the capacity to see the big picture, taking an instant snapshot of the situation.

Left-hemisphere processes are deliberate, slower, and conscious. The left hemisphere works by matching current reality with past experiences, using language and calculation to construct stories, explanations and timelines.

The three parts of the brain – and the two hemispheres – function within a hierarchy, with the brainstem at the bottom, the limbic system in the middle, and the cerebral cortex at the top. The later-developing cortex has the power to hold back or refine the more primitive reactions from the sub-cortical structures (the limbic system and the brainstem), giving top-down control.

The right hemisphere, which matures before the left hemisphere, is more concerned with our immediate safety and sense of where we are in the world, while the left hemisphere is more concerned with analysis and setting goals. Likewise, the back of the brain processes raw sensory data (like visual images), while the front of the brain is more concerned with refining these images through meaning and interpretation. Altogether, our brain develops in a bottom-to-top, back-to-front and right-to-left direction.

To keep things simple, we can see both our right hemisphere and our limbic system and brainstem as dealing primarily with feeling, and our left hemisphere as dealing mainly with thinking.

The feeling system is primed for survival – including our essential physical processes and the fight–flight reaction. It runs on raw, unprocessed data: when a large dog suddenly appears in front of us, all we need to see and sense is that it’s angry and growling, not its name, species or favourite park. The defining feature of this survival system is speed. Because it’s linked to emotions such as fear, it has been described as ‘the hot system’. I call this system RED.

THE HUMAN BRAIN

Internal structure – Side view

On the inside, the human brain is organised into three main functional areas: the brainstem at the base; the limbic system in the middle; and the cerebral hemispheres at the top.

The thinking system is primed for potential. Once we’re safe from the dog, we can think about how to avoid crossing its path in future – maybe we need to buy an even bigger dog ourselves! This system allows us to solve problems, set goals, learn and adapt. Because it’s linked more to thinking and rational analysis, it has been described as ‘the cool system’. I call this system BLUE.

Red

The RED system is strongly connected to our body through powerful nerves, to maintain the overall functioning of our body and main organs within certain, comfortable limits, and to allow us either to run away or to defend ourselves when the situation demands.

There are two RED brain abilities that are particularly relevant to performance under pressure:

1 Emotional regulation

2 Fight–flight–freeze

1. Emotional regulation

The RED system runs essential physiological processes like sleep, hunger, thirst, sex drive and our heart and lung function. We don’t want to think much in most of those situations, so the RED system runs our internal world automatically and unconsciously by monitoring sensory information from our main organs. And we can’t switch it off – it never sleeps, even when we do.

Our RED brain is also constantly monitoring emotional information from our external world. It processes multiple information channels simultaneously to keep pace with cues in our social and emotional environment. The RED system regulates (controls) our emotions, and since our emotional self-control directs our behaviour at all times, the RED system sits at the forefront of how we experience the world around us.

Our RED brain specialises in processing social and emotional information in a non-linear, holistic way. To give us vital split-second reactions, it runs on broad images, impressions and feelings, delivering an unending stream of moment-to-moment, gut-based judgments about our constantly changing world.

The trade-off is that a lot of detail is lost or not processed, resulting in an approximate system that provides rapid judgments at the expense of accuracy. Information is combined to provide an overall synthesis of a situation, rather than being broken down into smaller categories.

To understand this, let’s look more closely at the role of the limbic system in regulating our emotions.

The limbic system adjusts our emotional state in two main ways: by regulating our level of arousal, and by controlling whether this feels good or bad. It’s like an extremely powerful internal thermostat, turning our energy level and emotional temperature up and down in an instant.

Nothing is more important to our day-to-day functioning than emotional regulation because it helps keep our body functioning within certain comfortable parameters, where we operate most efficiently. This maintenance of our physical and mental state within a relatively comfortable mid-range or zone is called homeostasis, an essential process for all living organisms. (We will see that understanding – and overcoming – this powerful force to stay comfortable can unlock our performance under pressure.)

2. Fight–flight–freeze

Life would be straightforward if we were able to function in comfortable conditions all the time. But we know that in our evolutionary past, we faced deadly threats and had to be constantly on our guard. Think of it in terms of a predator and its prey: the prey either has to react aggressively to deter the predator, or has to get away from the situation in a hurry. We saw this same response earlier in the person confronted by the ferocious dog.

Our RED system has evolved not just to keep us within a comfortable physiological window when conditions are safe and allow it, but also to keep us alive when we face significant threat. It does this through the fight, flight and freeze reactions, which are our stress reactions. Within a split second, our brain and body are ready either to flee from the threat, or to fight it off.

