Читать книгу Река, выходящая из Эдема. Жизнь с точки зрения дарвиниста (Ричард Докинз) онлайн бесплатно на Bookz (2-ая страница книги)
bannerbanner
Река, выходящая из Эдема. Жизнь с точки зрения дарвиниста
Река, выходящая из Эдема. Жизнь с точки зрения дарвиниста
Оценить:
Река, выходящая из Эдема. Жизнь с точки зрения дарвиниста

3

Полная версия:

Река, выходящая из Эдема. Жизнь с точки зрения дарвиниста

Инженеры проводят важное разграничение между цифровым кодированием и аналоговым. В проигрывателях грампластинок, магнитофонах, а также (до последнего времени) и в большинстве телефонов используется аналоговый код. А код, используемый в компакт-дисках, компьютерах и большинстве новых телефонных систем, – цифровой. Аналоговая система телефонной связи преобразует меняющиеся волны давления воздуха (звуки) в соответствующим образом меняющиеся волны электрического напряжения в проводе. Грампластинка работает по сходному принципу: неровности звуковой дорожки заставляют вибрировать иглу звукоснимателя, и ее движения преобразуются в соответствующие им электрические колебания. На другом конце провода мембрана наушника телефонной трубки или динамик электропроигрывателя превращают эти перепады напряжения обратно в колебания давления воздуха – так, чтобы мы могли их слышать. Данный способ кодирования прост и прямолинеен: электрические колебания в проводе пропорциональны колебаниям воздушного давления. Напряжение в проводе может принимать – в определенных пределах – любые значения, и различия между этими значениями имеют принципиальную важность.

А в цифровом телефоне передающееся по проводу напряжение может принимать только два значения – ну или какое-нибудь другое количество отличных друг от друга значений, например 8 или 256. И информация спрятана не в самих этих значениях, а в их последовательности. Такая техника называется импульсно-кодовой модуляцией. В любой отдельно взятый момент времени реальное значение напряжения редко в точности равняется какой-либо из, скажем, восьми допустимых величин, но приемное устройство округляет его до ближайшей из них, так что сигнал приходит на другой конец провода практически без искажений, даже если качество передачи так себе. Все, что требуется, – выбрать достаточно далекие друг от друга значения, чтобы случайные отклонения от них не были истолкованы принимающей аппаратурой ошибочно и отнесены не к той категории. В этом состоит огромное преимущество цифровых кодов и причина того, почему аудио- и видеосистемы – как и информационные технологии в целом – все больше и больше переходят на цифровые рельсы. Понятно, что компьютеры, что бы они ни делали, используют цифровой код. В целях удобства код этот двоичный, то есть уровней напряжения, которыми он оперирует, только два, а не 8 и не 256.

Даже если телефон цифровой, звуки, входящие в микрофон и выходящие через наушник, все равно представляют собой аналоговые колебания давления воздуха. Цифровой является только та информация, что перемещается от одной трубки к другой. Для того чтобы по-микросекундно переводить аналоговые показатели в последовательность дискретных импульсов – «оцифровывать» их, – должен быть разработан некий код. Когда вы умоляете по телефону своего возлюбленного или возлюбленную, каждый нюанс, каждое прерывание вашего голоса, каждый страстный вздох и тоскливый стон передается по проводу исключительно в форме чисел. Числа, если кодировать и декодировать их достаточно оперативно, могут растрогать вас до слез. Современные электронные переключатели работают так быстро, что время, используемое телефонной линией, может быть поделено на малюсенькие промежутки, подобно тому как гроссмейстер в ходе сеанса одновременной игры распределяет свое время между двадцатью досками. Таким образом, телефонная линия способна вместить тысячи разговоров – с виду одновременно, но на электронном уровне эти разговоры обособлены и друг другу не мешают. Магистральный канал передачи телефонных данных – в настоящее время многие такие каналы являются вовсе не проводами, а радиосигналами, передаваемыми либо напрямую от одной возвышенности к другой, либо рикошетом от спутников, – представляет собой громадную реку из цифр. Но на самом деле, благодаря искусному электронному разделению, это не одна, а тысячи рек, которые текут в одних и тех же берегах только в некоем поверхностном смысле – как рыжие и серые белки, что скачут по одним и тем же деревьям, но никогда не смешивают свои гены.

