
Полная версия:
Geological Observations on South America
The beds of gypsum, together with the red alternating sandstones and conglomerates, present so perfect and curious a resemblance with those seen in our former section in the basin-valley of Yeso, that I cannot doubt the identity of the two formations: I may add, that a little westward of the P. del Inca, a mass of gypsum passed into a fine-grained, hard, brown sandstone, which contained some layers of black, calcareous, compact, shaly rock, precisely like that seen in such vast masses on the Peuquenes range.
Near the Puente del Inca, numerous fragments of limestone, containing some fossil remains, were scattered on the ground: these fragments so perfectly resemble the limestone of bed No. 3, in which I saw impressions of shells, that I have no doubt they have fallen from it. The yellow magnesian limestone of bed No. 10, which also includes traces of shells, has a different appearance. These fossils (as named by M. d'Orbigny) consist of: -
Gryphaea, near to G. Couloni (Neocomian formation).
Arca, perhaps A. Gabrielis, d'Orbigny, "Pal. Franc." (Neocomian formation).
Mr. Pentland made a collection of shells from this same spot, and Von Buch considers them as consisting of: —
Trigonia, resembling in form T. costata.
Pholadomya, like one found by M. Dufresnoy near Alencon.
Isocardi excentrica, Voltz., identical with that from the Jura.
("Description Phys. des Iles Can." page 472.)
Two of these shells, namely, the Gryphaea and Trigonia, appear to be identical with species collected by Meyen and myself on the Peuquenes range; and in the opinion of Von Buch and M. d'Orbigny, the two formations belong to the same age. I must here add, that Professor E. Forbes, who has examined my specimens from this place and from the Peuquenes range, has likewise a strong impression that they indicate the Cretaceous period, and probably an early epoch in it: so that all the palaeontologists who have seen these fossils nearly coincide in opinion regarding their age. The limestone, however, with these fossils here lies at the very base of the formation, just above the porphyritic conglomerate, and certainly several thousand feet lower in the series, than the equivalent, fossiliferous, black, shaly rocks high up on the Peuquenes range.
It is well worthy of remark that these shells, or at least those of which I saw impressions in the limestone (bed No. 3), must have been covered up, on the LEAST computation, by 4,000 feet of strata: now we know from Professor E. Forbes's researches, that the sea at greater depths than 600 feet becomes exceedingly barren of organic beings, – a result quite in accordance with what little I have seen of deep-sea soundings. Hence, after this limestone with its shells was deposited, the bottom of the sea where the main line of the Cordillera now stands, must have subsided some thousand feet to allow of the deposition of the superincumbent submarine strata. Without supposing a movement of this kind, it would, moreover, be impossible to understand the accumulation of the several lower strata of COARSE, well-rounded conglomerates, which it is scarcely possible to believe were spread out in profoundly deep water, and which, especially those containing pebbles of quartz, could hardly have been rounded in submarine craters and afterwards ejected from them, as I believe to have been the case with much of the porphyritic conglomerate formation. I may add that, in Professor Forbes's opinion, the above-enumerated species of mollusca probably did not live at a much greater depth than twenty fathoms, that is only 120 feet.
To return to our section down the valley; standing on the great N. by W. and S. by E. uniclinal axis of the Puente del Inca, of which a section has just been given, and looking north-east, greater tabular masses of gypseous formation (KK) could be seen in the distance, very slightly inclined towards the east. Lower down the valley, the mountains are almost exclusively composed of porphyries, many of them of intrusive origin and non-stratified, others stratified, but with the stratification seldom distinguishable except in the upper parts. Disregarding local disturbances, the beds are either horizontal or inclined at a small angle eastwards: hence, when standing on the plain of Uspallata and looking to the west or backwards, the Cordillera appear composed of huge, square, nearly horizontal, tabular masses: so wide a space, with such lofty mountains so equably elevated, is rarely met with within the Cordillera. In this line of section, the interval between the Puente del Inca and the neighbourhood of the Cumbre, includes all the chief axes of dislocation.
