Полная версия:
Форма жизни № 4. Как остаться человеком в эпоху расцвета искусственного интеллекта
Вторая проблема заключается в самом понимании принципа сознания. Мы, люди, безусловно, считаем себя венцом природы, а свой мозг – абсолютной загадкой. Во многом это правда, о чем мы поговорим в следующей главе, но с точки зрения машинного обучения мы мало чем отличаемся от индивидуума в «китайской комнате». Раз человек может обучаться, почему бы и машинам не научиться учиться, как мы? Когда человеческий детеныш появляется на свет, он не владеет ни китайским, ни английским, ни русским, не понимает значения слова «красный» и словосочетания «сборная Германии». Он не в курсе, что такое «горячо» или «холодно» и уж точно не знает принципа неопределенности Гейзенберга. Но… он учится. Ребенок несколько лет получает огромное количество информации на вход (листки с иероглифами под дверью), а со стороны родителей и взрослых в целом, равно как и от собственной нервной системы, – подкрепление информации (условную маркировку): если он обжегся и ему больно, он запоминает, что открытый огонь небезопасен. Упал, ушибся, порезался – больно; значит, все, что к этому привело, небезопасно. Если мама говорит, что лезть ножницами в розетку небезопасно, значит, она имеет в виду, что будет больно. Больно – это плохо, не хочу. Так, постепенно, через многочисленные итерации, нейронная сеть мозга получает некую первичную картинку окружающей действительности, определяющую базовые реакции организма на мир – день, ночь, больно, приятно, комфортно, безопасно, вкусный зефир и мороженое… К этим маркерам «притягиваются» новые, связанные с ними, и происходит это в геометрической прогрессии – вчера ребенок не знал, почему небо синее, а сегодня уже задает вопрос о том, откуда берутся дети и он в частности. Если это не прогресс, то что? Родители говорят на определенном языке, что для мозга означает: каждый предмет, действие или абстракция «вкусно» маркируются неким вербальным маркером (звуком, что издает мама). В школе этот голосовой маркер отождествляют с письменным маркером, что позволяет не просто диктовать ответ «обратно под дверь», но и графически писать от руки, а не просто выбирать иероглиф из коробочки. Причем все эти «вкусно» и «радостно» тоже есть не что иное, как разновидность дополнительных маркеров-классификаторов для информации, формируемых на уровне гормонов.
И вот наш ребенок, который 10 лет назад мог только кушать, какать и кричать (не обязательно в такой последовательности), уже постоянно задает вопросы на вполне понятном вам языке, постоянно обогащает свою базу знаний, систему ценностей (хорошо/плохо), словарный запас, и… его уже не остановить! И все потому, что ему не просто совали записки с иероглифами под дверь, но одновременно давали тысячи пояснений к каждой из них, и все были детальными и связными. Мое мнение: человеческое сознание, безусловно, не чета современным нейронным сетям, но тем не менее оно – результат обучения нейронной сети нервной системы на входящих данных с глубокой разметкой и интерполяции уже полученных данных, не более. В каком-то смысле мы тоже машины. Просто, если вернуться к примеру с «китайской комнатой», детей мы учим, не просто просовывая иероглифы под дверь; мы даем им детальные описания, картинки, звуки, сладости (когда информацию надо закрепить), включаем в комнате ТВ-панель со всеми возможными знаниями и делаем еще тысячи вещей, чтобы ребенок учился быстрее. Если мы будем так же поступать с машинным сознанием, результат тоже изменится – ИИ начнет учиться и адаптироваться. С точки зрения описываемого подхода к сути жизни и ее разновидностей человек – это просто очень совершенная машина с конечным сроком годности.
