Читать книгу Наука и кулинария. Физика еды. От повседневной до высокой кухни (Дэвид Вейтц) онлайн бесплатно на Bookz (2-ая страница книги)
bannerbanner
Наука и кулинария. Физика еды. От повседневной до высокой кухни
Наука и кулинария. Физика еды. От повседневной до высокой кухни
Оценить:
Наука и кулинария. Физика еды. От повседневной до высокой кухни

3

Полная версия:

Наука и кулинария. Физика еды. От повседневной до высокой кухни

Разбор рецептов

Как разобрать рецепт? Давайте рассмотрим случай печенья с шоколадной крошкой. В каждом рецепте есть две основные части: ингредиенты и описание процесса – метода – приготовления. Чтобы понять рецепт, нужно определить, каким образом ингредиенты превращаются в субстанцию совершенно иного рода. Готовить печенье с шоколадной крошкой мы начинаем с нескольких сухих продуктов (мука, сахар, соль), некоторого количества жидкости (в виде яиц) и жира (сливочное масло). Соединив их должным образом, мы получаем тесто для печенья – субстанцию, свойства которой отличаются от исходных. Тесто можно раскатывать, формировать из него шарики, сплющивать их – и даже ими перебрасываться. Попробуйте проделать это с исходными ингредиентами. Ничего не выйдет. К тому же вкус у теста намного лучше, чем у них. Когда вы отправляете его в духовку, оно снова преображается – на этот раз во вспененное твердое вещество с приятной текстурой. Эти преобразования – результат сделанного нами выбора процесса и ингредиентов.

Чтобы разобрать рецепт, нужно прежде всего понять состав ингредиентов. В случае большинства продуктов это сделать легко, просто посмотрев на сведения о пищевой ценности, где указывается, сколько жиров, белка и углеводов в нем содержится. Это важно с точки зрения калорий, потому что 1 грамм жира дает 9 калорий, а 1 грамм белка или углеводов – 4 калории. Так что, если вы следите за калориями, лучше ограничить потребление жиров.

Однако эта характеристика не учитывает одну интересную вещь. Жиры, белки и углеводы – это молекулы разных форм, размеров и свойств. Ключевой момент для понимания рецепта в том, чтобы проследить молекулярные превращения ингредиентов, разобраться, почему эти превращения происходят и как это сказывается на конечном продукте. В книге есть мантра, которой мы следуем снова и снова:

Чтобы разобраться в рецепте, нужно понять, как молекулы ингредиентов превращаются в молекулярную структуру блюда.

Самая важная характеристика продукта (хотя с этим можно поспорить) – то, как мы его воспринимаем, когда едим. Мы так много времени тратим на приготовление потому, что хотим улучшить свой гастрономический опыт. У нашего чувственного восприятия две стороны: текстура и вкус с ароматом. Представьте себе, что едите размокшее печенье: вкус может быть нормальным, но удовольствия вы не получите. А теперь представьте, что едите подгоревшее печенье. Текстура может быть идеальной, но вы его выплюнете. Очень интересно, что молекулярные свойства, определяющие текстуру и вкусоароматические характеристики пищи, кардинально различаются и в основном обеспечиваются (за несколькими важными исключениями) разными видами молекул. В нашей книге мы будем называть эти разные типы молекул «молекулами текстуры» и «вкусоароматическими молекулами». Когда будем анализировать рецепты, вы убедитесь, что они ведут себя по-разному: на самом деле условия для создания выдающегося вкуса и текстуры отчасти и делают кулинарию настолько сложной.

Прежде чем двигаться дальше – и раз уж речь зашла о молекулах, – несколько слов о «молекулярной кухне». Термин был модным, но несколько презрительным именованием работы самых изобретательных шеф-поваров нашего времени. Эти шефы действительно работают с молекулами и прославились тем, что открыли совершенно новые природные ингредиенты и процессы, изменяющие вкус и текстуру. Некоторые их открытия мы обсудим в этой книге. Тем не менее хочется подчеркнуть, что использование молекул в кулинарии не ново: любое приготовление пищи молекулярно. Как сказал наш друг Хосе Андрес: «Натирание пармезана – занятие молекулярное». Навешивать на современную кухню ярлык «молекулярная» – значит неправильно понимать, в чем же состоит кулинария.

Молекулы текстуры

Давайте вернемся к нашим двум типам молекул. Молекулы текстуры – это те, которые мы видим в описании пищевой ценности: белки, жиры и углеводы, как показано на рисунке 1. Удивительные изменения продуктов в процессе приготовления почти полностью определяются ими, и эти изменения совершенно различны для белков, жиров и углеводов. Свидетельства тому будут постоянно встречаться в этой книге. Чтобы раздразнить ваш аппетит несколькими примерами, предлагаем задуматься о том, что жиры не растворяются в воде: растительное масло и вода не смешиваются. (Вспомните, что будет с постоявшей салатной заправкой, соусом винегрет: растительное масло поднимется наверх, а уксус окажется внизу.) В отличие от жиров, такие углеводы, как сахар, растворяются очень легко: трудно поверить, но в стакане воды при комнатной температуре можно растворить вдвое большее по весу количество сахара! Как мы позже увидим, приготовление карамели – это, по сути, управление соотношением сахар – вода. Оно возможно потому, что при нагревании смеси в воду можно натолкать еще больше сахара. При 100 °C вода может содержать в четыре раза больше сахара, чем ее собственный вес. Когда вы после этого вмешиваете в сахарную воду жир, он преображает текстуру и вкус, и вы можете получить вкуснейшую карамель. А вот белки совершенно иные. Они растворяются в воде, но их кулинарные сверхспособности заключаются в том, что при нагревании они распадаются, а потом снова слипаются, приводя к полной трансформации продукта.

И последняя молекула, участвующая в определении текстуры, – главный ингредиент: вода (забавно, что ее на этикетках обычно не указывают). При виде стейка или картофеля вы и не подозреваете, что больше половины в них – вода: 60 % в мясе и 80 % в картофеле. Даже мука, – казалось бы, самый сухой продукт, – содержит до 15 % воды. На рисунке 2 вы увидите еще примеры. Оказывается, когда мы изменяем текстуру продукта, мы часто в первую очередь манипулируем количеством воды. Именно потому свойства воды чрезвычайно важны. Так как еда – это по большей части вода, то законы, управляющие нагреванием стейка, совершенно те же, что и при варке картофеля или выпекании кекса. Более того, в сущности они те же, что и для нагревания стакана воды.


РИСУНОК 1

На этикетках указывается пищевая ценность продукта. Пищевая ценность напрямую связана с молекулярным составом, так что, глядя на указанные цифры, мы можем многое узнать о содержании различных молекул текстуры. На самом деле иногда можно «восстановить» рецепт по сведениям о пищевой ценности и ингредиентам, которые приводятся в порядке уменьшения количества. Представленная этикетка – пример того, как они выглядят в США. Этикетки в других странах сходны по содержанию, но могут записываться по-разному и с использованием иных единиц.

Главные молекулы текстуры обозначены стрелками. Жиры вверху, затем углеводы примерно посередине, и, наконец, белки. Рядом с каждым пунктом указано, сколько граммов этих молекул может содержаться в порции. Молекулы белков, жиров и углеводов относительно крупны, и, поскольку это молекулы текстуры, их должно быть достаточно много, чтобы это на ней сказалось. Вместе с водой они составляют большую часть веса нашей пищи. В данном примере на углеводы и белок приходится 26 г от 31-граммовой порции, а значит, примерно 5 г – это вода.


РИСУНОК 2

В растительном масле воды нет, что неудивительно, но подавляющая часть пищевых продуктов животного происхождения в основном состоит из воды. Мука кажется сухой, однако крахмалы всегда поглощают некоторое количество воды из атмосферы, и обеспечить их полное обезвоживание очень трудно.


Вкусоароматические молекулы

Несмотря на важность вкусоароматических молекул для восприятия еды, на этикетках они не указываются. Одна из причин в том, что молекулы эти крошечные и появляются в ничтожных количествах: порой молекул, определяющих вкусоароматические характеристики продукта, в миллионы или миллиарды раз меньше, чем белков, жиров и углеводов. Однако без них еда была бы скучной и пресной.

Вкусоароматических молекул бесчисленное количество, и вкус блюда может оказаться результатом соединения сотен таких молекул. Это разнообразие чуть упрощает тот факт, что все вкусоароматические молекулы можно разбить на два больших класса (см. рисунок 3), которые различаются и тем, как мы их воспринимаем, и тем, как получаем их для приготовления пищи. Молекулы собственно вкуса связываются со вкусовыми рецепторами на нашем языке. Вкусов пять: сладкий, соленый, кислый, горький и умами. А вот ароматические молекулы связываются с обонятельными рецепторами в задней части нашего носа. Они попадают на рецепторы, отделяясь от еды, когда мы ее пережевываем, и летят по воздуху из задней части рта к задней части носа. Ароматические молекулы – главный источник богатых и разнообразных оттенков вкуса и запаха пищи. Их способны ощущать лишь очень немногие животные: есть даже теория, что эволюция человеческого мозга – прямой результат нашей способности их распознавать.


РИСУНОК 3

Молекулы вкуса, изображенные слева, определяются рецепторами языка. Хотя основных вкусов пять, мы воспринимаем их по-разному в зависимости от того, как они сочетаются. В результате эволюции определенные вкусы ассоциируются у нас с благотворным или вредным воздействием на наш организм. Сладость, которая для большинства людей является приятным ощущением, обычно ассоциируется с хорошими источниками быстрой энергии. Горечь, наоборот, может помочь определить нечто ядовитое. Возможно, именно поэтому ребенка не приходится уговаривать доесть сладкий десерт, а вот горький вкус часто попадает в категорию «приобретенных».

Ароматические молекулы, изображенные справа, воспринимаются обонятельными рецепторами носа. Они могут попасть туда двумя путями: через ноздри и, что, пожалуй, важнее, через заднюю часть рта при пережевывании и проглатывании пищи. У человека около восьми сотен генов обонятельных рецепторов, что делает их гораздо более сложной и чуткой системой, нежели вкус. На самом деле кажущиеся различия между продуктами можно проследить до их ароматических молекул, а не молекул вкуса. В известном эксперименте люди с завязанными глазами зажимали носы и ели кусочки яблок, лука и картофеля. Дегустаторов просили угадать, который из трех продуктов они едят. Обычно вкус продуктов кажется довольно похожим до того момента, как их собираются проглотить. В этот момент, когда рецепторы запаха улавливают проходящую пищу, вы наконец получаете информацию для четкой идентификации, которую пропустил зажатый нос. Если у дегустатора насморк, рецепторы в носу и во рту блокируются слизью, из-за чего пища кажется пресной.


В целом вкусоароматические молекулы обычно очень мелкие. В особенности ароматические: они должны быть достаточно легкими, чтобы парить в воздухе, летучими. Но даже молекулы вкуса обычно крошечные, потому что именно маленькие молекулы лучше связываются со вкусовыми рецепторами. И наоборот, белки, жиры и углеводы большие и неуклюжие и в результате почти не обладают собственным вкусом и ароматом: они слишком велики для того, чтобы связываться с рецепторами. Вместо этого они отправляются прямо к нам в желудок, где сжигаются, давая калории.

А вот провести границу между вкусом и ароматом может оказаться на удивление непросто. В английском языке вкусоароматические характеристики продукта обозначаются словом flavor. Ароматические молекулы из пищи легко переходят изо рта в ретроназальное пространство, создавая у нас впечатление определенного вкуса, тогда как на самом деле это аромат. В качестве упражнения по разграничению этих двух явлений попробуйте провести первый эксперимент из врезки. Второй эксперимент показывает, что комбинация вкусов бывает очень сложной и интересной. Оба этих опыта помогают понять те факты относительно вкуса и аромата, которые важны для создания вкусных блюд.

МЯТНЫЙ ЛЕДЕНЕЦ

Зажмите нос, а корнем языка постарайтесь максимально перекрыть глотку. Теперь положите в рот мятный леденец и попробуйте определить, какой вкус (какие вкусы) ощущаете. А теперь отпустите нос. Что произошло? Пока вы зажимали нос, леденец, скорее всего, казался вам просто сладким. А потом вы ощутили взрыв мятного вкуса и запаха. Это потому, что ментол (вкусоароматическая молекула в мяте) состоит из мятного запаха, с которым мы все знакомы, плюс чуть-чуть горечи и ощущения прохлады. Пока вы зажимали нос, организм не мог ощутить аромат ментола, а горечь, скорее всего, перебивалась сладостью. Ощущение прохлады объясняется тем, что ментол активирует определенные нервы во рту и в носу. Пока вы зажимали нос, этого тоже не происходило в полной мере. Вы можете проделать этот опыт с любым продуктом, чтобы отделить его запах от вкуса, что поможет оценить, как они работают совместно, создавая уникальные вкусоароматические сочетания.

БАЛАНС ВКУСА: СЛАДОСТЬ – КИСЛОТА

Как известно, в газированных напитках много сахара. На самом деле в каждой банке объемом 355 мл (примерно 11/2 стакана) содержится около 1/4 стакана сахара. Вы никогда не задумывались, как производителям удается добавить такое большое количество сахара, но при этом не сделать напиток чересчур сладким? Чтобы ответить на этот вопрос, давайте поставим быстрый эксперимент.

Наполните стакан питьевой водой и размешивайте в нем по 1 чайной ложке сахара за прием, пробуя после каждого добавления, пока вода не станет неприятно приторной. А теперь добавляйте по 1/4 чайной ложки уксуса, каждый раз отпивая понемногу, пока вкус снова не станет приемлемым. Обязательно записывайте, сколько уксуса вы добавили к сахарной воде.

Наполните другой стакан питьевой водой и влейте туда такое же количество уксуса, какое добавили к предыдущему стакану, отпейте немного – и постарайтесь не поморщиться!

Вот в чем секрет кока-колы. Сахара в ней столько, что большинству было бы невкусно. Однако за счет добавления кислоты (и других вкусоароматических веществ) получается довольно вкусный напиток. Газирование – еще один источник кислоты, и поэтому выдохшаяся кола на вкус слаще свежей.

Это один из множества разнообразных примеров того, как молекулы вкуса могут уравновешивать друг друга. Таким образом во многих рецептах добавляются слои вкусов и ароматов и выявляются скрытые вкусоароматические характеристики ингредиентов. Умелый повар знает, как заставить различные вкусоароматические компоненты подчеркивать друг друга, и не боится экспериментировать с ними, чтобы улучшать общий вкус своего блюда. Например, из-за взаимодействия сахара и кислоты некоторые повара добавляют в свой соус маринара немного сахара, чтобы уравновесить вкус слишком кислых помидоров. Натан Мирволд идет еще дальше и добавляет в красное вино щепотку соли, чтобы улучшить его вкус.

Откуда берутся вкусоароматические молекулы?

Вкусоароматические молекулы исходно содержатся в пище и к тому же добавляются в процессе приготовления. Вы удивитесь, узнав, что в приготовленном продукте этих молекул намного больше, чем в сыром. Но задумайтесь: вкус испеченного печенья сильно отличается от вкуса теста. Вкус поджаренного стейка не похож на тартар из говядины. Вспомните, что молекулы белков, жиров и углеводов слишком велики, чтобы связываться с нашими рецепторами вкуса и запаха, и потому нам нужны крошечные молекулы, которые придадут пище вкус. Иногда мы добавляем их на ранних этапах. Например, в рецепте печенья с шоколадной крошкой мы используем сахар, соль и ваниль. Соль достаточно мала, чтобы связываться с рецепторами соленого у нас на языке, а в ванили есть мелкая молекула, называемая ванилином, которая соединяется с рецепторами запаха в задней части носа. У шоколада тоже есть вкус и аромат, но он – более сложный ферментированный продукт, имеющий свойства, которые мы будем рассматривать позже.

И все же главное волшебство создания вкуса и аромата происходит во время готовки. Процесс приготовления способен буквально разорвать молекулы белков, жиров и углеводов и превратить их во вкусоароматические молекулы! Крупные молекулы распадаются на молекулы поменьше, а те – на все более и более мелкие. В итоге они оказываются достаточно малы, чтобы распознаваться нашими рецепторами. Одним из ключевых агентов в создании вкуса и аромата является нагрев, вызывающий распад молекул (нагрев мы подробнее обсудим в главе 2). Однако сходное создание вкуса и аромата происходит и при многих других процессах приготовления пищи. Приготовление пищи с помощью микробов, например ферментация при квашении капусты или засолке огурцов, также разбивает крупные молекулы на крошечные вкусоароматические молекулы. То же верно и для копчения и выдержки.

Вкус и кислоты

Самый простой пример обычной вкусоароматической молекулы – это кислоты, молекулы которых дают соответствующий вкус. С научной точки зрения молекулы кислоты характеризуются тем, что легко отдают ионы водорода. Наши вкусовые сосочки ощущают кислоту, обнаруживая водород: ионы водорода блокируют протонные каналы в рецепторах и отправляют в мозг сигнал «кисло». Интересно, что для того, чтобы пища была распознана как кислая, нужно очень немного ионов водорода. Когда лимонная кислота растворяется в воде, она распадается на части, оставляя плавать небольшое количество ионов водорода. На самом деле, если вы растворите в воде очень маленькое количество лимонной кислоты, ионов водорода там будет в миллионы раз меньше, чем молекул воды. Казалось бы, ионы водорода должны были бы редко наталкиваться на вкусовые сосочки, но на самом деле они постоянно контактируют с ними, а чтобы создать кислый вкус, только это и нужно. Поистине удивительное научное явление – общее свойство вкуса: нужно относительно немного молекул, чтобы вызвать сильное вкусовое ощущение. Следовательно, в кулинарии требуется очень тщательно уравновешивать вкусы.

Кислоты важны для всей химии, а не только для кулинарии. Ученые разработали специальный водородный показатель, pH, для измерения кислотности. pH показывает количество ионов водорода как процент от общего количества молекул воды. По сложившейся традиции ученые пользуются шкалой, которая разъясняется во врезке. Важно, что pH чистой воды равен 7, а у лимонного сока этот показатель составляет примерно 2. Это значит, что в лимонном соке ионов водорода на пять порядков (в 100 000 раз) больше, чем в чистой воде.

pH

pH – это логарифмическая шкала для измерения кислотности (и щелочности). Она говорит вам, сколько протонов (ионов H+) находится в растворе. Почему это нам важно? Ионы H+, по сути, забивают или перекрывают протонные каналы в наших вкусовых сосочках, тем самым отправляя нам в мозг сигнал «кисло». Растворы с низким pH (pH < 7) кислотные и кажутся нам кислыми на вкус, а щелочные растворы (pH > 7) часто кажутся горькими, металлическими или мыльными. Шкала pH, разработанная датским ученым Сёреном Сёренсеном, основана на концентрации ионов водорода, которая дается в количестве молей H+ на литр раствора; 1 моль равен примерно 6 × 1023 единицам (в данном случае, ионам), то есть 6 с 23 нулями! Мы используем этот странный показатель (у него даже есть имя: число Авогадро), потому что так проще считать. Иначе подсчет количества ионов или молекул быстро становится весьма громоздким. Логарифмическая шкала говорит нам: изменение pH на одну единицу означает, что концентрация H+ изменилась в 10 раз. Лимонный сок с pH = 2 имеет в 10 раз меньшую концентрацию ионов H+, чем желудочный сок, pH которого 1. Все это означает, что мы можем определить pH по экспоненте концентрации. Например, в литре воды комнатной температуры 10–7 молей ионов H+, так что нейтральный водородный показатель (pH) принят за 7. (Стоит отметить, что Сёренсен открыл эту шкалу, изучая ферментацию пива: достойная тема для курса «Наука и кулинария»!) Однако люди очень быстро поняли, что общая концентрация водорода не всегда прямо соответствует кислотности: важна именно концентрация растворенных или активных ионов H+.


РИСУНОК 4

Молекулы вкуса, изображенные слева, определяются рецепторами языка. Хотя основных вкусов пять, мы воспринимаем их по-разному в зависимости от того, как они сочетаются. В результате эволюции определенные вкусы ассоциируются у нас с благотворным или вредным воздействием на наш организм. Сладость, которая для большинства людей является приятным ощущением, обычно ассоциируется с хорошими источниками быстрой энергии. Горечь, наоборот, может помочь определить нечто ядовитое. Возможно, именно поэтому ребенка не приходится уговаривать доесть сладкий десерт, а вот горький вкус часто попадает в категорию «приобретенных».

Ароматические молекулы, изображенные справа, воспринимаются обонятельными рецепторами носа. Они могут попасть туда двумя путями: через ноздри и, что, пожалуй, важнее, через заднюю часть рта при пережевывании и проглатывании пищи. У человека около восьми сотен генов обонятельных рецепторов, что делает их гораздо более сложной и чуткой системой, нежели вкус. На самом деле кажущиеся различия между продуктами можно проследить до их ароматических молекул, а не молекул вкуса. В известном эксперименте люди с завязанными глазами зажимали носы и ели кусочки яблок, лука и картофеля. Дегустаторов просили угадать, который из трех продуктов они едят. Обычно вкус продуктов кажется довольно похожим до того момента, как их собираются проглотить. В этот момент, когда рецепторы запаха улавливают проходящую пищу, вы наконец получаете информацию для четкой идентификации, которую пропустил зажатый нос. Если у дегустатора насморк, рецепторы в носу и во рту блокируются слизью, из-за чего пища кажется пресной.

СОУС К УТКЕ ОТ ДАНИЭЛЯ ХАММА

Даниэль Хамм, замечательный шеф нью-йоркского ресторана Eleven Madison Park, многие годы считается одним из лучших поваров мира. Он большой поклонник кислот в кулинарии и очень эффективно использует их в своих ресторанах. Он рассказал нашим гарвардским слушателям, что кислота обладает способностью придавать особый вкус даже самым скучным ингредиентам, а высококлассные ингредиенты может сделать поистине поразительными. В этом секрет сбрызгивания картофеля фри уксусом: именно кислинка уксуса заставляет вас брать добавку. И в ней же секрет фастфуда, дешевого вина (просто добавьте кислоты!), газировки… список можно продолжать долго. Чтобы проиллюстрировать утверждение Даниэля, что кислота способна сделать вкусную еду еще вкуснее, давайте рассмотрим его рецепт соуса (жю) с уткой и цитрусовыми (он подает его к своей знаменитой утке с лавандой и медом), в котором содержится четыре разных кислоты: лимонный сок, сок лайма, апельсиновый сок и уксус. На занятии мы даем студентам задание подсчитать pH получившегося соуса. Даниэль определил, что идеальный pH для его соуса равен 4,6. В этом соусе pH особенно важен, так как он уравновешивает животный, жирный, богатый вкус утки и сладость от сахара в соусе.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Вы ознакомились с фрагментом книги.

Для бесплатного чтения открыта только часть текста.

Приобретайте полный текст книги у нашего партнера:


Полная версия книги
bannerbanner