banner banner banner
Open Longevity. Как устроено старение и что с этим делать
Open Longevity. Как устроено старение и что с этим делать
Оценить:
Рейтинг: 0

Полная версия:

Open Longevity. Как устроено старение и что с этим делать

скачать книгу бесплатно


. Микротрубочки, в свою очередь, очень важны для функционирования митохондрий: при их «разборке» митохондрии теряют свою подвижность. Взаимодействие митохондрий с более прочными трубочками ухудшает их структуру и нарушает энергетическую систему в клетке

.

Еще один из механизмов нарушения цитоскелета клетки, помимо действия ангиотензина II, – регуляция уже упомянутым цитокином TGF-?[16 - Также TGF-? может вызывать нарушение работы митохондрий. Он останавливает рост эпителиальных клеток легких и «состаривает» их, снижая активность IV митохондриального комплекса – цитохром c-оксидазы. Цитохром с-оксидаза замыкает дыхательную цепь, перенося электроны на кислород. Снижение ее активности приводит к утечке электронов и образованию АФК. Окислительный стресс может быть потенциальной причиной некоторых старческих заболеваний

,

,

.] реорганизации актиновых филаментов. Вызывая перегруппировки актиновых филаментов, он влияет на рост и дифференцировку клеток, так как в ядре запускается действие определенных транскрипционных факторов

(рис. 8).

Рисунок 8. Транспорт TGF-? рецепторов. Комплексы рецепторов TGF-? (1) в областях мембран, образующих окаймленные ямки, интернализуются вдоль микротрубочек и локализуются в эндосомах (2). Фосфорилирование R-Smad стимулируется в эндосомах с помощью эндоцитарного белка SARA (3, 4), что приводит к активации транскрипции (5). Эндосомальные рецепторы могут попадать обратно в плазматическую мембрану (6–8) или переходить в лизосомы, где лиганд-рецепторный комплекс разрушается (9). Комплексы рецепторов TGF-?, находящиеся в области мембраны, называются липидными рафтами (10). Они связываются с Smad7 и Smurf убиквитин-лигазами и оказываются в кавеолах (11). Затем эти комплексы рецепторов переходят в лизосомы для последующей деградации.

Аиша Мелуан и ее коллеги показали, что белок SPARC[17 - SPARC (Secreted Protein Acidic and Rich in Cysteine, «секретируемый кислый белок, богатый цистеином») также известен как остеонектин и представляет собой кальций-связывающий матриксно-клеточный гликопротеин

.] влияет одновременно и на изменения состава внеклеточного матрикса, и на функцию митохондрий в мышечных клетках

.

В мышцах SPARC синтезируется при строительстве или заживлении мышечной ткани. Еще он обладает способностью связываться с коллагенами разных типов, за счет чего влияет на перестройку и формирование внеклеточного матрикса

.

Что касается митохондрий, то этот белок влияет на их развитие путем взаимодействия с индуктором биогенеза митохондрий – белком AMPK (Adenosine Monophosphate-activated Protein Kinase, «протеинкиназой, активируемой аденозинмонофосфатом»)

. Таким образом, SPARC, как и ангиотензин II, и TGF-?, может выступать связующим звеном между работой митохондрий и процессами, протекающими в межклеточном матриксе.

Та же группа ученых представила еще один механизм взаимодействия митохондрий с матриксом при помощи SPARC

. Схема их непростых взаимодействий представлена на рисунке 9.

Рисунок 9. Влияние белка SPARC на экспрессию внеклеточного матрикса и на репликацию и транскрипцию митохондриальной ДНК. Физические упражнения вызывают активацию AMPK за счет увеличения соотношения аденозинмонофосфата к аденозинтрифосфату (AMФ/ATФ). Это, в свою очередь, индуцирует биогенез митохондрий посредством активации гамма-рецептора, активируемого пролифератором пероксисом коактиватора-1-альфа (PGC1-?), и повышает уровень экспрессии белка SPARC, что активирует интегрин-связанную киназу (ILK). Последняя фосфорилирует и инактивирует киназу гликогенсинтазы-3-бета (GSK-3?), что приводит к стабилизации ?-катенина и выработке белков мышечного внеклеточного матрикса. Инактивация GSK-3? также стимулирует активацию передачи сигналов PGC-1-? и размножение митохондрий. Белок SPARC может способствовать усилению размножения митохондрий в мышцах посредством взаимодействия SPARC с AMPK, а сигнальная взаимосвязь митохондрий и внеклеточного матрикса может служить терапевтической мишенью для лечения патологий, вызванных дисфункцией митохондрий и внеклеточного матрикса, таких как саркопения

.