Современный ИИ, безусловно, несовершенен с точки зрения человеческой нервной системы, но, в отличие от нас, срок годности машинного интеллекта неограничен. Рано или поздно при правильном обучении (прогрессирующая методика, не статика) и усовершенствовании технической базы, а конкретно парадигм программирования, квантовых компьютеров, серверов, способных обслуживать многоуровневые нейронные сети без расходования энергии в масштабах небольшой страны, как это делают Google, Apple, Facebook, IBM, Amazon сегодня, машины нас догонят. Так же, как нас догоняют собственные дети, а иногда (как, например, в случае с Эйнштейном и Ньютоном) еще и обгоняют. И произойти это может совершенно обыденно и в то же время неожиданно для человека, как в рассказе Клиффорда Саймака «Театр теней»[6].
Наконец, третья проблема противников возможности AGI, считающих этот тип ИИ невозможным, а саму мысль о нем абсурдной, в том, что в научном сообществе есть группа авторитетных экспертов с полярным мнением. То есть проблема скептиков и критиков AGI в том, что, какими бы умными они ни были, им придется считаться с не менее умными оппонентами. Значимость противодействия в научном сообществе, согласующегося с экспериментальными данными (пример: победа ИИ над человеком при игре в го, как и способность отличать кошек и собак на фото, считалась невозможной, однако практика показывает, что это не так), не стоит недооценивать, ибо отсутствие единства по вопросу безопасности технологии как минимум косвенно говорит о ее небезопасности. Еще на этапе подготовки к публикации работа Джона Серла вызвала критику со стороны 27 исследователей, чьи комментарии были также приведены в том же номере журнала. Речь не о постах в соцсетях, а о серьезных и аргументированных возражениях представителей научного сообщества. Сейчас таких работ более 950. То есть постулат «умные машины невозможны» разделяют не все эксперты. Возможность развития ИИ до уровня AGI и далее, до уровня ASI, полагал вполне вероятной, например, Стивен Хокинг, многократно предупреждавший об опасности и реальности ASI, а в интервью BBC в 2014 году он и вовсе сказал, что «появление полноценного искусственного интеллекта может стать концом человеческой расы»[7]. Илон Маск много лет говорил об опасностях AGI и ASI, несмотря на регулярный троллинг в свой адрес. В интервью Джо Рогану он хорошо разъяснил свою позицию: «Мы просто загрузчик для ИИ – мы прокладываем ему дорогу… если принять весь интеллект за 100 %, сейчас количество искусственного интеллекта незначительно по сравнению с человеческим, но доля искусственного интеллекта растет. Скоро в общем объеме, мы, люди, будем составлять крайне незначительную часть»[8]. Я отношу себя к этой группе и разделяю опасения и Хокинга, и Маска, а сам факт появления ASI считаю исключительно вопросом времени – история полна примеров того, как жестоко ошибались даже великие люди в оценке перспектив того или иного направления. Великий британский физик Эрнест Резерфорд в сентябре 1933-го на заседании Британской ассоциации развития науки заявил: «Всякий, кто видит в превращении атома источник энергии, болтает чепуху», но не прошло и шести лет с момента его выступления, как Отто Ган и Фриц Штрассман открыли деление ядер урана, а еще через шесть лет на свет появилась атомная бомба, положив тем самым начало новой эпохе в истории человечества.
Возможно все. Просто надо вытащить свое сознание из коробки. На искусственный интеллект не стоит смотреть как на изолированный элемент в комнате, который тупо перекладывает бумажки. Он существует не в вакууме. Вместо этого представьте человечество и все, что мы производим, включая машины, в виде роя, муравейника, коллективного разума (ну или «Матрицы»). Сейчас в нашем рое есть интеллектуалы, ученые, прожигатели жизни, популярные блогерши, преступники, президенты стран и есть ноды искусственного интеллекта – точки, элементы роя, которые обслуживают только машины, не люди. Например, вы уже не знаете, как работает поиск по почтовому ящику, – это делает машина. Вы не представляете себе банковское приложение без службы поддержки, на которой первую линию всегда обслуживает машина, вы не умеете ездить в новые места без навигатора (мозг утратил эту способность и отдал ее машине), вы не в силах представить себе сложное устройство сотовой сети во всех деталях вроде идентификации абонентов, маршрутизации звонков, питания и еще множества вещей – ведь всем этим управляют машины. И мы постоянно учим их делать все больше работы и все лучше, ибо сами хотим делать все меньше, а желательно – вообще ничего. С таким подходом наш рой, коллективный разум постепенно будет «выращивать» все больше элементов под искусственным управлением. И однажды встанет простой вопрос: «А это чей вообще муравейник? Кто в нем главный?» И это так же очевидно, как и то, что потомок обезьяны, когда-то взявшей палку в руку, однажды ступит на Марс.