The altered clay-slate formation, already described, is seen in several parts of the valley as far down as Las Vacas, underlying the porphyritic conglomerate. At the Casa de Pujios [L], there is a hummock of (andesitic?) granite; and the stratification of the surrounding mountains here changes from W. by S. to S.W. Again, near the R. Vacas there is a larger formation of (andesitic?) granite [M], which sends a meshwork of veins into the superincumbent clay-slate, and which locally throws off the strata, on one side to N.W. and on the other to S.E. but not at a high angle: at the junction, the clay-slate is altered into fine-grained greenstone. This granitic axis is intersected by a green dike, which I mention, because I do not remember having elsewhere seen dikes in this lowest and latest intrusive rock. From the R. Vacas to the plain of Uspallata, the valley runs N.E., so that I have had to contract my section; it runs exclusively through porphyritic rocks. As far as the Pass of Jaula, the claystone conglomerate formation, in most parts highly porphyritic, and crossed by numerous dikes of greenstone porphyry, attains a great thickness: there is also much intrusive porphyry. From the Jaula to the plain, the stratification has been in most places obliterated, except near the tops of some of the mountains; and the metamorphic action has been extremely great. In this space, the number and bulk of the intrusive masses of differently coloured porphyries, injected one into another and intersected by dikes, is truly extraordinary. I saw one mountain of whitish porphyry, from which two huge dikes, thinning out, branched DOWNWARDS into an adjoining blackish porphyry. Another hill of white porphyry, which had burst through dark- coloured strata, was itself injected by a purple, brecciated, and recemented porphyry, both being crossed by a green dike, and both having been upheaved and injected by a granitic dome. One brick-red porphyry, which above the Jaula forms an isolated mass in the midst of the porphyritic conglomerate formation, and lower down the valley a magnificent group of peaked mountains, differs remarkably from all the other porphyries. It consists of a red feldspathic base, including some rather large crystals of red feldspar, numerous large angular grains of quartz, and little bits of a soft green mineral answering in most of its characters to soapstone. The crystals of red feldspar resemble in external appearance those of orthite, though, from being partially decomposed, I was unable to measure them; and they certainly are quite unlike the variety, so abundantly met with in almost all the other rocks of this line of section, and which, wherever I tried it, cleaved like albite. This brick-red porphyry appears to have burst through all the other porphyries, and numerous red dikes traversing the neighbouring mountains have proceeded from it: in some few places, however, it was intersected by white dikes. From this posteriority of intrusive origin, – from the close general resemblance between this red porphyry and the red granite of the Portillo line, the only difference being that the feldspar here is less perfectly granular, and that soapstone replaces the mica, which is there imperfect and passes into chlorite, – and from the Portillo line a little southward of this point appearing to blend (according to Dr. Gillies) into the western ranges, – I am strongly urged to believe (as formerly remarked) that the grand mountain-masses composed of this brick-red porphyry belong to the same axis of injection with the granite of the Portillo line; if so, the injection of this porphyry probably took place, as long subsequently to the several axes of elevation in the gypseous formation near the Cumbre, as the injection of the Portillo granite has been shown to have been subsequent to the elevation of the gypseous strata composing the Peuquenes range; and this interval, we have seen, must have been a very long one.
The Plain of Uspallata has been briefly described in Chapter 3; it resembles the basin-plains of Chile; it is ten or fifteen miles wide, and is said to extend for 180 miles northward; its surface is nearly six thousand feet above the sea; it is composed, to a thickness of some hundred feet of loosely aggregated, stratified shingle, which is prolonged with a gently sloping surface up the valleys in the mountains on both sides. One section in this plain [Z] is interesting, from the unusual circumstance of alternating layers of almost loose red and white sand with lines of pebbles (from the size of a nut to that of an apple), and beds of gravel, being inclined at an angle of 45 degrees, and in some spots even at a higher angle. (I find that Mr. Smith of Jordan Hill has described ("Edinburgh New Philosophical Journal" volume 25 page 392) beds of sand and gravel, near Edinburgh, tilted at an angle of 60 degrees, and dislocated by miniature faults.) These beds are dislocated by small faults: and are capped by a thick mass of horizontally stratified gravel, evidently of subaqueous origin. Having been accustomed to observe the irregularities of beds accumulated under currents, I feel sure that the inclination here has not been thus produced. The pebbles consist chiefly of the brick-red porphyry just described and of white granite, both probably derived from the ranges to the west, and of altered clay-slate and of certain porphyries, apparently belonging to the rocks of the Uspallata chain. This plain corresponds geographically with the valley of Tenuyan between the Portillo and Peuquenes ranges; but in that valley the shingle, which likewise has been derived both from the eastern and western ranges, has been cemented into a hard conglomerate, and has been throughout tilted at a considerable inclination; the gravel there apparently attains a much greater thickness, and is probably of higher antiquity.
