banner banner banner
Open Longevity. Как устроено старение и что с этим делать
Open Longevity. Как устроено старение и что с этим делать
Оценить:
Рейтинг: 0

Полная версия:

Open Longevity. Как устроено старение и что с этим делать

скачать книгу бесплатно


. О возможных методах борьбы со старением иммунитета мы поговорим в конце этой книги.

Одна из самых больших возрастных неприятностей – репрессии против здоровых клеток и тканей вместо борьбы с реальной угрозой. Такие нарушения называются аутоиммунными заболеваниями, бо?льшая их часть на данный момент либо не имеет эффективных способов лечения, либо поддается ему с большим трудом и лишь в отдельных случаях

. Возрастная деградация иммунитета приводит к тому, что он не только не справляется со своими прямыми обязанностями, но и способствует повреждению и преждевременному старению

. «Дряхлеющая» иммунная система производит аутоантитела, реагирующие на собственные белки организма. А их наличие – причина многих бед. В первую очередь речь тут все о том же системном хроническом воспалении

. Также при старении иммунитета происходит избыточная активация регуляторных Т-лимфоцитов, которые подавляют активность Т-киллеров, что приводит к раку различных органов

.

Старение в первую очередь затрагивает наиболее продвинутую часть нашей защитной системы – адаптивный иммунитет

. Его задача – распознавать и устранять угрозы, но, в отличие от своего более древнего врожденного собрата, он работает намного точнее.

Для точности необходимы сотни миллиардов Т- и В-лимфоцитов

, каждый из которых несет на своей поверхности множество копий уникального рецептора, распознающего свой антиген.

Антиген – странное название. Буквально: antibody generator – то, в ответ на что организм вырабатывает антитела. «Чужой» – так было бы точнее. Антиген – любое вещество, которое не нравится иммунитету: белки, глико- и липопротеины. Это характерные маркеры определенных видов врагов, вплоть до типа вируса или конкретного типа опухоли

.

Когда антиген попадает в организм и встречается со «своим» лимфоцитом, запускается многостадийный процесс активации иммунной клетки. Вроде многократного подтверждения нескольких кодов доступа. Затем активированный лимфоцит в бешеных темпах размножается, производя армию клонов. Они все специфичны к антигену, к которому был специфичен лимфоцит-прародитель, и способны эффективно и точно бороться с патогенами – носителями этого антигена.

На подготовку адаптивному иммунитету требуется время. И место. Место созревания одного из двух его «войск» – Т-лимфоцитов – тимус. Собственно, оттуда и буква «Т» в их названии. Эту небольшую железу, расположенную в грудине примерно над солнечным сплетением, можно назвать «элитной военной академией». В «академию» незрелые предшественники Т-лимфоцитов попадают из костного мозга и там проходят жесточайший отбор: в итоге не более 5 % новобранцев

формируют активные ряды бойцов клеточного адаптивного иммунитета. Отбор в том числе необходим, чтобы отбраковать лимфоциты, способные распознавать и атаковать клетки собственного организма.

К сожалению, тимус – один из самых быстро стареющих органов человека. Его «расцвет» приходится на пятнадцатилетний возраст, после чего начинается инволюция, то есть постепенная атрофия, замещение клеток тимуса жировыми клетками-адипоцитами.

Со временем падает и количество новых Т-лимфоцитов, образующихся в организме. У взрослых людей их популяция частично поддерживается за счет размножения уже созревших периферических Т-лимфоцитов.

Но процесс инволюции тимуса необратим, и Т-лимфоцитов становится все меньше и меньше. Деградирующий тимус перестает производить новые, молодые лимфоциты. А те «старички», что сохраняются, вынуждены поддерживать свою численность за счет регулярного деления, в процессе которого подвергаются старению – уже клеточному. Они подходят к пределу Хейфлика[1 - Предел Хейфлика – граница количества делений клетки.] (у них укорачиваются теломеры), и происходит целый ряд других возрастных изменений на клеточном уровне. Например, потеря экспрессии важного для работы Т-лимфоцитов корецептора CD28. Подобные «лимфоциты-старички» не могут полноценно выполнять свои функции, зато начинают усиленно выделять сигнальные молекулы-цитокины: интерлейкин-6 и фактор некроза опухолей-альфа (ФНО?, TNF?). Эти молекулы, в свою очередь, стимулируют развитие воспалительной реакции

. Интересно, что подобное ускоренное «старение» Т-лимфоцитов также происходит при ВИЧ-инфекции

.