Не стоит списывать со счетов и тот факт, что отец-основатель компьютерной науки и понятия искусственного интеллекта в том виде, в котором оно употребляется на сегодняшний день, Алан Тьюринг считал, что машина рано или поздно сможет общаться с человеком на равных. И даже придумал так называемый тест Тьюринга, пройдя который, машина докажет, что неотличима от человека. Ни одна машина этот тест пока не прошла; вернее, были близкие прецеденты, но четкого мнения по вопросу нет: в 2014 году имел место кейс «Жени Густмана» – алгоритма, который, как заявлялось, формально прошел тест Тьюринга, так как смог убедить около трети судей в том, что он человек. Проблема в том, что сам Тьюринг описал критерии прохождения теста довольно туманно, не определяя долю обманутых собеседников-людей и ограничившись высказыванием, что «у среднего собеседника будет 70 % шансов определить, был ли его ИИ-собеседник человеком или машиной, после пятиминутного собеседования». Если критерий 70 %, то «Густман» не прошел. Главная же проблема в другом: успехи в прохождении теста Тьюринга мало связаны с приближением нас к AGI, ибо «Женя Густман» и все предыдущие претенденты на успешное прохождение теста всего лишь коммуникационные боты разной степени сложности, то есть они решают узкую задачу «обмануть человека, убедив его, что я не робот». Это может считаться версией ANI, но к AGI не имеет отношения.
Это натолкнуло многих на понимание узости подобного подхода к созданию ИИ. В настоящее время ведущие разработчики в области ИИ перестали ставить своей целью прохождение их детищами теста Тьюринга и сфокусировались в основном на изучении и описании самого понятия «разум». Они стремятся не просто скопировать поведение человека, а произвести на свет нечто имеющее именно зачатки разума, то есть сеть принятия решений, способную обучаться самостоятельно и менять свои представления о приоритетах, добре и зле не по указке сверху, а на основании получаемого опыта. Как ни странно, свою значимость и незаменимость на этом пути обнаружили другие науки, например нейробиология, психология (книга «Думай медленно… решай быстро»[9] нобелевского лауреата Даниеля Канемана никогда еще не была так актуальна), генетика, эволюционная биология и биоинформатика, так что сегодня ИИ пытаются создать не только математики или программисты. В их вселенной ИИ – это действительно «китайская комната», но, когда им помогают светила других наук, все меняется. И вопрос появления ASI – тоже, как ни странно, лишь вопрос времени.
ASI – это искусственный интеллект, который превосходит лучшего представителя людей в любой возможной области. Например, в математике ASI будет сильнее Григория Перельмана, в физике – умнее Альберта Эйнштейна (что представить даже страшно), в области инжиниринга и управления продуктом – совершеннее Илона Маска, в области борьбы за права человека (или машины?) – успешнее Харви Милка, Мартина Лютера Кинга и Александра Солженицына; еще он сможет писать книги лучше Льва Толстого, размышлять о Вселенной в разы увлекательнее, чем Митио Каку и Юваль Харари, снимать фильмы лучше Джеймса Кэмерона и да – готовить борщ лучше вашей бабушки. С появлением ASI, скорее всего, случится то, что предрекал коллега Тьюринга, британский математик Ирвинг Гуд, – это будет нашим последним изобретением. О возможностях суперинтеллекта и вероятных сценариях нашего сожительства с ним мы поговорим в заключительных главах. Сейчас же, когда мы понимаем типы ИИ, важно разобраться в том, где мы, человечество, находимся в том самом муравейнике и какую роль выполняем уже сейчас.