Если снова обратиться к миру техники, то недостатки аналоговых сигналов не играют большой роли, покуда сигнал не копируется многократно. Шипение магнитной ленты может быть слабым, едва заметным, если только вы не усилите звук – тогда оно возрастет и к нему прибавятся кое-какие дополнительные шумы. Но если сделать запись с этой пленки на другую, с другой на третью и так далее, опять и опять, то по прошествии сотни «поколений» не останется ничего, кроме ужасающего скрежета. Похожая проблема возникала и с телефонами – в те времена, когда они были аналоговыми. Любой телефонный сигнал, передаваемый по длинному проводу, постепенно глохнет, и его необходимо усиливать через каждые сто миль или около того. В аналоговую эпоху это было кошмаром для инженеров, поскольку доля фоновых шумов увеличивалась на каждом очередном этапе усиления сигнала. Цифровые сигналы тоже нуждаются в усилении. Но в этом случае, по уже известным нам причинам, оно не приводит ни к каким ошибкам: систему можно отладить таким образом, чтобы информация проходила по ней без искажений, независимо от количества промежуточных пунктов усиления сигнала. Даже на протяжении многих сотен миль шипение возрастать не будет.

Когда я был маленьким, мама говорила мне, что наши нервные клетки – это телефонные кабели организма. Но какого рода кабели, аналоговые или цифровые? Оказывается, любопытная смесь того и другого. Нервная клетка не похожа на электрический кабель. Она представляет собой длинную тонкую трубочку, вдоль которой, подобно искрам по пороховой дорожке, пробегают волны химических изменений, – с той разницей, что нерв, в отличие от пороховой дорожки, быстро возвращается в исходное состояние и после короткого периода покоя готов искриться вновь. Амплитуда волны – «температура пороха» – может в ходе перемещения по нерву меняться, но это не имеет значения. Для кода это все равно. Электрический импульс либо есть, либо его нет – как в случае двух дискретных уровней напряжения у цифрового телефона. В этом отношении нервная система является цифровой. Однако никто не укладывает нервные импульсы в прокрустово ложе байтов, не преобразует их в обособленные числа. Вместо этого интенсивность сигнала (громкость звука, яркость освещения, а может быть, даже накал страстей) кодируется в виде частоты импульсов. Этот способ известен инженерам как частотно-импульсная модуляция, и они охотно им пользовались, прежде чем принять на вооружение импульсно-кодовую модуляцию.

Частота импульсов – величина аналоговая, но сами импульсы цифровые: они или есть, или их нет, без каких-либо промежуточных вариантов. И нервная система, подобно любой цифровой системе, извлекает из этого выгоду. Она устроена так, что в ней тоже есть свои эквиваленты усилителей сигнала, только расположены они не через каждые сто миль, а через каждый миллиметр – восемьсот усиливающих промежуточных станций на пути от вашего спинного мозга до кончика пальца. Если бы абсолютная интенсивность нервного импульса – «горения пороха» – имела значение, то при своем перемещении по человеческой руке (не говоря уже о шее жирафа) сигнал исказился бы до неузнаваемости. На каждом этапе его усиления добавлялись бы новые случайные ошибки, как это происходит, когда мы переписываем что-либо с одной пленки на другую восемьсот раз подряд. Или когда мы делаем ксерокопию ксерокопии ксерокопии. Все, что останется после восьмисот «поколений» фотокопирования, – это серое размытое пятно. Для нервных клеток единственным решением данной проблемы было цифровое кодирование, и естественный отбор не преминул им воспользоваться. То же самое справедливо и для генов.

По моему мнению, Фрэнсис Крик и Джеймс Уотсон, разгадавшие молекулярную структуру гена, должны пользоваться почетом на протяжении того же числа столетий, что и Аристотель с Платоном. Им присуждены Нобелевские премии «по физиологии и медицине», и это справедливо, но едва ли не слишком мелко. Словосочетание «непрерывная революция» почти что противоречит самому себе, и однако же прямым следствием того переворота в мышлении, который спровоцировали двое этих молодых людей в 1953 году, стали непрекращающиеся революционные преобразования не только в медицине, но и в нашем понимании жизни вообще. Сами гены и генетические заболевания – это только верхушка айсберга. Подлинно революционным в молекулярной биологии после Уотсона и Крика оказалось то, что она стала цифровой.

