Полная версия:
Нейросети. Основы
2. Разделение данных: Данные делятся на обучающий набор и тестовый набор. Обучающий набор используется для обучения модели, а тестовый – для оценки её производительности.
3. Обучение модели: Модель обучается на обучающем наборе данных, используя алгоритмы, такие как линейная регрессия, деревья решений, случайные леса, нейронные сети и другие.
4. Оценка модели: После обучения модель проверяется на тестовом наборе данных для оценки её точности и способности обобщать новые данные.
5. Корректировка и оптимизация: Модель может быть доработана и оптимизирована с использованием различных техник, таких как кросс-валидация, настройка гиперпараметров и выбор лучших признаков.
Супервайзинговое обучение широко используется в задачах классификации (например, распознавание изображений, анализ текста) и регрессии (например, прогнозирование цен на жильё).
Практический пример супервайзингового обучения
Задача: Классификация изображений кошек и собак с использованием библиотеки scikit-learn и нейронной сети Keras.
– Сбор данных
Для этого примера мы будем использовать датасет изображений кошек и собак, который можно найти на платформе Kaggle. Датасет содержит тысячи изображений кошек и собак, размеченных соответствующими метками.
– Разделение данных
Разделим данные на обучающий и тестовый наборы. Обычно используется соотношение 80:20, где 80% данных идут на обучение, а 20% на тестирование.
– Обучение модели
Для обучения модели мы будем использовать простой CNN (сверточную нейронную сеть), подходящую для классификации изображений.
– Оценка модели
Оценим точность модели на тестовом наборе данных.
– Корректировка и оптимизация
Настроим гиперпараметры модели, проведем кросс-валидацию и выберем лучшие признаки для улучшения производительности.
```python
# Импортируем необходимые библиотеки
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
# Сбор данных и предварительная обработка
# Для примера используем ImageDataGenerator для загрузки изображений из папок
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_generator = train_datagen.flow_from_directory(
'data/train', # Путь к папке с изображениями
target_size=(150, 150),
batch_size=32,
class_mode='binary',
subset='training')
validation_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary',
subset='validation')
# Разделение данных уже происходит внутри ImageDataGenerator с использованием параметра validation_split
# Создание модели
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
MaxPooling2D(2, 2),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
# Компиляция модели
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Обучение модели
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size,
epochs=10
)
# Оценка модели
loss, accuracy = model.evaluate(validation_generator)
print(f'Test Accuracy: {accuracy*100:.2f}%')
# Корректировка и оптимизация
# В данном примере можно попробовать изменить архитектуру модели, количество эпох,
# использование других оптимизаторов или функций активации для улучшения производительности.
# График точности обучения и валидации
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.show()
# График потерь обучения и валидации
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
```
Описание шагов
– Сбор данных: Использовали `ImageDataGenerator` для загрузки изображений кошек и собак, и автоматического разделения на обучающий и валидационный наборы.
– Разделение данных: Произошло в процессе генерации данных с использованием параметра `validation_split`.
– Обучение модели: Создали и обучили простую сверточную нейронную сеть (CNN) для классификации изображений.
– Оценка модели: Оценили точность модели на валидационном наборе данных.
– Корректировка и оптимизация: Визуализировали графики точности и потерь для определения возможностей улучшения модели.
Этот пример демонстрирует базовый процесс супервайзингового обучения для задачи классификации изображений, используя библиотеку Keras для построения и обучения нейронной сети.
Обучение без учителяОбучение без учителя (unsupervised learning) – это тип машинного обучения, при котором модель обучается на неразмеченных данных. В отличие от супервайзингового обучения, здесь нет правильных ответов, и модель должна самостоятельно выявлять скрытые структуры и закономерности в данных.
Основные методы обучения без учителя:
Обучение без учителя – это подход, при котором модель обучается на неразмеченных данных. Этот метод позволяет выявлять скрытые структуры и закономерности в данных без необходимости в предварительной разметке. Основные методы обучения без учителя включают кластеризацию, снижение размерности и ассоциативные правила.
1. Кластеризация
Кластеризация – это метод группировки данных в кластеры таким образом, чтобы данные внутри одного кластера были более схожи друг с другом, чем с данными из других кластеров. Этот метод широко используется для сегментации клиентов, анализа текстов, выявления аномалий и многих других задач.