Вот так. То есть защитные механизмы ослабевают, а те, что остались, постепенно «сходят с ума» и приносят больше вреда, чем пользы.

(Старение и деградация тимуса и адаптивного иммунитета связаны со старением организма в целом. Если взглянуть на процессы, имеющие отношение к старению и возрастным заболеваниям, то можно увидеть, что красной нитью через них проходит один общий, оказывающий огромное влияние фактор – воспаление

.)

Есть ли главная причина?

Так кто же «первая скрипка» в оркестре возрастных изменений и есть ли она? Скорее всего, все эти изменения запускают, активируют и усиливают друг друга, формируя так называемые «порочные круги». Например:

• Инволюция тимуса, клеточное старение Т-лимфоцитов и выделение ими цитокинов – медиаторов воспаления – повышают с возрастом их локальную концентрацию в тканях, увеличивая вероятность возникновения хронического воспаления.

• Возрастная дисфункция жировой ткани, выраженная в ее гипертрофии и развитии инсулинорезистентности, а также активация системы РААС формируют хроническое воспаление и повышение продукции АФК (что опять же усиливает воспаление). Повышенный уровень АФК и активированные компоненты РААС вызывают нарушения в работе внеклеточного матрикса и митохондрий.

• Нарушение работы митохондрий приводит к образованию значительных количеств DAMP, что усиливает стерильное воспаление, и к дальнейшему повышению уровня АФК. При этом снижается количество энергии, и процесс «уборки» в клетках замедляется.

• Нарастающий уровень АФК приводит к дальнейшим повреждениям компонентов клетки, перекисному окислению липидов, окислительному стрессу, гибели нейронов.

• Продукты перекисного окисления липидов стимулируют образование поперечных сшивок белков внеклеточного матрикса.

• Важную роль в этих процессах играет подавление активными компонентами РААС противовоспалительной функции витамина D

.

• Параллельно происходят такие процессы, как укорочение теломер, истощение пула стволовых клеток, нарушение целостности биологических мембран и работы митохондрий. Внутренние процессы в соединительной ткани (накопление поперечных сшивок, старение белков матрикса, их гликирование) и мутации митохондриальной ДНК также вносят свой вклад в развитие старения.

• Факторами риска, ускоряющими нарушения в работе жировой ткани, РААС, внеклеточного матрикса, митохондрий и старение в целом, могут выступать нездоровый образ жизни, воспалительно-инфекционные процессы и загрязнение окружающей среды.

Сочетание вышеперечисленных факторов приводит к нарушению функционирования отдельных органов и систем организма. Это приводит к развитию сердечно-сосудистых, метаболических и нейродегенеративных патологий, саркопении, остеопорозу и онкологическим заболеваниям. Риск смертности экспоненциально увеличивается с возрастом

. Это и составляет саму основу старения.

Возрастные заболевания, связанные с воспалением

Возрастное воспаление сегодня считается общей и, возможно, главной особенностью старения тканей и одной из основных причин большинства возрастных заболеваний.

С хроническим воспалением слабой степени связаны многие причины смерти в старости: сердечно-сосудистые, онкологические и нейродегенеративные патологии

(рис. 5).

Рисунок 5. Возрастное воспаление и связанные с ним заболевания

Есть ли выход?

Стоит помнить, что есть и процессы, которые стабилизируют работу системы. Хороший пример – регуляция воспаления при помощи сравнительно недавно описанных в качестве биорегуляторов микроРНК.

МикроРНК – короткие одноцепочечные молекулы рибонуклеиновых кислот, которые не кодируют белки, зато способны комплементарно взаимодействовать с кодирующими их матричными РНК. Они синтезируются в ответ на активацию какого-либо процесса, например воспаления

.