Благодаря Уотсону с Криком мы узнали, что гены как таковые, в мельчайших деталях своего устройства, представляют собой длинные цепочки цифровой информации в чистом виде. Более того, они являются истинно цифровыми, в том же полном и строгом смысле, что компьютеры или компакт-диски, а не на тех шатких основаниях, на каких цифровой можно называть нервную систему. Генетический код не двоичный, как у компьютеров, и не восьмиэлементный, как в некоторых телефонных системах, он – четверичный, в нем четыре символа. Машинный код генов поразительно напоминает компьютерный. Если бы не различия в терминологии, то журнал, посвященный молекулярной биологии, вполне мог бы обменяться страницами с журналом о вычислительной технике. Помимо многих других своих последствий, эта цифровая революция, сотрясшая самые основы понимания жизни, нанесла окончательный, сокрушительный удар по витализму – учению о том, что живая материя коренным образом отличается от неживой. Вплоть до 1953 года еще можно было верить, будто в протоплазме живой клетки содержится нечто заведомо таинственное и недоступное пониманию. Теперь с этим покончено. Даже те философы, что были склонны к механистическим взглядам на жизнь, не смели надеяться на столь полное осуществление самых дерзких своих чаяний.

Если вообразить себе технологию, отличающуюся от современных разве что чуть большей быстродейственностью, то вполне правдоподобен следующий научно-фантастический сюжет. Враждебные иностранные силы выкрали профессора Криксона и заставляют его работать над созданием биологического оружия. Для спасения цивилизации ему жизненно необходимо сообщить некую секретную информацию во внешний мир, но все обычные каналы связи для него закрыты. За исключением одного. Код ДНК состоит из шестидесяти четырех троичных «кодонов» – достаточно, чтобы зашифровать весь английский алфавит (как заглавные буквы, так и строчные) плюс десять цифр, знак пробела и точку. Профессор Криксон берет с лабораторной полки особо заразный штамм вируса гриппа и встраивает в его геном полный текст своего послания внешнему миру, написанного великолепным английским языком. Он многократно воспроизводит свое послание в разных частях модифицированного генома с добавлением легко распознаваемой «сигнальной» последовательности – скажем, первой десятки простых чисел. Затем он заражает этим вирусом сам себя и чихает в комнате с большим скоплением народа. По планете прокатывается волна эпидемии гриппа, и медицинские лаборатории разных стран принимаются за расшифровку вирусного генома, чтобы разработать вакцину. Вскоре выясняется, что в геноме имеется странная повторяющаяся последовательность. Кого-нибудь настораживают простые числа – такое не могло возникнуть спонтанно, – и он догадывается прибегнуть к методам дешифровки. Отсюда уже рукой подать до прочтения написанного профессором Криксоном англоязычного текста, прочиханного по всему миру.

Наша генетическая система – универсальная для всего живого на планете – является в самой своей основе цифровой. В тех участках человеческого генома, что в настоящее время заполнены «мусорной» ДНК – то есть такой ДНК, которая не используется организмом (по крайней мере, по прямому назначению), – можно при желании зашифровать с дословной точностью полный текст Нового Завета. В каждой клетке вашего тела содержится нечто аналогичное сорока шести гигантским лентам с записанными на них цифровыми данными, неустанно снимаемыми огромным количеством одновременно работающих считывающих головок. Во всех клетках эти ленты – хромосомы – несут одну и ту же информацию, но считывающие головки каждого типа клеток отыскивают различные участки «базы данных» для сугубо своих, специализированных целей. Вот почему мышечные клетки так отличаются от клеток печени. Нет никакой одушевленной жизненной силы, никакого пульсирующего, самовоспроизводящегося, протоплазменного, мистического киселя. Жизнь – это просто байты, байты и еще раз байты цифровой информации.