K-means
K-means – один из наиболее популярных и простых в реализации алгоритмов кластеризации. Основная идея заключается в разделении данных на ( K ) кластеров, минимизируя внутрикластерное расстояние, то есть расстояние между точками внутри каждого кластера и их соответствующим центроидом. Процесс начинается с выбора ( K ) начальных центроидов, которые могут быть выбраны случайным образом или на основе других методов. Затем алгоритм итеративно выполняет следующие шаги:
1. Назначение точек кластерам: Каждая точка данных присваивается тому кластеру, центроид которого находится ближе всего.
2. Обновление центроидов: После распределения всех точек данные центроиды пересчитываются как среднее всех точек, принадлежащих каждому кластеру.
3. Конвергенция: Шаги назначения и обновления повторяются до тех пор, пока изменения в позициях центроидов не станут незначительными, что означает, что центроиды стабилизировались и алгоритм достиг сходимости.
Преимущества K-means включают его простоту и эффективность при работе с большими наборами данных. Однако алгоритм чувствителен к выбору начальных центроидов и может застревать в локальных минимумах. Кроме того, он предполагает, что кластеры имеют сферическую форму и равные размеры, что не всегда соответствует реальности данных.
Иерархическая кластеризация
Иерархическая кластеризация – метод, который создает иерархию вложенных кластеров, представляемую в виде дендрограммы. Существует два основных подхода к иерархической кластеризации: агломеративный и дивизионный.
1. Агломеративная кластеризация (снизу вверх): Каждый объект начинается как отдельный кластер, и на каждом шаге алгоритм объединяет два ближайших кластера до тех пор, пока все объекты не будут объединены в один кластер.
2. Дивизионная кластеризация (сверху вниз): Все объекты начинают как один кластер, который на каждом шаге делится на два наиболее удаленных кластера, продолжая деление до тех пор, пока каждый объект не окажется в своем собственном кластере.
Иерархическая кластеризация не требует предварительного задания числа кластеров, что является ее значительным преимуществом. Пользователь может выбирать наиболее подходящий уровень иерархии в зависимости от задачи. Основным недостатком метода является его вычислительная сложность, что делает его менее подходящим для очень больших наборов данных.
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
DBSCAN – алгоритм кластеризации, основанный на плотности данных. Он идентифицирует плотные регионы данных и выделяет их в кластеры, эффективно обрабатывая шумовые данные и выявляя кластеры произвольной формы. Основные параметры DBSCAN включают (epsilon) (eps), определяющий радиус соседства точки, и ( minPts ), указывающий минимальное количество точек в радиусе (epsilon) для формирования кластера.
Основные шаги алгоритма DBSCAN:
1. Плотностная связь: Для каждой точки определяется плотность, основанная на числе соседних точек в радиусе ( epsilon ).
2. Формирование кластеров: Начинается с произвольной точки. Если плотность точки выше порогового значения (minPts), она считается начальной точкой кластера, и все плотностно-связанные точки включаются в этот кластер.
3. Обработка шума: Точки, которые не могут быть включены ни в один кластер (имеющие менее ( minPts ) соседей в радиусе epsilon , считаются шумом и не относятся ни к одному кластеру.
DBSCAN особенно эффективен для выявления кластеров произвольной формы и работы с шумом. В отличие от K-means, он не требует заранее задавать число кластеров. Однако выбор параметров (epsilon) и (minPts) может быть нетривиальной задачей и требовать тщательной настройки для конкретного набора данных.
2. Снижение размерности
Снижение размерности – это метод уменьшения числа признаков в данных, что упрощает модель и улучшает её интерпретируемость. Этот метод полезен для визуализации данных, уменьшения вычислительной сложности и устранения шума.
PCA (Principal Component Analysis)
Метод главных компонент (PCA) – это линейный метод снижения размерности, который преобразует данные в новое пространство меньшей размерности, сохраняя при этом максимальное возможное количество вариаций данных. Основная идея PCA заключается в нахождении новых осей (главных компонент), которые являются линейными комбинациями исходных признаков и упорядочены таким образом, что первая главная компонента объясняет наибольшую долю дисперсии в данных, вторая – вторую по величине, и так далее.