За счет принципа комплементарности достигается высокая избирательность: у каждой микроРНК лишь одна или небольшое количество мишеней. Связываясь с ними, микроРНК подавляют экспрессию соответствующих генов на уровне трансляции, останавливая тот процесс, развитие которого вызвало их синтез. Рассмотрим кратко саморегуляцию воспалительных процессов при помощи микроРНК как противовоспалительный и замедляющий старение механизм, заложенный в нас самой природой.

miR-21 – одна из микроРНК, играющая важную роль как в воспалении, так и в регуляции метаболизма. Синтез miR-21 запускают макрофаги в ответ на активацию уже известного нам провоспалительного сигнального пути NF-?B и ряда других провоспалительных путей. Эта микроРНК замедляет воспалительные процессы, взаимодействуя с мРНК провоспалительных белков PTEN и PDCD4 и снижая уровень их экспрессии. Это приводит к нарушению передачи сигналов в молекулярном каскаде NF-?B и увеличению выработки противовоспалительного интерлейкина-10

.

Это лишь один из многочисленных примеров использования организмом микроРНК для регуляции воспаления. Есть десятки подобных примеров, как и десятки микроРНК, имеющих, наоборот, провоспалительную активность.

Приведенный пример показывает, что для любого связанного со старением процесса саморегуляция это «живая вода», стабилизирующая систему и продлевающая срок ее жизни.

Большинство существующих сегодня теорий старения носит ограниченный фрагментарный характер, описывая какой-то отдельный фактор и выделяя его как главный

. Такое положение вещей, конечно, сильно затрудняет борьбу со старением и нередко заводит в тупик. Хорошая теория старения должна быть непротиворечивой и по максимуму описывать все известные на сегодня процессы, связанные со старением.

Мы предлагаем рассматривать старение как сложный «клубок» взаимосвязанных биологических процессов, при нарушении любого из которых остальные также ломаются. Таким образом, каждый из причастных к старению факторов и все они разом – «главные» причины старения.

Старение внеклеточного матрикса

Организм человека устроен иерархически. Он состоит из органов, органы – из тканей, ткани – из клеток, клетки – из молекул.

Таково расхожее представление об устройстве тела. На самом же деле тканей, где клетки расположены, как кирпичики, у нас совсем немного: различные эпителии, слизистые оболочки и большинство желез. В остальных же тканях между «кирпичиками» есть довольно большое расстояние. Оно заполнено тем самым межклеточным матриксом.

Матрикс есть везде, но самое большое соотношение матрикс/клетки – в соединительных тканях. В среднем такие ткани только на 20 % состоят из клеток (по объему и весу) и на 80 % – из матрикса

. Это кожа, кости, хрящи, сухожилия, кровь и лимфа, радужная оболочка и склера глаз, а также фасции – «футляры» для мышц, органов, сосудов и нервов. Кроме того, иногда процессы, происходящие в матриксе, причастны и к выполнению основной функции органа: например, фильтрующие мембраны в почках «сделаны» именно из матрикса.

Матрикса в организме много. И если мы хотим разобраться в старении тела, необходимо также рассмотреть старение этой структуры.

Матрикс выполняет не только структурную функцию. Он постоянно контактирует с клетками через рецепторы-интегрины на их поверхности. Контакт клеток с матриксом критически важен: в случае его отсутствия клетка совершает запрограммированное самоубийство – апоптоз.

Благодаря регулярной структуре внеклеточный матрикс облегчает движение и миграцию клеток. Так, молодые и незрелые стволовые клетки при получении определенных сигналов из своего микроокружения открепляются от стволовой ниши и мигрируют к более зрелым товарищам, которых им предстоит заменить. По прибытии клетка определяет, где оказалась, и принимает решение о дифференцировке. На это влияют факторы роста – отдельные молекулы, находящиеся в сетчатой структуре матрикса. Они обеспечивают переход клетки в фазу деления, что позволяет ткани успешно регенерироваться[2 - Регенерация нарушается при развитии злокачественного новообразования. Опухолевые клетки гораздо менее зависимы от наличия факторов роста или работы внеклеточного матрикса. Нередко у них мутируют гены, обеспечивающие гибель клетки, оказавшейся в абсолютно нетипичных условиях: например, когда она не получает сигнал от матрикса. При этом эти клетки могут активно выделять ферменты, разрушающие упорядоченные структуры матрикса, что помогает им распространяться по организму.Из-за нарушения организации внеклеточных структур нарушается организация и опухолевых клеток. Они начинают расти кучками и сдавливать ткани вокруг. При таком давлении здоровые клетки нередко уходят в апоптоз, поскольку матрикс в таких условиях не способен обеспечивать благоприятные условия для их жизнедеятельности.].

В дальнейшем, говоря о межклеточном матриксе, мы часто будем приводить в качестве примера кожу. Основной слой кожи – дерма – прекрасный пример соединительной ткани, содержащей большое количество внеклеточного матрикса. С другой стороны, старение кожи близко каждому. С третьей – кожа очень удобно расположена, прямо на поверхности тела, что делает ее прекрасным модельным объектом для изучения старения.

Что же такое внеклеточный матрикс?

Это сетчатая структура между клетками, которая в основном состоит из длинных долгоживущих молекул и «наполнителя» между ними. Разберем подробнее все компоненты:

• Структурные белки (гликопротеины[3 - Коллаген и эластин – гликопротеины. Однако есть еще и протеогликаны. Отличаются они тем, что имеют разное соотношение «углеводы/белки» в своем составе.В гликопротеинах углеводов не больше 20 %. Углеводные цепи короткие, нерегулярные и не содержат уроновых кислот. Углеводы могут быть представлены моносахаридами, дисахаридами, олигосахаридами или полисахаридами.]: коллагеновые, эластические и ретикулярные волокна) – в матриксе их можно сравнить с пружинами в матрасе.

• Основное вещество (протеогликаны[4 - Протеогликаны, наоборот, состоят в основном из углеводов: 90–95 % молекул протеогликанов составляют длинные полисахариды регулярного строения (гликозаминогликаны), содержащие аминосахара, часто – уроновые кислоты. Это обычно очень крупные молекулы, задерживающие на себе воду и другие вещества.], гиалуроновая кислота и молекулы воды, которые они задерживают) – им заполнено пространство между структурными белками.

• Адгезивные гликопротеины (ламинин, фибриллин и фибронектин) – «клей» для строительных кирпичиков матрикса и клеток.

• Факторы роста – белки, переключающие режим клетки в фазу деления для регенерации.

• Ферменты (в частности, матричные металлопротеиназы) – белки, которые ускоряют все реакции, протекающие в клетках: и синтез новых веществ, и их расщепление. С их помощью клетка разрезает компоненты матрикса, чтобы продвигаться через «заросли пружин».

Основные клетки соединительных тканей – фибробласты. Они постоянно производят и выделяют в окружающее пространство молекулы матрикса, что обеспечивает его своевременное обновление. Фибробласты – фабрики по обновлению межклеточного матрикса, это их основная функция.

Впрочем, в отдельных тканях и органах основные клетки матрикса не всегда именно фибробласты. Внеклеточный матрикс, формируемый хондроцитами, – это хрящ; остеобластами – кость. А плазма – это межклеточный матрикс крови, хоть и жидкий.

Коллагеновые волокна

Коллаген – основной структурный белок матрикса. Его очень много: 25–33 % всех белков организма

, или 70–80 % белков дермы кожи.

Коллаген входит в состав хрящей, суставов, костей, волос, ногтей и даже глазных яблок. Он придает тканям эластичность и прочность. Это, как правило, длинная нитеподобная молекула, которая по-разному уложена в различных тканях: в коже коллаген образует трехмерную сеть из нитей, а вот в костях нити лежат параллельно, смещенные в шахматном порядке и плотно сжатые между собой.

Свое название коллаген получил от греческого слова ????? («клей»), поскольку именно для производства клея его использовали первое время, получая путем вываривания из хрящей и кожи лошадей.

В зависимости от степени минерализации, богатые коллагеном ткани могут быть очень жесткими, как кость, или более эластичными, как сухожилия. Часто ткани эластичны в начале жизни, однако постепенно минерализуются. Так, например, происходит с сердечными клапанами: коллаген в них с возрастом кальцифицируется, что приводит к снижению сердечной функции.

В настоящее время известно 28 типов коллагена. Они отличаются друг от друга аминокислотными последовательностями, степенью модификации (интенсивности гидроксилирования или гликозилирования) и тем, какого типа структуры они образуют.

Типы коллагена I, II, III, V, XI формируют длинные нити-фибриллы. Из IV типа получаются пленки, а из VII – якорные фибриллы. Остальные типы – короткие цепочки, фибриллы в форме спиралей, а также сетеобразующий и трансмембранный коллаген.

Более 90 % всего коллагена человека приходится на I, самый прочный из всех (рис. 1), II, III и IV типы[5 - Если учесть, что белок составляет примерно 20 % массы тела и что 30 % или более общего белка – это коллаген, и если предполагается, что коллаген типа I составляет по меньшей мере 90 % от общего количества коллагена, можно рассчитать, что взрослый человек весом 70 кг может содержать почти 4 кг коллагеновых мономеров I типа.].

В основе структуры коллагена – аминокислоты. Они сначала собираются в нити-фибриллы (они же микрофибриллы) диаметром 1,5 нм, длиной порядка 300 нм. Фибриллы при ближайшем рассмотрении представляют собой спирали из трех нитей: двух одинаковых (альфа пептид-1) и одной немного химически отличающейся (альфа пептид-2). Фибриллы, в свою очередь, образуют пучки – это и есть волокна коллагена.

Каждый тип коллагена организуется в свой тип коллагеновых волокон.

Рисунок 1. Структура коллагена I типа. Розовая линия – коллаген I-альфа-II, две голубые – коллаген I-альфа-I

Каждая из трех цепей коллагенового волокна изначально синтезируется отдельно, с дополнительными аминокислотами на обоих концах, обеспечивающими ее растворимость. Затем три цепи собираются в одну спираль внутри фибробласта. На этом этапе спираль называется проколлагеном и пока еще растворима.

Затем фибробласт выделяет протоколлаген. Концы протоколлагена, отвечающие за растворимость, отрезают специальные ферменты: амино- и карбокситерминальные протоколлагеновые протеиназы. Удаление протеиназами еще нескольких аминокислот с концов приводит к получению коллагена, который затем организуется в протяженные волокна, формирующие трехмерную сеть с помощью специальных ферментов – лизилоксидаз

.

Ретикулярные (решетчатые) волокна

Это предшественники коллагеновых волокон, их незрелая форма. Они имеют более нежную структуру и сформированы из коллагена III типа.

Сеть ретикулярных волокон называют ретикулином. Это основа для некоторых мягкотканных органов (печень, костный мозг, лимфатическая система).

Эластические волокна

Секрет эластичности одноименных волокон – в белке эластине. Он тоже фибриллярный, как и коллаген. И его основная особенность, как несложно догадаться, – эластичность, но со временем это свойство меняется

. Эластин нерастворим, высоко стабилен и медленно метаболизируется. Большинство протеиназ неспособны его расщеплять. С этим справляется разве что эластаза, которую бактерии и клетки синтезируют в очагах воспаления.

Эластин легко разрушается под воздействием прямого солнечного излучения – этим и объясняются стремительное старение кожи и потеря ее упругости у людей, пренебрегающих солнцезащитными средствами.

Эластиновые волокна формируются аналогично коллагеновым: сначала в фибробластах собираются цепочки предшественника эластина – тропоэластина. Это пока еще растворимая молекула. Затем, уже снаружи, в матриксе, при помощи ферментов (трансглутаминаз и лизилоксидаз) образуются поперечные сшивки, стабилизирующие молекулу (здесь, правда, важна мера, ведь их избыток – один из факторов старения матрикса). После небольших модификаций (сшивок между окисленными остатками лизина в белке

) мы получаем прочную эластиновую сетку.

Затем аморфная сетка из эластина соединяется с фибриллином-1а[6 - Фибриллин-1а – гликопротеин, который тоже синтезируется в фибробластах и отвечает за стабильность эластинового волокна. Фибриллин относят к адгезивным молекулам, «клею».]. В результате образуются эластиновые волокна толщиной 1–2 мкм (они состоят из эластина примерно на 90 %). Волокна разветвляются и соединяются друг с другом, образуя сеть

.

Эластиновые волокна эластичны, устойчивы к действию кислот и щелочей, не набухают в воде. Они способны поддерживать свою функцию на протяжении всей жизни. Однако различные ферменты, такие как матричные металлопротеиназы и сериновые протеазы, могут их расщеплять.

Если образование фибрилл коллагена происходит в течение всей жизни, то экспрессия тропоэластина у большинства млекопитающих начинается на поздних этапах жизни плода, достигает очень высоких уровней на неонатальных стадиях и снижается после рождения, а во взрослом возрасте полностью прекращается

. На этом основании было выдвинуто предположение, что продолжительность жизни человека не может быть длиннее срока жизни эластина, период полураспада которого составляет около 100 лет