Гены – это информация в чистом виде: информация, которую можно зашифровать, перешифровать и расшифровать без потерь и искажений смысла. Чистая информация может быть скопирована, и, поскольку речь идет о цифровой информации, точность этого копирования будет высочайшей. Та аккуратность, с какой воспроизводятся «буквы» ДНК, способна составить конкуренцию любым достижениям современных инженеров. Эти символы копируются из поколения в поколение, и случайные ошибки редки – их хватает только на то, чтобы вносить некоторое разнообразие. Очевидно, что среди получающегося разнообразия наиболее многочисленными будут непроизвольно становиться те комбинации символов, которые, будучи расшифрованными и примененными внутри организмов, заставляют организмы предпринимать активные шаги по сохранению и распространению этих самых ДНК-инструкций. Мы – и под «нами» я подразумеваю все живое – представляем собой машины выживания, запрограммированные распространять цифровую базу данных, запрограммировавшую нас. Выходит, что дарвинизм – это выживание тех, кто выжил на уровне строгого цифрового кода.

Задним числом понятно, что иначе и быть не могло. В аналоговой генетической системе нет ничего невообразимого, но мы уже видели, что происходит с аналоговой информацией при повторном копировании. Это «испорченный телефон». Усиленные телефонные сигналы, многократно переписанные магнитофонные ленты, ксерокопии ксерокопий – аналоговые данные так подвержены постепенному разрушению, что копирование возможно лишь на протяжении ограниченного числа поколений. Гены же способны самовоспроизводиться хоть десять миллионов раз подряд, едва ли вообще хоть сколько-нибудь разрушаясь. Дарвинизм возможен только потому, что – если не считать отдельных мутаций, которые естественный отбор либо выпалывает, либо сохраняет, – копировальный процесс безупречен. Лишь цифровой генетической системе под силу поддерживать жизнь по Дарвину в течение эонов. Тысяча девятьсот пятьдесят третий год – год двойной спирали – войдет в историю не только как дата, положившая конец мистическим и обскурантистским взглядам на живую природу; для ученых-дарвинистов он станет также годом, начиная с которого их предмет окончательно перешел на цифровые рельсы.

Река чистейшей цифровой информации, величаво текущая сквозь геологические эпохи, разветвляясь на три миллиарда рукавов, – картина впечатляющая. Но какое место она отводит привычным для нас признакам живого? Где на ней организмы, руки и ноги, глаза, мозги и вибриссы, листья, стволы и корни? Неужели мы – животные, растения, простейшие, грибы и бактерии – всего лишь берега для ручейков с цифровыми данными? В каком-то смысле так оно и есть. Но этим, как я уже намекал, дело не исчерпывается. Гены не только производят собственные копии, перетекающие от поколения к поколению. Они еще и проводят свое время внутри сменяющих друг друга организмов, влияя на их форму и поведение. Организмы тоже кое-что да значат.

Скажем, тело белого медведя – это не просто пара берегов для цифровой струйки. Также оно – сложный механизм размером с медведя. Все гены, принадлежащие целой популяции белых медведей, представляют собой коллектив надежных попутчиков, то и дело встречающихся друг с другом. Но это не значит, будто они проводят все свое время сразу со всеми остальными членами коллектива; в рамках имеющегося множества попутчиков им постоянно приходится менять компанию. Упомянутое множество определяется как набор тех генов, которые потенциально могут встретиться с любыми другими генами из того же набора (но ни с одним геном из существующих на свете тридцати миллионов других наборов). Сами же встречи происходят внутри какой-либо клетки в организме белого медведя. И организм этот – отнюдь не пассивный резервуар для ДНК.