С точки зрения банальной индукции…
История науки знает множество несбывшихся прогнозов и предсказаний, но пальма первенства, несомненно, принадлежит французскому философу-позитивисту Огюсту Конту, в 1835 году приведшему в качестве примера вещи, недоступной для человеческого познания, вопрос о составе звезд: «Мы никогда и никоим способом не сможем изучить их химический состав и минералогическую структуру».
При этом его предсказание базировалось на прочном, как казалось, философском фундаменте: «Истинная наука, далеко не способная образоваться из простых наблюдений, стремится всегда по возможности избегать непосредственного исследования, заменяя последнее рациональным предвидением, составляющим во всех отношениях главную характерную черту положительной философии. Такое предвидение, необходимо вытекающее из постоянных отношений, открытых между явлениями, не позволит никогда смешивать реальную науку с той бесполезной эрудицией, которая механически накапливает факты, не стремясь выводить одни из других… Истинное положительное мышление заключается преимущественно в способности видеть, чтобы предвидеть, изучать то, что есть, и отсюда заключать о том, что должно произойти согласно общему положению о неизменности естественных законов»[10].
Злая ирония заключалась в том, что все «простые наблюдения», способные дать ключ к определению химического состава звезд, на тот момент были уже сделаны. В 1814 году баварский оптик Йозеф Фраунгофер, бившийся над задачей точного определения коэффициента преломления различных сортов стекол для разных длин световых волн, сконструировал спектроскоп, в котором свет, проходивший сквозь призму, разлагался в многоцветный спектр, и обнаружил, что в спектре излучения Солнца есть темные линии (их еще в 1802 году наблюдал английский физик Уильям Волластон, но решил, что это естественные контуры, обрамляющие цветные линии). В ходе исследований он выделил и описал в солнечном спектре 576 темных линий. Это диктовалось чисто практическими соображениями, ведь, изготавливая призмы спектроскопа из разных сортов стекла и замеряя расстояния между зафиксированными темными линиями, можно было определить показатель преломления для стекла для любой области спектра. Но Фраунгофер попутно обнаружил, что спектры других звезд, в частности Сириуса, обладают различным набором темных линий и что особенно четкая двойная темная линия солнечного спектра находится точно там же, где и яркая желтая двойная линия в спектре пламени масляной лампы. Следующий факт в копилку «бесполезной эрудиции» положил один из изобретателей фотографии Уильям Тальбот, в 1826 году обнаруживший, что при внесении в пламя солей различных металлов они дают различающиеся картины спектров.
Но лишь в 1859 году создатели спектрального анализа Роберт Бунзен и Густав Кирхгоф обнаружили, что каждый химический элемент не только испускает свет определенных спектральных частот, но и поглощает свет тех же длин волн от источника излучения, разогретого до более высоких температур. Загадка темных линий разрешилась – они появляются в результате поглощения части спектра веществом в поверхностных слоях Солнца, а обнаруженная Фраунгофером характерная двойная темная линия принадлежит натрию. Определение химического состава звезд было уже, как говорится, делом техники.
Эта история наглядно демонстрирует ограниченность индуктивного мышления, на которое опирался Конт в своих «рациональных предвидениях». Оно оперирует неким набором фактов (в случае предсказания Конта довольно произвольным и неполным), и результат определяется полнотой исходных данных. Искусственный интеллект в некотором роде индуктивная машина, результаты работы которой зависят от того, что называется big data, – данных на входе.