Процесс PCA включает следующие шаги:
1. Центрирование данных: Среднее значение каждого признака вычитается из всех значений, чтобы данные имели среднее значение, равное нулю.
2. Вычисление ковариационной матрицы: Определяется ковариационная матрица для центрированных данных, отражающая взаимосвязь между различными признаками.
3. Поиск собственных векторов и собственных значений: Собственные векторы ковариационной матрицы указывают направления главных компонент, а собственные значения определяют важность каждой из этих компонент.
4. Проекция данных: Данные проецируются на новое пространство, образованное главными компонентами.
PCA широко используется для предобработки данных, уменьшения шума, визуализации многомерных данных и как этап предварительного анализа перед применением других методов машинного обучения.
t-SNE (t-distributed Stochastic Neighbor Embedding)
t-SNE (t-distributed Stochastic Neighbor Embedding) – это нелинейный метод снижения размерности, который часто используется для визуализации высокоразмерных данных. В отличие от PCA, который сохраняет глобальную структуру данных, t-SNE фокусируется на сохранении локальной структуры данных. Это означает, что t-SNE старается сохранять близкие расстояния между точками, которые были близки в исходном пространстве, и раздельные расстояния между точками, которые были далеко друг от друга.
Основные шаги t-SNE включают:
1. Вычисление вероятностей: Для каждой пары точек в высокоразмерном пространстве вычисляются вероятности близости.
2. Оптимизация: В новом пространстве меньшей размерности t-SNE находит такие расположения точек, чтобы вероятности близости были максимально похожи на исходные.
3. Минимизация Kullback-Leibler расхождения: Процесс оптимизации включает минимизацию расхождения Kullback-Leibler между распределениями вероятностей в исходном и новом пространствах.
t-SNE особенно полезен для выявления кластеров и локальных структур в данных, что делает его популярным инструментом для визуализации данных в биоинформатике, нейронауках и других областях.
UMAP (Uniform Manifold Approximation and Projection)
UMAP (Uniform Manifold Approximation and Projection) – это современный метод снижения размерности, который, подобно t-SNE, фокусируется на сохранении локальной структуры данных. Однако UMAP часто работает быстрее и лучше масштабируется на большие наборы данных. Основной принцип UMAP заключается в предположении, что данные лежат на многообразии меньшей размерности в исходном пространстве, и стремится сохранять топологическую структуру этого многообразия при проекции в пространство меньшей размерности.
Основные этапы UMAP включают:
1. Построение графа k-ближайших соседей: Определяется граф, где точки связаны с их ближайшими соседями.
2. Оптимизация графа: Граф оптимизируется, чтобы минимизировать расхождение между распределениями расстояний в высокоразмерном и низкоразмерном пространствах.
3. Проекция данных: Данные проецируются в новое пространство меньшей размерности, сохраняя топологические свойства исходного пространства.
UMAP используется для визуализации данных, выявления кластеров и структур в данных, а также как этап предварительного анализа перед применением других методов машинного обучения. Благодаря своей скорости и способности работать с большими наборами данных, UMAP становится все более популярным в различных областях науки и индустрии.
3. Ассоциативные правила
Ассоциативные правила – это метод выявления частых закономерностей в больших наборах данных. Этот метод особенно полезен в анализе корзины покупателя, где необходимо выявить, какие товары часто покупаются вместе.
Алгоритм Apriori
Алгоритм Apriori является одним из самых известных и широко используемых методов для выявления частых наборов элементов и создания ассоциативных правил в больших наборах данных. Этот алгоритм используется в анализе транзакционных баз данных для поиска интересных корреляций и закономерностей, таких как "если покупатель купил товар A, то он, вероятно, купит товар B".
Основная идея алгоритма Apriori заключается в итеративном подходе для нахождения частых наборов элементов. Он использует принцип "подмножество частого множества также является частым" (если набор элементов является частым, то все его подмножества также являются частыми). Алгоритм работает следующим образом:
1. Создание начальных наборов: На первом этапе алгоритм находит все частые одиночные элементы, которые удовлетворяют заданному порогу поддержки (минимальное количество раз, которое элемент должен появиться в базе данных, чтобы считаться частым).