Начнем с того, что само количество клеток белого медведя, в каждой из которых имеется полный набор генов, поражает воображение: около девятисот миллионов миллионов для взрослого самца. Если выстроить все клетки единственной медвежьей особи в ряд, то получившуюся линию можно было бы протянуть отсюда до Луны и обратно. Эти клетки распределяются между парой сотен четко различимых клеточных типов, более или менее общих для всех млекопитающих: мышечные клетки, нервные клетки, клетки костей, кожи и так далее. Клетки, принадлежащие к каждому из этих определенных типов, собираются вместе, формируя ткани: мышечную, костную и прочие. Во всех этих непохожих друг на друга клетках содержатся генетические инструкции по производству любой из них. Однако работают в них только те гены, которые необходимы для соответствующей ткани. Вот почему клетки из разных тканей отличаются друг от друга по форме и размеру. Еще любопытнее то, что гены, включающиеся в том или ином типе клеток, делают так, чтобы образующаяся из этих клеток ткань тоже принимала определенную форму. Кости – это отнюдь не аморфная масса жесткой и прочной ткани. Каждая кость имеет особые очертания со свойственными ей полыми трубками, шишками, впадинами, выступами и отростками. Клетки, благодаря включающимся у них внутри генам, запрограммированы вести себя так, словно им известно, где они расположены относительно своих соседок по ткани и как им следует выстраиваться, чтобы приобрести форму ушной раковины, сердечного клапана, хрусталика или мышцы сфинктера.

Сложность организма, такого как полярный медведь, многослойна. Организм представляет собой замысловатую совокупность филигранно отделанных органов вроде печени, почек или костей. А каждый орган – это многоуровневое строение, составленное из определенных тканей, строительными блоками которых являются клетки, обычно расположенные слоями и пластами, но нередко образующие и плотные скопления. Если же увеличить масштаб, то каждая клетка обладает крайне сложной внутренней структурой из складчатых мембран. Эти мембраны, а также жидкость между ними, служат полигоном для протекания хитроумных и очень разнообразных химических реакций. На химзаводе, принадлежащем компании ICI или Union Carbide, может проводиться несколько сотен реакций различного типа. Эти химические реакции разграничены стенками колб, пробирок и тому подобного. Количество реакций, одновременно протекающих внутри живой клетки, может быть не меньшим. В каком-то смысле мембраны клетки сродни стеклянной химической посуде, но аналогия эта неудачна по двум причинам. Во-первых, хотя многие реакции идут между мембранами, немало их протекает и непосредственно внутри вещества мембран. Во-вторых, здесь существует и иной, более важный способ отграничивать реакции друг от друга: каждая из них катализируется своим собственным специфическим ферментом.

Ферментом называется очень крупная молекула, чья трехмерная структура ускоряет какую-то одну определенную химическую реакцию, обеспечивая благоприятную для протекания этой реакции поверхность. А поскольку трехмерная структура – это в биологических молекулах самое главное, мы можем представить себе фермент в виде большого станка, тщательно отлаженного для того, чтобы штамповать молекулы определенной формы. Таким образом, внутри каждой отдельно взятой клетки – на поверхности различных молекул ферментов – могут одновременно и обособленно друг от друга протекать сотни разнообразных химических реакций. То, какие именно реакции происходят в данной клетке, определяется наличием в ней тех или иных ферментов в достаточном количестве. Формирование каждой молекулы фермента, в том числе и придание ей столь необходимой пространственной структуры, обусловлено действием некоего конкретного гена. Дело в том, что точная последовательность нескольких сотен кодовых знаков в гене определяет – в соответствии с набором правил, доподлинно нам известных и называемых генетическим кодом, – последовательность аминокислот в молекуле фермента. Каждый фермент – это линейная цепочка аминокислот, а каждая линейная цепочка аминокислот спонтанно сворачивается в особенную, уникальную трехмерную структуру, наподобие узла, где одни участки цепи образуют сшивки с другими участками. Точная трехмерная структура такого узла определяется одномерной последовательностью аминокислот, а значит, одномерной последовательностью кодовых символов в гене. Вот каким образом химические реакции, протекающие в клетке, зависят от того, какие гены в ней работают.