THE USPALLATA RANGE.
The road by the Villa Vicencio Pass does not strike directly across the range, but runs for some leagues northward along its western base: and I must briefly describe the rocks here seen, before continuing with the coloured east and west section. At the mouth of the valley of Canota, and at several points northwards, there is an extensive formation of a glossy and harsh, and of a feldspathic clay-slate, including strata of grauwacke, and having a tortuous, nearly vertical cleavage, traversed by numerous metalliferous veins and others of quartz. The clay-slate is in many parts capped by a thick mass of fragments of the same rock, firmly recemented; and both together have been injected and broken up by very numerous hillocks, ranging north and south, of lilac, white, dark and salmon- coloured porphyries: one steep, now denuded, hillock of porphyry had its face as distinctly impressed with the angles of a fragmentary mass of the slate, with some of the points still remaining embedded, as sealing-wax could be by a seal. At the mouth of this same valley of Canota, in a fine escarpment having the strata dipping from 50 to 60 degrees to the N.E. (Nearly opposite to this escarpment, there is another corresponding one, with the strata dipping not to the exactly opposite point, or S.W., but to S.S.W.: consequently the two escarpments trend towards each other, and some miles southward they become actually united: this is a form of elevation which I have not elsewhere seen.), the clay-slate formation is seen to be covered by – (1st) a purple, claystone porphyry resting unconformably in some parts on the solid slate, and in others on a thick fragmentary mass; (2nd), a conformable stratum of compact blackish rock, having a spheroidal structure, full of minute acicular crystals of glassy feldspar, with red spots of oxide of iron; (3rd), a great stratum of purplish-red claystone porphyry, abounding with crystals of opaque feldspar, and laminated with thin, parallel, often short, layers, and likewise with great irregular patches of white, earthy, semi-crystalline feldspar; this rock (which I noticed in other neighbouring places) perfectly resembles a curious variety described at Port Desire, and occasionally occurs in the great porphyritic conglomerate formation of Chile; (4th), a thin stratum of greenish white, indurated tuff, fusible and containing broken crystals and particles of porphyries; (5th), a grand mass, imperfectly columnar and divided into three parallel and closely joined strata, of cream-coloured claystone porphyry; (6th), a thick stratum of lilac-coloured porphyry, which I could see was capped by another bed of the cream-coloured variety; I was unable to examine the still higher parts of the escarpment. These conformably stratified porphyries, though none are either vesicular are amygdaloidal, have evidently flowed as submarine lavas: some of them are separated from each other by seams of indurated tuff, which, however, are quite insignificant in thickness compared with the porphyries. This whole pile resembles, but not very closely, some of the less brecciated parts of the great porphyritic conglomerate formation of Chile; but it does not probably belong to the same age, as the porphyries here rest unconformably on the altered feldspathic clay-slate, whereas the porphyritic conglomerate formation alternates with and rests conformably on it. These porphyries, moreover, with the exception of the one blackish stratum, and of the one indurated, white tufaceous bed, differ from the beds composing the Uspallata range in the line of the Villa Vicencio Pass.