Our two amygdalae, considered the most primitive parts of the limbic system, act as our threat detectors. They’re constantly on high alert and exquisitely sensitive: they can be triggered simply by picking up on the dilation of another person’s pupils, a sign of potential hyper-vigilance or fear. They can respond unconsciously within 30 milliseconds, much faster than the 250 to 500 milliseconds it takes us to consciously focus attention with our BLUE brain. This is why we can find ourselves reacting to something without knowing why; then our conscious BLUE mind will catch up and recognise the threat that our RED system saw a quarter to half a second beforehand. In life-threatening situations, our amygdalae allow us to act first and think later.

If we can’t overcome or get away from our opponent, we feel trapped, and a more primitive reaction can kick in: freeze. This reaction has a slightly different biological pathway from the fight–flight mechanism, and it works in the opposite way: it shuts us down physically. It’s a last-ditch response to danger, when horror kicks in. In the animal world, this is where caught prey plays dead, hoping the predator will lose interest and enable it to escape. In the human world, we look blank and stare. Freeze starts out with a spike of arousal, but then transforms into a profoundly low-arousal state.

Psychologically, we disconnect from our body. If we can’t get out of there physically, we certainly don’t want to be present mentally. We go numb as endorphins are released to protect us from physical and mental pain. The technical term for this is dissociation, a mechanism that has fascinated psychologists for over 200 years.

Sometimes dissociation even involves a loss of muscle tone, leading us to fold or collapse – a bit like when a team of defeated players fall to the ground at the final whistle, when just moments before they were desperately trying to turn things around.

The autonomic nervous system

A well-organised RED limbic system will ensure that we are emotionally stable, flexible and resilient. It will allow us to fine-tune our physical and mental state when we are safe, react quickly to defend ourselves when we are under threat, and settle efficiently once the threat has gone.

It makes these adjustments using the autonomic nervous system (ANS), which, as the name suggests, functions automatically. It’s a RED system based on feeling, so we don’t have to think to turn it on.

The autonomic system has two main branches: the sympathetic branch and the parasympathetic branch. We now know that there are in fact two parasympathetic branches, both related to the large vagus nerves, which run from our brainstem at the base of our skull upward to our facial area, and downward to organs in our chest and abdomen. The two parasympathetic pathways are called the ventral vagal and dorsal vagal pathways. (Ventral means ‘front’ and dorsal means ‘back’, reflecting their relative positions within the nerve.)

The bottom line is that to properly understand how our fight, flight and freeze reactions work – and therefore what’s happening when we perform under pressure – we need to consider how three autonomic branches interact.

The sympathetic branch runs down the middle part of our spinal cord, to connect with our heart and lungs via spinal nerves. It responds to threat by preparing us for movement and action: the fight-or-flight response. To do this, it releases adrenaline, which increases our heart and breathing rates, and shifts blood flow away from our extremities to our limbs. Our vision fixates on the immediate threat. When our sympathetic system is stimulated, we feel agitated and tense.

The dorsal vagal pathway, found in reptiles as well as mammals, connects the brainstem with nerves in the abdomen. Like the sympathetic branch, it responds to extreme danger. But the dorsal vagal pathway is triggered when escape via fight or flight is not possible, so that we feel trapped, which leads to the freeze response. When this pathway is activated, we go into a state of mental and physical shutdown. Mentally, we stop feeling, our thoughts become fuzzy, and we feel alone. Physically, we lose energy, feel fatigued and become numb. If fight–flight is a mobility reaction, freeze is an immobility reaction.

The ventral vagal pathway, also called the social engagement system because it is activated when we feel safe enough to communicate with others, connects (along with some associated nerves) the brainstem to the neck, face, eyes and ears as well as the heart and lungs. It puts the ‘brakes’ on our sympathetic system activation to calm us and allow more flexible responses (except in an emergency, when it releases the brakes). Because it allows us to engage and explore rather than defend and retreat – and to compare it to the defensive fight–flight and freeze reactions – we can think of it as our face and find response: it allows us to face challenging situations, and find a way to overcome the challenge even when the way forward isn’t immediately obvious, which sets us mentally free.

The three pathways work in a predictable order. When we are at our best and feel safe and connected so that the social engagement system is operating, we can connect with others, think flexibly, see different options and follow through with plans, and are generally organised and on top of things. The moment we sense threat, the sympathetic branch of the ANS kicks in and prepares us to defend ourselves through flight or flight. And if neither the social engagement nor the fight–flight mechanism helps and we feel trapped, the dorsal vagal pathway activates the freeze reaction, driving us into a primitive shutdown state.

If our limbic system, working through the ANS, is both stable and flexible, we will be able to maintain a healthy physical and mental state, and also deal with stressful situations.

A poorly organised limbic system, lacking a good balance between the three pathways, leaves us prone to extended periods or abrupt spikes of over- or under-arousal. When this happens, it means our RED brain is overactive and our top-down, BLUE control is inadequate.

Putting it all together

So it seems the RED system is honed to get us out of tricky or demanding situations – quickly – and return us to a more even, balanced state. It provides a short-term fix to escape or resolve challenging moments. But what do these RED mind mechanisms, fine-tuned over millennia to keep us safe and sound, mean when it comes to performing under pressure?

What has been the biggest scare you’ve ever experienced? At that time, RED was dominant. It is primed for unthinking action and would have kicked into action immediately. But in other situations in which we face a daunting task but not immediate physical danger, our RED system can be less helpful, becoming activated by social threat and disrupting our ability to think clearly.

In some aspects, the RED system provides precisely what we need for performance. But in others, it seems to create more problems than solutions. Instead of a world of performance, it can take us into a world of interference.

Which is why, to counteract RED, we need BLUE.

Blue

The BLUE world is one of logic and reason. As we’ve seen, this system is responsible for higher mental functions such as prioritising, planning, abstract thinking, decision-making, goal-setting and problem-solving. These more advanced intellectual functions are linked to the frontal lobes, which sit behind the forehead.

There are three BLUE brain abilities that are particularly relevant to performance under pressure:

1 Logic, language and numbers

2 Metacognition

3 Working memory

1. Logic, language and numbers

The BLUE system processes information that has already been handled by the RED system. That means that it is a secondary system to the RED, always dependent on the information it is given, but it also means it can provide a feedback loop and revise the RED information. And because it has the capacity to form words it enables us to communicate all this through language. The RED system uses images, but the BLUE system is able to put names and labels to things, and to number them.

BLUE brain processes are conscious, slow and rule-bound, in contrast to RED processes, which are fast and unconscious. Our BLUE mind processes information in a linear way, one piece after another. Timelines and sequencing are its specialities. This means that the BLUE mind is often explaining and making sense of events that have already unfolded.

The BLUE mind is constantly interpreting our environment, breaking it down into a basic architecture of structures, categories and sequences to enable logical analysis. These attributes help with reflection, interpretation, planning and goal-setting. It allows us to understand the environment in an objective way and therefore try to anticipate and predict what happens next, based on stored information.

It is not suited to new situations or operating under stress, and is more at home with using a narrow focus to detect patterns, so it can create a narrative about the past or the future.

2. Metacognition: Thinking about thinking

Our BLUE mind enables us to think about how we think and feel, an extraordinary ability shared only with some primates in the animal kingdom. This process of stepping back and reflecting on our own and other people’s mental states is called metacognition, and it is this ability that allows us to adjust our emotional reactions. If we can’t reflect and review, how can we ever learn?

Metacognition occurs when our RED brain processes information from our body and environment through the limbic system, then passes it over to our BLUE brain for a second look. The RED and BLUE systems meet at the right orbitofrontal cortex, which is located in BLUE territory (as we’ve heard), behind the right eye socket. This is the key way-station, where the information is handed over for further review by the BLUE brain, particularly the left pre-frontal cortex. It assesses and adapts our perception of the current situation, considers how this matches with our goals and objectives, and makes conscious adjustments, before the information is returned to the right orbitofrontal cortex, which arrives at the final RED–BLUE combination.

Metacognition is critical for maintaining control over our mental responses, and for learning to perform under pressure. (It sits at the heart of the RED–BLUE tool, which we’ll meet later in the book.)

3. Working memory: Our mental laptop screen

Picture the mind as working like a laptop.

A laptop has a lot of files stored away in its hard-drive memory, where we can’t see them. We’ve forgotten most of the files, but they’re still there somewhere. Our mind is the same, with a huge number of files stored away in our unconscious mind, beyond our awareness.

The working surface of our laptop is the screen, which sits at the interface between the inside and outside worlds. We draw up information from memory storage (our inside world) and we also draw in information from the internet, or by inputting new data (our outside world).

Although it occupies the crucial interface position, the screen has a big limitation: we can only work on a small number of files or channels at a time, otherwise we quickly become overloaded and lose track of things.

Our brain works the same way. The mental equivalent of our laptop screen is called our working memory, a vital mental function located in prime BLUE-mind real estate in our pre-frontal cortex, the part of the frontal lobes that sits just above our eye sockets.

Though our long-term memory has enormous storage capacity, the capacity of our working memory is tiny. A famous psychology experiment in the 1950s showed that we can only hold between five and nine items in our working memory at any one time. (This is one reason why telephone numbers are usually seven or eight digits long, and why we break them up into chunks.) This experiment was later revisited because it was based on simple, learned sequences of items like numbers. When pieces of real-life information were used, the capacity dropped to just four or five.

But in some ways the human mind doesn’t work like a computer. On our laptop, our files are emotionally neutral and stored in a binary system of 0s and 1s, which allows the exact same file to be reopened every time. But in our mind they’re stored according to emotions, which constantly adjust the file contents, so that files are continually modified over time.

When it comes to operating under pressure, our working memory capacity can plummet. Normally we call up files (memories) when we want them, but when we’re under pressure, any memory that’s emotionally similar to the ones we have open can make its way to the surface. Worse still, thanks to our RED brain, any memories that contain threat – and therefore emotion – take precedence. Our working memory loses capacity quickly, so that we can only focus on one thing at a time, and have trouble accessing even basic information. We become self-conscious, just as worried about how we look as what we’re doing. And the content of our working memory changes from minute to minute, so we keep losing what we were working on.

In the end our screen may overload and freeze, and we need a moment to shut down and reboot before we can see things clearly again.

As the screen sitting at the interface between our internal and external worlds, our working memory sits at the heart of our mental performance under pressure. It acts like Brain HQ, because it’s where we gather information from our immediate environment, match it against information and patterns that we call up from our memory banks, manipulate the information a bit, then make a decision and act.

When our screen is clear and at full power, it drives us forward. But when our RED mind interferes, our crucial BLUE capacity is compromised.

Through metacognition, the BLUE pre-frontal cortex has a huge role in keeping RED activation in check. RED overdrive, which leads to shrinking or disintegration of our BLUE mental screen, and loss of braking power on our RED system, is a double whammy for performance under pressure. Our BLUE logical analysis, metacognition and working memory can all be severely affected – and quickly.

Zac is a competitive gamer in the middle of a tense duel. He doesn’t want to lose and face the social media backlash he suffered last time around.

He’s playing right at his limit when he receives a text message from his girlfriend, asking why he hasn’t turned up to meet her as promised. He completely forgot in the midst of his online battle, and now he’s facing an argument.

He loses concentration, and his opponent strikes and gains the advantage, which makes Zac angry and even more distracted. Things go from bad to worse. He gets tunnel vision and starts missing background details. He becomes erratic, swinging between being too hesitant and being too impulsive. He can’t think straight, and his mind keeps jumping to how he’s going to explain things to his girlfriend. He feels like he is playing against two opponents – the one online and himself!

Performing effectively under pressure is about keeping our BLUE mental screen clear even during significant RED mind activity.

Red and Blue

Like it or not, our RED and BLUE minds have an intimate reciprocal relationship. It is, in a sense, like a lifelong marriage.

How we manage that marital relationship will go a long way to determining how far we travel towards our potential. When RED and BLUE are working harmoniously together, we are in a position to do more with our life. When they are at odds, our performance suffers.

For effective performance under pressure, we need RED and BLUE to be operating in the right proportions to suit the situation.

In life-threatening moments, RED beats BLUE because survival beats potential. When we’re in genuine danger it’s time for emergency action, not reflection. The RED fight–flight mechanism goes into overdrive and more or less shuts down BLUE functioning.

In the reverse direction, the BLUE system can dampen down the RED response, but can’t switch it off. Survival never entirely goes out of fashion!

So the RED–BLUE dynamic is that RED operates in the here and now and can at any moment severely disrupt BLUE with emotions; while BLUE constantly works away to keep the emotional RED reactions and impulses in check, probing the past and scanning the future. At our best, our RED and BLUE minds will complement each other as they work in tandem.

RED and BLUE are both important to performance under pressure, but both are able to undermine it too. The key lies in our ability to adjust the balance, because that will govern how we pay attention in any given moment. Our ability to balance the two will go a long way in influencing which mental pathway we go down when we are uncomfortable.

How Our Early Years Set the Pattern

The way our brain develops in the first two years of life will have a large say in whether we can hold our nerve in high-pressure situations as adults.

Attachment theory is based on the idea that strong emotional and physical attachment to at least one parent or caregiver is essential for early development. This psychological model can help us understand the impact our early years have on our ability to regulate our emotions later in life.

A strong emotional connection between infant and parent allows the infant to retreat to the parent when they are fearful (attachment), but to continue to explore the world if the parent is reassuring and seems unconcerned about the situation (exploration). The key is that the infant reacts to signals that reveal the parent’s mental state.

The interesting thing is that this attachment behaviour is learned without words. It’s a constant process that happens before we can talk, and even before we can move independently. Our parent intuitively matches our emotional state, providing signals through tone, touch and look, with the eyes being the critical connection point.

On the biological front, our brain goes through a massive growth spurt over the first year of life, to more than double in size to weigh over a kilogram. Our brainstem and limbic system are already maturing, with the amygdala – our superbly sensitive threat detectors – fully functional at birth. Our sympathetic nervous system develops in our first year, to give us the energy to engage and explore visually. If bonding goes well, this first year has a very positive impact on the infant, and most interactions are soothing and joyful.