Глава 4
Мозг человека, искусственный интеллект и данные
Мозг человека, то есть хранилище «софта» для формы жизни № 2, возможно, самое сложное создание Вселенной: в голове каждого из нас около 86 млрд нейронов. Нейрон (сильно упрощенно, конечно) может быть или включен, или выключен. То есть даже при таком подходе минимальное количество состояний нейронной сети нашего мозга – это 2 в степени 86 млрд. Но, во-первых, один нейрон может быть связан с множеством других (а не одним) – для этого у каждого нейрона есть до 7000 синапсов (контактов), во-вторых, сила связей между двумя и более нейронами влияет на итоговое общее состояние системы. Сила связей не строго одинакова (исследователи обнаружили 26 дискретных категорий синапсов), и каждую долю секунды состояние будет меняться – нейроны всякий раз будут активироваться уникальным образом: мыслительная деятельность многомерна, и нейроны могут активироваться нелинейно и непоследовательно. Каждый биологический нейрон, по сути, представляет собой компьютер, а не просто сумматор (логическую схему), как в искусственных нейронных сетях.
С этой точки зрения человеческое сознание не имеет ничего общего с искусственными нейронными сетями, в которых каждый следующий слой активируется предыдущим. Еще во многом остается загадкой, какие функции кроме передачи сигналов выполняют дендриты – разветвленные отростки нейронов (появляется все больше свидетельств того, что они играют важную роль в обработке информации).
Усугубляется все тем, что в мыслительном процессе задействованы разные зоны мозга, гормоны, органы чувств и еще масса других параметров, которые «плодят умножение» возможных вариантов. Фактически сознание человека состоит из множества сознаний, работающих в унисон, это своеобразный муравейник. Вся эта экосистема в сухом остатке не сохраняет никаких данных на какой-то носитель, она просто калибрует силу биоэлектрических связей между нейронами в привязке к состоянию сети. То есть два нейрона могут иметь слабую связь при одной мысли или действии и сильную – при другой. А управляется все это по принципу роя – нейроны сами каким-то образом запоминают свою роль в зависимости от ситуации и каждый из них определяет свою переменную связь со всеми остальными в каждый момент времени, оценивая множество получаемых параметров. Все это делает количество вариантов состояния нейронной сети невероятным, самым большим во Вселенной числом, которому нет названия. Даже атомов во Вселенной меньше.
Но это не все, ибо мозг – не просто хранилище: одна простая мысль формата «Я ж яйца забыла купить!» задействует, допустим, 5 млн (оговорюсь сразу: это всего лишь моя гипотеза, то есть гипотеза, основанная на имеющихся знаниях, но все же пока не доказанная и требующая дальнейшей проработки) нейронов сети, активированных и соединенных друг с другом уникальным образом – эдакая «паутинка» (причем один и тот же нейрон может участвовать в бесконечном количестве мыслей). Сложная мысль или мыслительная активность в состоянии стресса, да еще и в движении, будет усилена гормонами и входящими потоками данных с большего количества сенсоров и в результате может задействовать до 90 % (опять же, моя гипотеза) всей существующей сети (это важная деталь, ибо есть примеры, когда люди живут после удаления половины мозга, а это свидетельствует: нейронная сеть, безусловно, умеет адаптироваться под состояние носителя). Здесь же я должен сделать еще одну оговорку: у человечества в настоящее время нет МРТ-сканеров нужного разрешения для того, чтобы очень точно отследить и посчитать количество активированных нейронов, – дело в том, что самые продвинутые технологии магнитно-резонансной томографии позволяют получать изображения мозга с разрешением порядка 0,5 миллиметра. Это кажется огромным достижением, но для получения изображения синапса – связи нейрона с другими, потребуется разрешение совершенно иного класса – 0,001 миллиметра, а для распознавания силы связи потребуется еще большее разрешение. Эти цифры позволяют сделать неутешительный вывод: для задачи наблюдения за мыслительным процессом живого организма МРТ не подходит – если увеличить напряженность магнитного поля пропорционально задачам, мозг сканируемого человека будет попросту разрушен. Мыслительная деятельность трупов – так себе объект для изучения, поэтому нам нужны принципиально новые неинвазивные методы изучения мозга. Поэтому цифры «5 млн и «90 %» – это, как я уже оговаривался, то есть основанная на имеющихся знаниях, но все же пока не доказанная моя гипотеза, требующая дальнейшей проработки. Вероятнее всего, эти цифры будут определены, так же как совсем недавно было уточнено полное количество нейронов в мозге человека – долгие годы считалось, что их 100 млрд, но бразильский нейробиолог Сузана Эркулано-Оузель нашла способ более точного подсчета и теперь мы знаем наверняка, что в мозгу человека 86 млрд нейронов (если вы думаете: «100, 86 – не такая уж большая разница!» – напрасно, разница существенна: 14 млрд – это примерно столько же, сколько в мозгу бабуина, то есть примата – отряда живых существ, которых мы эволюционно считаем близкими себе).