I will now give, first, a sketch of the structure of the range, as represented in the section, and will then describe its composition and interesting history. At its western foot, a hillock [N] is seen to rise out of the plain, with its strata dipping at 70 degrees to the west, fronted by strata [O] inclined at 45 degrees to the east, thus forming a little north and south anticlinal axis. Some other little hillocks of similar composition, with their strata highly inclined, range N.E. and S.W., obliquely to the main Uspallata line. The cause of these dislocations, which, though on a small scale, have been violent and complicated, is seen to lie in hummocks of lilac, purple and red porphyries, which have been injected in a liquified state through and into the underlying clay-slate formation. Several dykes were exposed here, but in no other part, that I saw of this range. As the strata consist of black, white, greenish and brown-coloured rocks, and as the intrusive porphyries are so brightly tinted, a most extraordinary view was presented, like a coloured geological drawing. On the gently inclined main western slope [PP], above the little anticlinal ridges just mentioned, the strata dip at an average angle of 25 degrees to the west; the inclination in some places being only 19 degrees, in some few others as much as 45 degrees. The masses having these different inclinations, are separated from each other by parallel vertical faults [as represented at Pa], often giving rise to separate, parallel, uniclinal ridges. The summit of the main range is broad and undulatory, with the stratification undulatory and irregular: in a few places granitic and porphyritic masses [Q] protrude, which, from the small effect they have locally produced in deranging the strata, probably form the upper points of a regular, great underlying dome. These denuded granitic points, I estimated at about nine thousand feet in height above the sea. On the eastern slope, the strata in the upper part are regularly inclined at about 25 degrees to the east, so that the summit of this chain, neglecting small irregularities, forms a broad anticlinal axis. Lower down, however, near Los Hornillos [R], there is a well-marked synclinal axis, beyond which the strata are inclined at nearly the same angle, namely from 20 to 30 degrees, inwards or westward. Owing to the amount of denudation which this chain has suffered, the outline of the gently inclined eastern flank scarcely offers the slightest indication of this synclinal axis. The stratified beds, which we have hitherto followed across the range, a little further down are seen to lie, I believe unconformably, on a broad mountainous band of clay-slate and grauwacke. The strata and laminae of this latter formation, on the extreme eastern flank, are generally nearly vertical; further inwards they become inclined from 45 to 80 degrees to the west: near Villa Vicencio [S] there is apparently an anticlinal axis, but the structure of this outer part of the clay-slate formation is so obscure, that I have not marked the planes of stratification in the section. On the margin of the Pampas, some low, much dislocated spurs of this same formation, project in a north- easterly line, in the same oblique manner as do the ridges on the western foot, and as is so frequently the case with those at the base of the main Cordillera.
I will now describe the nature of the beds, beginning at the base on the eastern side. First, for the clay-slate formation: the slate is generally hard and bluish, with the laminae coated by minute micaceous scales; it alternates many times with a coarse-grained, greenish grauwacke, containing rounded fragments of quartz and bits of slate in a slightly calcareous basis. The slate in the upper part generally becomes purplish, and the cleavage so irregular that the whole consists of mere splinters. Transverse veins of quartz are numerous. At the Calera, some leagues distant, there is a dark crystalline limestone, apparently included in this formation. With the exception of the grauwacke being here more abundant, and the clay-slate less altered, this formation closely resembles that unconformably underlying the porphyries at the western foot of this same range; and likewise that alternating with the porphyritic conglomerate in the main Cordillera. This formation is a considerable one, and extends several leagues southward to near Mendoza: the mountains composed of it rise to a height of about two thousand feet above the edge of the Pampas, or about seven thousand feet above the sea. (I infer this from the height of V. Vicencio, which was ascertained by Mr. Miers to be 5,328 feet above the sea.)
Secondly: the most usual bed on the clay-slate is a coarse, white, slightly calcareous conglomerate, of no great thickness, including broken crystals of feldspar, grains of quartz, and numerous pebbles of brecciated claystone porphyry, but without any pebbles of the underlying clay-slate. I nowhere saw the actual junction between this bed and the clay-slate, though I spent a whole day in endeavouring to discover their relations. In some places I distinctly saw the white conglomerate and overlying beds inclined at from 25 to 30 degrees to the west, and at the bottom of the same mountain, the clay-slate and grauwacke inclined to the same point, but at an angle from 70 to 80 degrees: in one instance, the clay-slate dipped not only at a different angle, but to a different point from the overlying formation. In these cases the two formations certainly appeared quite unconformable: moreover, I found in the clay-slate one great, vertical, dike-like fissure, filled up with an indurated whitish tuff, quite similar to some of the upper beds presently to be described; and this shows that the clay-slate must have been consolidated and dislocated before their deposition. On the other hand, the stratification of the slate and grauwacke, in some cases gradually and entirely disappeared in approaching the overlying white conglomerate; in other cases the stratification of the two formations became strictly conformable; and again in other cases, there was some tolerably well characterised clay-slate lying above the conglomerate. (The coarse, mechanical structure of many grauwackes has always appeared to me a difficulty; for the texture of the associated clay-slate and the nature of the embedded organic remains where present, indicate that the whole has been a deep-water deposit. Whence have the sometimes included angular fragments of clay-slate, and the rounded masses of quartz and other rocks, been derived? Many deep-water limestones, it is well known, have been brecciated, and then firmly recemented.) The most probable conclusion appears to be, that after the clay-slate formation had been dislocated and tilted, but whilst under the sea, a fresh and more recent deposition of clay-slate took place, on which the white conglomerate was conformably deposited, with here and there a thin intercalated bed of clay-slate. On this view the white conglomerates and the presently to be described tuffs and lavas are really unconformable to the main part of the clay-slate; and this, as we have seen, certainly is the case with the clay-stone lavas in the valley of Canota, at the western and opposite base of the range.
Thirdly: on the white conglomerate, strata several hundred feet in thickness are superimposed, varying much in nature in short distances: the commonest variety is a white, much indurated tuff, sometimes slightly calcareous, with ferruginous spots and water-lines, often passing into whitish or purplish compact, fine-grained grit or sandstones; other varieties become semi-porcellanic, and tinted faint green or blue; others pass into an indurated shale: most of these varieties are easily fusible.
Fourthly: a bed, about one hundred feet thick of a compact, partially columnar, pale-grey, feldspathic lava, stained with iron, including very numerous crystals of opaque feldspar, and with some crystallised and disseminated calcareous matter. The tufaceous stratum on which this feldspathic lava rests is much hardened, stained purple, and has a spherico-concretionary structure; it here contains a good many pebbles of claystone porphyry.
Fifthly: thin beds, 400 feet in thickness, varying much in nature, consisting of white and ferruginous tuffs, in some parts having a concretionary structure, in others containing rounded grains and a few pebbles of quartz; also passing into hard gritstones and into greenish mudstones: there is, also, much of a bluish-grey and green semi-porcellanic stone.
Sixthly: a volcanic stratum, 250 feet in thickness, of so varying a nature that I do not believe a score of specimens would show all the varieties; much is highly amygdaloidal, much compact; there are greenish, blackish, purplish, and grey varieties, rarely including crystals of green augite and minute acicular ones of feldspar, but often crystals and amygdaloidal masses of white, red, and black carbonate of lime. Some of the blackish varieties of this rock have a conchoidal fracture and resemble basalt; others have an irregular fracture. Some of the grey and purplish varieties are thickly speckled with green earth and with white crystalline carbonate of lime; others are largely amygdaloidal with green earth and calcareous spar. Again, other earthy varieties, of greenish, purplish and grey tints, contain much iron, and are almost half composed of amygdaloidal balls of dark brown bole, of a whitish indurated feldspathic matter, of bright green earth, of agate, and of black and white crystallised carbonate of lime. All these varieties are easily fusible. Viewed from a distance, the line of junction with the underlying semi-porcellanic strata was distinct; but when examined closely, it was impossible to point out within a foot where the lava ended and where the sedimentary mass began: the rock at the time of junction was in most places hard, of a bright green colour, and abounded with irregular amygdaloidal masses of ferruginous and pure calcareous spar, and of agate.
Seventhly: strata, eighty feet in thickness, of various indurated tuffs, as before; many of the varieties have a fine basis including rather coarse extraneous particles; some of them are compact and semi-porcellanic, and include vegetable impressions.
Eighthly: a bed, about fifty feet thick, of greenish-grey, compact, feldspathic lava, with numerous small crystals of opaque feldspar, black augite, and oxide of iron. The junction with the bed on which it rested, was ill defined; balls and masses of the feldspathic rock being enclosed in much altered tuff.