2. Генерация кандидатов: На каждом последующем этапе алгоритм генерирует наборы кандидатов, увеличивая размер наборов на один элемент. Это делается путем объединения частых наборов элементов из предыдущего шага.
3. Фильтрация: Каждый набор кандидатов проверяется на частоту в базе данных. Наборы, удовлетворяющие порогу поддержки, считаются частыми и проходят на следующий этап.
4. Повторение: Процесс продолжается до тех пор, пока не будут найдены все частые наборы элементов.
5. Создание ассоциативных правил: После нахождения всех частых наборов элементов алгоритм генерирует ассоциативные правила, которые представляют собой зависимости между элементами.
Основным недостатком алгоритма Apriori является необходимость многократного прохода по базе данных для генерации и проверки кандидатов, что делает его менее эффективным для больших наборов данных.
FP-Growth (Frequent Pattern Growth)
FP-Growth (Frequent Pattern Growth) – это более эффективный алгоритм для выявления частых наборов элементов и создания ассоциативных правил по сравнению с Apriori. Основная идея FP-Growth заключается в использовании структуры дерева (FP-дерево) для компактного представления набора частых элементов и быстрого обнаружения ассоциативных правил без необходимости генерировать кандидатов.
FP-Growth работает следующим образом:
1. Построение FP-дерева: На первом этапе алгоритм строит FP-дерево. Для этого сначала проводится один проход по базе данных для определения частоты всех элементов. Затем база данных повторно проходит для построения дерева, где каждая транзакция добавляется в дерево, обновляя счетчики частоты.
2. Разделение дерева: FP-дерево делится на поддеревья для каждого частого элемента. Этот процесс продолжается рекурсивно, пока не будут найдены все частые наборы элементов.
3. Генерация частых наборов: После построения FP-дерева и его разделения алгоритм извлекает все частые наборы элементов, используя структуру дерева и счетчики частоты.
FP-Growth значительно эффективнее Apriori, так как он избегает необходимости многократного прохода по базе данных для генерации и проверки кандидатов. Вместо этого он строит компактное FP-дерево, которое позволяет быстро находить все частые наборы элементов. Это делает FP-Growth особенно полезным для анализа больших наборов данных, где производительность алгоритма Apriori может быть ограничена.
Обе техники используются для анализа транзакционных данных, но FP-Growth часто предпочитается в ситуациях, требующих высокой производительности и масштабируемости.
Применение методов обучения без учителяМетоды обучения без учителя широко используются в различных областях:
– Сегментация клиентов: Кластеризация помогает разделить клиентов на группы с похожими характеристиками для целевого маркетинга.
– Обнаружение аномалий: Выявление необычных паттернов в данных, которые могут указывать на мошенничество, дефекты или другие отклонения.
– Сжатие данных: Снижение размерности позволяет уменьшить объем данных, сохраняя важную информацию и упрощая последующую обработку.
– Предварительная обработка данных: Методы снижения размерности и кластеризации часто используются для предварительной обработки данных перед применением супервайзингового обучения, что улучшает качество модели и сокращает время обучения.
Эти методы обучения без учителя играют ключевую роль в современном анализе данных и машинном обучении, предоставляя инструменты для эффективного анализа и интерпретации больших наборов данных без необходимости в их предварительной разметке.
Обучение с подкреплениемОбучение с подкреплением (reinforcement learning) – это тип машинного обучения, при котором агент обучается взаимодействовать с окружающей средой с целью максимизации некоторой награды. Агент принимает решения, выполняя действия, которые влияют на состояние среды, и получает за это награды или наказания. Основная задача агента – научиться выбирать такие действия, которые приводят к максимальной суммарной награде в долгосрочной перспективе.
Основные компоненты обучения с подкреплением:
1. Агент: Объект, который принимает решения и выполняет действия.
2. Среда: Всё, с чем взаимодействует агент. Среда реагирует на действия агента, изменяя своё состояние и предоставляя агенту награды.
3. Действия: Набор возможных действий, которые агент может выполнить в каждом состоянии.
4. Состояния: Все возможные состояния среды, которые могут изменяться в ответ на действия агента.
5. Награда: Оценка полезности действий агента, которая может быть положительной или отрицательной.
Примеры алгоритмов обучения с подкреплением:Q-обучение
Q-обучение (Q-learning) – это метод обучения с подкреплением, при котором агент обучается через пробы и ошибки. Основная цель Q-обучения заключается в нахождении оптимальной политики, которая максимизирует накопленное вознаграждение агента в долгосрочной перспективе. В основе метода лежит оценка ценности действий (Q-значений) в различных состояниях. Агент взаимодействует со средой, выполняя действия и получая вознаграждения за каждое из них. Путем итеративного обновления Q-значений на основе полученного опыта, агент постепенно улучшает свою стратегию. Основное уравнение обновления в Q-обучении известно как уравнение Беллмана, которое позволяет агенту корректировать Q-значения на основе текущего вознаграждения и максимально возможного будущего вознаграждения.
Пример реализации Q-обучения на Python с использованием библиотеки `numpy` для обучения агента в простой среде, такой как "Cliff Walking" из OpenAI Gym.
Задача в приведенном коде заключается в обучении агента, который должен найти оптимальный путь по "обрыву" (Cliff Walking) в окружении OpenAI Gym. В этой задаче агент должен научиться перемещаться по сетке от начальной позиции до цели, избегая падения с обрыва.
Описание задачи Cliff Walking
В задаче "Cliff Walking" агент перемещается по сетке размером 4x12. Начальная позиция агента находится в левом нижнем углу, а цель – в правом нижнем углу. Ячейки между начальной позицией и целью представляют собой обрыв. Если агент попадает в обрыв, он получает большое отрицательное вознаграждение и возвращается в начальную позицию.
Цель агента – найти оптимальный путь от начальной позиции до цели, минимизируя общие штрафы (отрицательные вознаграждения) и избегая обрыва.
Основные компоненты задачи
1. Окружение:
– `CliffWalking-v0` представляет собой сетку размером 4x12.
– Агент начинает в ячейке (3, 0) и должен достичь ячейки (3, 11).
2. Действия:
– Агент может двигаться в четырех направлениях: влево, вправо, вверх и вниз.
3. Награды:
– Каждое движение агента дает штраф -1.
– Падение с обрыва приводит к большому штрафу (например, -100) и возвращает агента в начальную позицию.
4. Конечное состояние:
– Когда агент достигает цели в ячейке (3, 11), эпизод заканчивается.
Примерный процесс выполнения задачи
1. Инициализация:
– Создаем окружение и инициализируем параметры Q-обучения.
– Инициализируем Q-таблицу нулями.
2. Цикл обучения:
– В каждом эпизоде агент начинает в начальной позиции и выполняет действия, выбираемые согласно ε-жадной стратегии.
– Обновляем Q-таблицу на основе полученного опыта (текущее состояние, действие, вознаграждение и следующее состояние).
– Эпизод продолжается, пока агент не достигнет цели или не упадет в обрыв.
3. Тестирование:
– После завершения обучения тестируем агента, чтобы увидеть, как он выполняет задачу, используя обученную политику (выбор действий с максимальными Q-значениями).
Этот код демонстрирует, как агент учится принимать решения на основе опыта взаимодействия со средой, чтобы достичь цели с минимальными потерями.
Для начала нужно установить OpenAI Gym, если он еще не установлен:
```bash
pip install gym
```
Пример кода
```python
import numpy as np
import gym
# Создаем окружение "CliffWalking-v0"
env = gym.make('CliffWalking-v0')
# Параметры Q-обучения
alpha = 0.1 # Скорость обучения
gamma = 0.99 # Коэффициент дисконтирования
epsilon = 0.1 # Вероятность выбора случайного действия
# Инициализация Q-таблицы
q_table = np.zeros((env.observation_space.n, env.action_space.n))
def choose_action(state):
if np.random.uniform(0, 1) < epsilon:
return env.action_space.sample() # Случайное действие
else:
return np.argmax(q_table[state]) # Действие с максимальным Q-значением
def update_q_table(state, action, reward, next_state):
best_next_action = np.argmax(q_table[next_state])
td_target = reward + gamma * q_table[next_state][best_next_action]
td_error = td_target – q_table[state][action]