В других недавних работах описана взаимосвязь нарушения функций митохондрий и вызванного им избытка кальция с нарушением структуры внеклеточного матрикса в мышцах

. Общая цепь событий в данном случае может быть представлена таким образом: повышенная продукция ангиотензина II в организме вызывает дисфункцию митохондрий и окислительный стресс, что приводит к нарушению гомеостаза кальция. Это, в свою очередь, ведет к нарушению структуры внеклеточного матрикса и дистрофии мышц, а следовательно, к саркопении.

Перекисное окисление липидов

Перекисное окисление липидов (ПОЛ) происходит в первую очередь во внутренней мембране митохондрий, которая находится в активном контакте со свободными радикалами, а также в клеточной мембране нейронов. Этот процесс изменяет физические свойства мембран, их текучесть и работу электрон-транспортной цепи митохондрий. Продукты ПОЛ токсичны и повреждают некоторые важнейшие долгоживущие молекулы: гистоны, белки ядерных пор, структурные белки и ДНК

.

По своей сути ПОЛ – это повреждение полиненасыщенных жирных кислот свободными радикалами, которое происходит в митохондриальных и клеточных мембранах. Двойные связи полиненасыщенных жирных кислот особенно чувствительны к воздействию свободных радикалов, так как легко «разрываются», присоединяя их. В результате этого образуются диальдегиды, пероксиды и другие продукты окисления. Все это запускает цепную реакцию окисления липидов.

Ряд исследований указывает на количественную связь между процессом ПОЛ и образованием поперечных сшивок белков матрикса

. Так, например, один из продуктов ПОЛ, малондиальдегид, образует такое же количество сшивок с белками, как и глюкоза, что было показано в экспериментах in vitro

. Из всего этого следует, что процесс окисления жирных кислот отрицательно влияет на состояние внеклеточного матрикса, что, как мы уже знаем, приводит к неприятным последствиям: старению тканей, их фиброзу и нарушению их функций.

В клетках долгоживущих видов животных меньше полиненасыщенных жирных кислот

. В связи с этим можно предположить, что они не только меньше страдают от ПОЛ, но и процесс изменения белков внеклеточного матрикса у них идет медленнее за счет снижения реакционной способности жирных кислот

.

Существуют способы замедлить скорость перекисного окисления жирных кислот. Так, уже более десяти лет коллектив российского исследователя Михаила Щепинова разрабатывает подход для продления жизни и лечения ряда заболеваний, вызванных избыточным синтезом свободных радикалов. Они используют модифицированные жирные кислоты. Водород в них заменен на дейтерий (изотоп, имеющий больший атомный вес и более прочную связь с атомом углерода). Измененные жирные кислоты более устойчивы к окислению и предотвращают разрушение клеточной мембраны

.

Как же быть?

Теперь поговорим о том, что же можно сделать, чтобы замедлить процесс старения внеклеточного матрикса и решить проблемы, с ним связанные.

Посмотрим на то, как ученые ищут пути решения одной из самых актуальных проблем, связанных с возрастным ремоделированием матрикса, – проблемы гликирования. Уже идет разработка веществ, которые могли бы ингибировать этот процесс или поворачивать его вспять. Рассмотрим некоторые из них.

Растворимая форма RAGE

Известно, что в ответ на стимуляцию рецепторов RAGE конечными продуктами гликирования и возникающий вследствие этого воспалительный стресс клетки нашего организма вырабатывают растворимую форму RAGE. Она служит биомаркером индуцированного КПГ воспаления

.

Также она способна конкурировать за связывание КПГ с рецептором RAGE на поверхностях мембран и таким образом замедлять процесс воспаления. Конечно, природная форма растворимого рецептора RAGE плохо подходит для применения в качестве лекарства из-за ее короткого периода полураспада, большой молекулярной массы и других недостатков, свойственных природным белкам.

Японские исследователи разработали гибридные белковые «ловушки»

для КПГ, состоящие из участка рецептора RAGE, связывающего КПГ, и эластиноподобного белка, формирующего устойчивые коацерваты. У подобных продуктов белковой инженерии уже есть будущее в качестве противовоспалительных, ранозаживляющих и геропротекторных лекарств.

С той же целью можно использовать и небелковые агенты с меньшей молекулярной массой. Например, ДНК-аптамеры – олигонуклеотиды, нацеленные на блокаду рецепторов RAGE, связывающихся с КПГ белков матрикса. Их планируют использовать для восстановления поврежденных из-за гликирования тканей органов

.

Способность блокировать RAGE-рецепторы обнаружена у некоторых искусственно созданных аминокислот

, а также у дейтерированных полиненасыщенных жирных кислот

, хебуловой кислоты

, кверцетина

и молекулы GLY-230

.

Главный недостаток этого подхода в том, что в низких концентрациях блокаторы КПГ неэффективны, а в высоких – токсичны. Систему, однако, можно изменять, подбирая комбинации компонентов. В результате успешного подбора блокаторы будут действовать так же эффективно, но из-за более низких концентраций окажутся менее ядовиты.

Глюкозепан

Один из наиболее частых КПГ белков – глюкозепан – продукт реакции Майяра между остатками лизина и аргинина

. Глюкоза образует поперечные сшивки, которые, как мы помним, – одна из основных причин повышения жесткости матрикса с возрастом.

Их высокое содержание глюкозепановых сшивок, возможно, причина того, что искусственно созданные вещества для блокирования рецепторов КПГ не работают. Они в основном направлены на предотвращение образования не-глюкозепановых сшивок.

Глюкозепановые сшивки были открыты на рубеже веков, в 1999 году

. Их обнаружение вызвало всплеск оптимизма: ведь структура глюкозепана достаточно уникальна для того, чтобы найти метод его выборочного разрушения. Однако пока что эффективное средство для расщепления глюкозепана в живых тканях не найдено. Хотя определенные успехи все же есть.

Некоторые химические вещества обладают способностью снижать количество глюкозепановых сшивок в тканях лабораторных крыс, блокируя их формирование или удаляя уже сформированные

. В лаборатории Дэвида Шпигеля из Йельского университета в США активно ищут ферменты, которые могут избирательно расщеплять сшивки, образованные КПГ

. На этом пути ученые уже достигли некоторых результатов

. Они выделили из бактерий фермент, участвующий в модификации тРНК, – он оказался способен расщеплять такие КПГ, как карбоксиэтил- и карбоксиметил-лизин.

Еще один пример похожей стратегии – генетическая модификация фибробластов таким образом, чтобы те могли секретировать амадориазу. Это фермент, способный дегликировать белки, отщепляя от них остатки углеводов

.

В природе амадориазы встречаются у грибов и бактерий

. Они обращают вспять перегруппировку Амадори – одну из стадий реакции Майяра. На данный момент выделено и охарактеризовано более десятка амадориаз, однако их субстратная специфичность в основном позволяет отщеплять КПГ от отдельных аминокислот и коротких пептидов. Поэтому необходимы также исследования в области белковой инженерии этих ферментов, чтобы повысить их специфичность в отношении гликированных белков матрикса

.

C реакцией Амадори и ее вредоносными продуктами можно бороться и другими методами. Как было сказано выше, это лишь одна из стадий химического процесса гликирования. Ключевая, но не окончательная.

Группа исследователей из США предлагает блокировать гликирование сразу после стадии реакции Амадори, что может предотвратить образование КПГ. Ими уже описана

группа низкомолекулярных соединений, названных амадоринами: например, пиридоксамин и аминогуанидин. Ими же выполнен рациональный дизайн амадоринов второго поколения с улучшенной активностью, например молекулы с кодовым названием BST-4997

, которую они позиционируют в качестве кандидата для лекарства, целенаправленно блокирующего процесс гликирования.

Приходят на помощь и природные соединения. Лекарственные растения испокон веков служили человеку для борьбы с различными недугами, а современная фармакология позволяет эффективно выделять из таких растений действующие вещества, чтобы затем применять их в качестве индивидуальных препаратов.

Оказалось, что выделяемые из растений соединения, содержащие О-ацетильную группу, способны эффективно блокировать реакцию гликирования «в пробирке», а значит, имеют потенциал для испытания на клеточных и животных моделях и превращения в лекарства. Среди них – флавоноиды из золотой камелии

, кумарины из полыни

и разнообразные соединения из платикодона (разновидности колокольчика)

.

Другой многообещающий подход – использование антител к глюкозепану. Этот метод был описан совсем недавно и должен значительно облегчить ученым их исследования

.

Хелатирование

Еще одна стратегия борьбы с гликированием – использование хелатирующих агентов

.

Хелатирование – способность ряда органических соединений, в частности этилендиаминтетрауксусной кислоты (ЭДТА), нековалентно связывать ионы металлов, сжимая их, словно клешней.

Оказывается, инициаторами гликирования часто бывают реакции окисления, катализируемые ионами металлов. Хелатирующие агенты удаляют эти ионы из реакционной среды, тем самым замедляя процесс образования поперечных сшивок матрикса.

ЭДТА уже давно используют

в качестве терапевтического средства для борьбы с диабетическим поражением сосудов, состояние которых, как мы помним, во многом определяется состоянием внеклеточного матрикса.

Компания Alteon (ныне объединена с компанией Synvista Therapeutics, США) создала первое лекарство против различных сшивок в межклеточном матриксе – Алагебриум. Оно способно разрезать сшивки, образованные с участием ?-дикетона. Однако лекарство не имело большого успеха, потому что таких сшивок в матриксе оказалось немного. И основная проблема повышения жесткости матрикса не была решена.

Кое-что еще

Совсем недавно появилась статья, в которой предлагается использовать 4-фенилбутират натрия в качестве агента против гликирования

.

Механизм его действия точно неизвестен. Предполагается, что он может связываться с альбумином и предотвращать его взаимодействие с глюкозой, а это и есть начальный этап гликирования.

Так, 4-фенилбутират натрия становится потенциальным участником борьбы с нейродегенеративными заболеваниями, атеросклерозом, диабетом, гиперлипидемией и другими возраст-зависимыми заболеваниями.

Убираем лишний матрикс

Вторая очень актуальная проблема – накопление соединительной ткани и внеклеточного матрикса там, где должна быть другая функциональная ткань. Например, изменение с возрастом состава и структуры мышечной ткани. Это происходит из-за снижения активности металлопротеиназ, необходимых для ремоделирования межклеточного матрикса. В конечном счете разрастание и утолщение межклеточной массы приводит к снижению упругости и развиваемой силы мышц.

Хорошая новость в том, что в организме существуют механизмы, позволяющие обратить этот процесс вспять. С возрастом меняется не только состояние мышечной ткани, но и характер ее ответа на повреждения. В ряде экспериментов на грызунах было показано, что у старых мышей в ответ на повреждения мышц активнее, чем у молодых, возрастает концентрация металлопротеиназ, в результате чего значительно снижается количество коллагеновых отложений в поврежденной мышце

.

Кроме того, было показано, что этот эффект наблюдается вследствие выработки мышечными клетками в ответ на повреждения трансформирующего ростового фактора TGF-?. Есть все основания полагать, что в будущем этот механизм удастся использовать для воздействия на мышцы пожилых людей, повышая их силу и упругость.

Подведем итоги

Внеклеточный матрикс – динамический внеклеточный компонент организма, который постоянно изменяется в ответ на различные стимулы. Он подвержен существенным трансформациям в ходе старения организма. Его компоненты регулируют различные процессы, включая пролиферацию, выживание, дифференцировку и миграцию клеток.

Внеклеточный матрикс состоит из множества белков. Самые распространенные из них – коллаген и эластин. Они долгоживущие и, как следствие, особенно чувствительны к накоплению неферментативных модификаций и разрушению в результате ферментативного расщепления.

По современным представлениям, большинство продуктов посттрансляционных модификаций матричных белков в итоге превращаются в КПГ. Но остается еще много неясного о самом характере изменений, происходящих в матриксе. Например, продукт карбамилирования белков матрикса, гомоцитруллин, также часто встречается в стареющем матриксе и вносит свой вклад в изменение его функций

. По мнению некоторых ученых, этот процесс может быть таким же весомым, как и гликирование