Ну а от чего же в таком случае зависит включение тех или иных генов в конкретной клетке? Ответ: от того, какие химические вещества в ней уже имеются. Здесь есть что-то от парадокса про курицу и яйцо, но проблема эта не непреодолима. Принцип ее решения крайне прост, хотя подробности и трудны для понимания. В информатике этот принцип называется самозагрузкой. Когда я только начинал пользоваться компьютерами в 1960-е годы, все программы загружались при помощи бумажной ленты. (В Америке в те времена для этой цели нередко использовались перфокарты, но действовали они точно так же.) Прежде чем ввести в компьютер длиннющую ленту с какой-нибудь серьезной программой, следовало установить на него небольшую программу, называемую загрузчиком. Программа эта выполняла только одно действие: объясняла компьютеру, как загружать бумажные ленты. Но вот наш «курино-яичный» парадокс: как же можно было загрузить ленту с программой-загрузчиком? В современные компьютеры аналог такой программы встроен изначально, но в те далекие времена вам сперва приходилось щелкать переключателями в некой ритуальной последовательности, которая объясняла компьютеру, как прочесть начало ленты с программой-загрузчиком. Затем это начало сообщало ему, как прочесть следующий участок ленты, и так далее. По мере того как вся лента с программой-загрузчиком оказывалась заглочена компьютером, он уже умел читать любые бумажные ленты и был готов к использованию.

При формировании зародыша вначале одна-единственная клетка – оплодотворенная яйцеклетка – делится на две, каждая половинка тоже делится, образуя четыре клетки, которые, в свою очередь, образуют восемь, и так далее. Через какие-нибудь несколько десятков делений количество клеток будет исчисляться триллионами – такова мощь экспоненциального роста. Но, если бы дело только тем и ограничивалось, все эти триллионы клеток были бы одинаковыми. Каким же образом им тогда удается дифференцироваться (прибегнем к этому научному термину) в клетки печени, почек, мышц и прочего? Тоже путем самозагрузки, и вот как это происходит. Несмотря на то что яйцеклетка имеет сферическую форму, ее внутреннему содержимому присуща полярность. У нее есть верхняя и нижняя часть, равно как и, во многих случаях, передняя и задняя (а также, следовательно, левая и правая стороны). Полярность эта проявляется в виде градиента концентрации различных веществ. Концентрация одних постепенно возрастает от переднего края к заднему, концентрация других – от верхушки к низу. Эти первичные градиенты весьма просты, но для того, чтобы осуществить первый этап «самозагрузки», их достаточно.

Когда из яйца образуется, скажем, тридцать две клетки (то есть после пяти делений), в одних клетках окажется больше, чем полагалось бы по справедливости, химических соединений из верхней части, а в других – соединений из нижней части. Кроме того, вещества могут неравномерно распределяться между клетками и в передне-заднем направлении. Этой разницы хватает для того, чтобы включить различные комбинации генов в различных клетках. Таким образом, клетки разных частей зародыша уже на ранних этапах его развития содержат разный набор ферментов, благодаря чему в клетках следующих поколений включаются все новые и новые комбинации генов. Следовательно, клеточные линии эмбриона преобразуются по-разному, а не остаются идентичными своим предшественницам и друг другу.

Это расхождение существенно отличается от того расхождения между видами, о котором мы говорили выше. Клеточное запрограммировано и предсказуемо до мелочей, в то время как видовое было непредсказуемым и случайным результатом географических событий. Более того, при расхождении видов накапливаются различия и между генами – то, что я романтически назвал «прощанием навек». А когда внутри зародыша однородная группа клеток разделяется на две, обе дочерние линии получают одни и те же гены, а именно – все. Однако в разных клетках оказываются разные сочетания химических веществ, что приводит в действие разные сочетания генов, причем функция некоторых генов состоит в том, чтобы включать или выключать другие гены. И такая «самозагрузка» продолжается до тех пор, пока мы не получим полного набора различных клеточных типов. Развивающийся эмбрион не только дифференцируется в пару сотен разнообразных типов клеток. Также его внутреннее и внешнее строение претерпевает изящные динамичные преобразования, самым значительным из которых является, вероятно, одно из самых первых: процесс, называемый гаструляцией. Выдающийся эмбриолог Льюис Вольперт заявил даже, что «самое важное событие в вашей жизни – не рождение, не женитьба и не смерть, а гаструляция». В ходе гаструляции полый шарик из клеток изгибается, образуя двухслойную чашу. Практически все представители животного царства проходят в своем развитии через данный этап. На этом общем фундаменте покоится все эмбриологическое разнообразие. Гаструляцию я здесь привел просто как единичный и особенно яркий пример беспокойного, напоминающего оригами движения клеточных листков, часто наблюдаемого при развитии зародышей.

bannerbanner