Первая эмулированная биологическая нейронная сеть
Первым, в 1986 году, был описан коннектом (то есть все связи между нейронами) червя-нематоды Caenorhabditis elegans, чья нервная система насчитывает всего 302 нейрона. Команда ученых под руководством будущего нобелевского лауреата Сиднея Бреннера нанесла на карту все 7000 возможных соединений между нейронами, хотя при этом не учитывались синаптические веса (характеризующие силу связи) и направление передачи сигналов. В мозгу человека около 86 млрд нейронов. Считается, что в связях между нейронами заключены многие аспекты человеческой индивидуальности, такие как личность и интеллект, поэтому описание коннектома человека может стать большим шагом к пониманию многих умственных процессов. Определение коннектома червя-нематоды Caenorhabditis elegans заняло более 12 лет упорного труда. Потребовалось выполнить несколько тысяч срезов толщиной 50 нм, которые затем помещались под электронный микроскоп, фотографировались и анализировались вручную.
Данные о коннектоме червя-нематоды были использованы в проекте OpenWorm, задавшемся целью создать цифровую модель организма червя. На данный момент уже созданы компьютерные модели нейронного коннектома и мышечных клеток. Более того, модель нейронной сети червя (с некоторыми упрощениями) была загружена в компьютер, управляющий роботом LEGO Mindstorms EV3. Исследователи утверждают, что шаблоны поведения робота стали аналогичны реакциям червя.
Чтобы описать коннектом человеческого мозга, вероятно, понадобится прорыв, подобный тому, который совершил Крейг Вентер в работе над расшифровкой генома человека. А пока что для воссоздания коннектома одного кубического миллиметра коры головного мозга требуется миллион человеко-часов. Хотя, конечно, надо отдавать себе отчет, что стабильную структуру человеческого коннектома невозможно воссоздать, ведь перестройка связей идет постоянно. Но вполне реально воссоздать «архитектуру» относительно стабильных крупных проводящих путей.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
Гладуэлл М. Гении и аутсайдеры. – М.: Манн, Иванов и Фербер, 2016.
2
Докинз Р. Эгоистичный ген. – М.: АСТ, Corpus, 2020.
3
Тегмарк М. Жизнь 3.0. – М.: АСТ, 2019.
4
https://nat-geo.ru/nature/biomassa-zemli-bolshe-vsego-vesyat-rasteniya/.
5
John R. Searle “Minds, Brains, and Programs,” Behavioral and Brain Sciences, Volume 3, Issue 3, September 1980, pp. 417–424; DOI: https://doi.org/10.1017/S0140525X00005756.
6
Саймак К. Театр теней. – М.: Эксмо, 2008.
7
https://www.bbc.com/russian/science/2014/12/141202_hawking_ai_danger.
8
https://www.youtube.com/watch?v=Ra3fv8gl6NE.
9
Канеман Д. Думай медленно… решай быстро. – М.: АСТ, 2013.
10
Конт О. Дух позитивной философии. – Ростов н/Д.: Феникс, 2003.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги