скачать книгу бесплатно
Парадоксы – неожиданные и неглупые суждения – бывают разные. Обычно они опровергают, казалось бы, бесспорные истины.
Но подчас общепринятое мнение само по себе парадоксально. Именно таковы некоторые положения науки ХХ века, главным образом физики.
Например, утверждается, что есть природный объект, совмещающий два несовместимых качества: волна-частица. Волна – это колебание определённой среды. Частица – конкретное материальное тело. Корабль, рассекающий водную гладь, – материальный объект, волны от него – колебания воды. Мы говорим: волны от корабля, а не «волна-корабль». Так, может быть, парадокс волны-частицы раскрывает проблему, достойную серьёзного обсуждения? Как знать, не обнаружатся ли в результате пути к научному открытию?
Популярен «парадокс близнецов» теории относительности Эйнштейна: двигаясь со скоростью, близкой к скорости света, один из близнецов испытает непостижимый феномен «замедления времени» и будет стареть медленней, чем его брат, оставшийся на родине.
Физики смиренно признали этот воображаемый феномен законом природы. Переход от физико-математических абстракций к природе, к реальным живым существам вынуждает по-новому осмыслить суть понятия времени.
Большая советская энциклопедия: «Обнаружение парадоксов является одним из главных источников развития познания». По-видимому, это относится и к познанию как системе мышления (логические парадоксы), и к познанию природы и человека.
В науке парадокс обнаруживает наше непонимание мира вокруг и внутри нас. Он помогает избавляться от привычных мнений, ставших предрассудками; показывает противоречия в научных теориях. Парадокс – индикатор недоразумений и верный помощник в поисках истины.
Старые проблемы на новый лад
Из далёкой древности к нам дошло немало поучительных парадоксов. Они продолжают занимать умы исследователей. Наиболее знамениты апории Зенона.
В переводе с греческого «апория» означает «безысходность», «тупик» (от слова «порос» – выход, с отрицательной частицей «а»). Философы Древней Греции называли так проблемы неразрешимые или не имеющие определённого решения. Согласно Аристотелю апория – «равенство противоположных друг другу доводов».
Апорию можно назвать парадоксальным парадоксом. Это – логичное суждение, которое противоречит реальности.
Зенон два с половиной тысячелетия назад выдвинул апории, показывая возможность невозможного: летящая стрела неподвижна, а быстроногий Ахиллес не сможет догнать черепаху.
Подобные утверждения противоречат здравому смыслу и опыту. Однако осмысление их вскрывает противоречия или неопределённости в наших представлениях о пространстве, времени, движении.
Апории показывают: наши суждения зависят от того, какими правилами мы руководствуемся, по каким алгоритмам рассуждаем. Нужна корректная постановка задачи. Важно учитывать, какие приняты за основу аксиомы – истины, которые не можем или не желаем доказать, принимая на веру.
Некоторые парадоксы древности продолжают интересовать учёных как постановка важных научных проблем. Рассуждения Зенона, по словам английского философа и математика Бертрана Рассела, «в той или иной форме затрагивают основания почти всех теорий пространства, времени и бесконечности, предлагавшихся с его времени до наших дней».
Дихотомия
В переводе с греческого «дихотомия» означает «деление надвое». Принцип дихотомии применим к движущему телу. И тогда получается, что оно не сможет пройти заданный путь.
Аристотель писал: «Есть четыре аргумента Зенона о движении, которые доставляют трудности тем, кто пытается их разрешить. Первый – о невозможности движения, так как перемещающееся [тело] прежде должно дойти до половины, нежели до конца».
Иначе говоря, движение не может быть абсолютным; всё зависит от того, при каких условиях его фиксировать. Возможно, это была попытка показать, что пространство и движение – относительные категории.
Как философ Зенон исходил из принципа своего учителя Парменида: Бытие едино, вечно и неподвижно, а небытия нет. А Парменид был представителем философской школы легендарного Пифагора. По словам Аристотеля: «Пифагорейцы, занявшись математикой… стали считать её начала началами всего существующего. А так как среди этих начал числа от природы суть первое… то они предположили, что элементы чисел суть элементы всего существующего и что все небо есть гармония и число».
Пифагорейцы, продолжал он, «…рассуждают о более необычных началах и элементах, нежели размышляющие о природе, и это потому, что они заимствуют их не из чувственно воспринимаемого, ибо математические предметы лишены движения».
У пифагорейцев совмещалось два, казалось бы, противоположных взгляда на природу: стремление выразить все сущее мерой и числом, математическими соотношениями и – мистическое отношение к числам, представляемым как божественные символы.
Математика, в отличие от естествознания, создавала на основе логики мир идеальный. (Удивительно, что он помогает познать материальный мир!) При сопоставлении реалий жизни с математическими идеалиями возникали парадоксы.
Итак, дихотомия. Чтобы пройти некоторый путь, надо сначала преодолеть половину пути, затем половину оставшейся половины, после чего – половину оставшейся части и так до бесконечности. Мы будем постоянно приближаться к концу пути, но никогда его не достигнем. Логично? Да.
Отсюда столь же логично следует вывод: при таких условиях достичь конечного пункта в принципе невозможно, а стало быть, движение – процесс относительный. Абсолютна только неподвижность Единого.
Этой апории посвятил стихотворение Пушкин:
Движенья нет, сказал мудрец брадатый.
Другой смолчал и стал пред ним ходить.
Сильнее бы не мог он возразить;
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приводит:
Ведь каждый день пред нами солнце ходит,
Однако ж прав упрямый Галилей.
В первой строфе показано, как простой опыт опровергает отсутствие движения. А во второй строфе очевидность (движение Солнца по небосводу) опровергается методом науки. Значит, не следует ограничиваться представлениями здравого смысла и наблюдениями. Надо уметь размышлять.
Справедливости ради отметим: Зенон не отрицал движение как таковое, но показывал, что оно сопряжено с некоторыми парадоксами.
Зенон Элейский
В XIX веке, казалось, удалось решить «Дихотомию». Достаточно сложить ряд чисел, показывающих пройденный путь: 1/2 + 1/4 + 1/8 + 1/16 +… Сумма этого бесконечного ряда стремится к единице. Значит, Ахиллес может приблизиться к черепахе на сколь угодно малое расстояние. Возникает проблема пространства. Если оно не имеет предела делимости, деление может продолжаться бесконечно. А если предел есть?
Такой предел предположил греческий мыслитель Демокрит два с половиной тысячелетия назад. Он учил: материя состоит из мельчайших неделимых частиц – атомов и пустоты (вакуума): богов придумали люди по своему образу и подобию, пытаясь объяснить мир; случайность – выражение нашего незнания; всё происходит по каким-либо причинам и законам.
Если Мир состоит из атомов (неделимых – так это слово переводится с греческого), деление отрезка пространства надвое дойдёт до атома. Таков предел, на котором движение (дихотомия) прекратится.
Теперь мы знаем, что атом делим на части. Только невозможно выяснить, можно ли продолжать его деление надвое до бесконечности. Абстрактное математическое пространство можно делить на сколь угодно мелкие части (хотя понятие «часть» предполагает нечто единое). В геометрии можно дойти до точки, которая по определению не имеет размера.
Парадокс дихотомии не имеет определённого решения. Оно зависит от некоторых предварительных условий.
В житейском аспекте мораль проста: в некоторых ситуациях надо проверить теорию на практике, не только размышлять, но и действовать. Как говорится, практика – критерий истины.
Кстати, можно оспорить этот афоризм. Известно: пресная вода кипит при +100 °C. На практике легко это доказать, но и нетрудно опровергнуть. Надо подняться на гору и нагреть воду до кипения. Её температура будет меньше ста градусов. Значит, практика не всегда критерий истины, хотя и помогает уточнить или дополнить выводы теории.
…В полемике с В. Ильиным (В.И. Лениным) философ и учёный А. Богданов-Малиновский пояснял: «Когда Маркс говорит, что критерий истины есть практика, то он выражает этим, прежде всего, именно точку зрения относительности истины. С изменением содержания практики людей изменяется и их истина. То, что было истиною в пределах практики более узкой, перестаёт быть ею в практике более широкой. А для В. Ильина “критерий практики”, это нечто вроде экзамена, после которого истине выдаётся окончательный аттестат: выдержала несколько веков, была безвредна – отлично, истина признаётся “объективной”, вечной и т. д.; не выдержала – заблуждение, и тоже объективное, вечное…»
Далеко в дебри философии заводят нас парадоксы.
Ахиллес и черепаха
Суть этой апории Зенона сходна с «Дихотомией».
Быстроногому Ахиллесу надо догнать черепаху, которая находится на расстоянии 10 000 стоп от него (стопа – примерно треть метра). Он бежит в десять раз быстрее, чем ползёт черепаха.
Но прежде чем взять старт, Ахиллес погружается в рассуждения: «Пока я пробегу десять тысяч стоп, отделяющих меня от черепахи, она продвинется на тысячу стоп. Пока я преодолею эту тысячу стоп, она проползёт сто стоп. Я преодолею и это расстояние, но она продвинется ещё дальше. Так будет продолжаться без конца: как только я достигну места, где она недавно находилась, она окажется впереди. Я буду постоянно сближаться с ней, но догнать не смогу. На то, чтобы её догнать, потребуется бесконечно много времени».
После такого безнадёжного вывода Ахиллес вынужден был сослаться на свою заболевшую ахиллесову пяту и отказаться от бега за черепахой, дабы не опозориться на глазах почтенных древних греков.
Безусловно, решись он взять старт, не размышляя, то вскоре догнал бы черепаху, если б только она не находилась где-то в неоткрытом в ту пору Новом Свете или если бы он не подвернул ногу. Но он предпочёл теорию практике.
Из этого исходил и Зенон. Судя по всему, он имел в виду не реальное движение тел, а мыслимое при определённых заранее заданных условиях. В противном случае получается, что речь идёт не о парадоксе, а о глупой задачке, которую не следует принимать всерьёз.
Примерно так высказался французский математик Поль Леви: «Как можно воображать себе, что время остановится из-за того, что некий философ занимается перечислением членов бесконечного ряда. Признаюсь, я никогда не понимал, как люди, в других отношениях весьма разумные, могут оказаться смущёнными подобными парадоксами.
Мой теперешний ответ есть тот самый, который я дал, когда мне было 11 лет, старшему, рассказавшему мне этот парадокс. Я резюмировал тогда такой немногословной формулой: “Этот грек был идиотом”. Я знаю теперь, что нужно выражать свои мысли в более вежливой форме и что, возможно, Зенон излагал свои парадоксы только для того, чтобы проверить разумность своих учеников. Но моё удивление перед умами, смущаемыми сходящимся рядом, осталось тем же».
Приятно сознавать себя умнее древнегреческого философа. Но Зенон, безусловно, понимал: реальный человек, если ему нужно догнать черепаху, побежит быстрее, чем она ползёт, и не станет каждый раз намечать себе цель там, где недавно находилась черепаха.
Из Интернета я узнал, что для решения проблем, поставленных в апориях Зенона, некоторые авторы привлекают квантовую механику. Они считают рассуждения Зенона верными, ибо бесконечное деление времени и пространства невозможно из-за соотношения неопределённости, согласно которому есть «неделимая» доля энергии – квант. (Остаётся неопределённым вопрос о том, существует ли минимальный квант пространства и времени.)
Ахиллес и черепаха
Остаётся только удивляться наивности таких авторов (Поль Леви, наверное, выразился бы в данном случае грубей). Хотя не исключено, что у них тонкий квантовый юмор.
Зенон предложил именно апории, которые заводят мысль в тупик и не могут иметь рационального решения. Они призваны показать, помимо всего прочего, трудности познания реального мира посредством математических упражнений.
По словам Бертрана Рассела: «Анализу апорий Зенона посвящена колоссальная литература; особенно большое внимание им уделялось в последние сто лет, когда математики стали усматривать в них предвосхищение парадоксов современной теории множеств».
На практике Ахиллес при желании перегонит черепаху, которая находится в пределах досягаемости. Но при некоторых условиях ему это не удастся. Почему?
Ответ прост: Ахиллес поставлен в такие условия, при которых он не догонит черепаху. Ему предложено постоянно замедлять своё движение, а с уменьшением расстояния становиться всё тоньше и меньше, до ничтожных размеров. Так получается, если отрешиться от математических абстракций и представить себе реальную картину бега.
Чтобы показать важность корректной постановки задачи, можно предложить апорию «Ахиллес и Гермес».
Есть аксиома: расстояние между двумя неподвижными телами остаётся неизменным. Немного изменим её: тела неподвижны, если расстояние между ними остаётся постоянным.
Итак, новая ситуация. Ахиллесу предложили догнать черепаху, которая находится в тысяче шагов от него. Когда он добежал до того места, где была черепаха, она оказалась в той же тысяче шагов от него. Это Гермес, бог торговли, воровства и хитрости, переносил её с той же скоростью, с которой бежал быстроногий Ахиллес. Так продолжалось впредь: как ни старался Ахиллес, расстояние между ним и черепахой оставалось неизменным.
В таком случае, если исходить из принципа, который взят за основу, он и она оставались неподвижными. Ведь расстояние между ними не менялось. Выходит, нет разницы – неподвижны два тела или движутся в одном направлении с одинаковой скоростью.
Вот и вспомнишь: «Движенья нет, сказал мудрец брадатый…»
Правда, во время бега Ахиллес тратил значительно больше энергии, чем в покое; значит, было движение. Но ведь есть бег на месте…
Общий вывод прост: наш исходный посыл и наши условия мысленного опыта были некорректны. Неверная постановка проблемы заводит мысль в тупик, исключает рациональное решение и вступает в противоречие с опытом и здравым смыслом.
При рассуждениях о движении двух тел принципиальное значение имеет взятая точка отсчёта и метод фиксации перемещений. Например, следствием теории относительности считается парадокс близнецов. Один близнец улетает с Земли, достигает близко к световой скорости, а через некоторое время возвращается на родную планету. Согласно теории, он испытает замедление времени и вернётся более молодым, чем его брат.
Но по той же теории за точку отсчёта можно взять ракету, и формулы останутся теми же, но на этот раз уже землянин при встрече должен быть моложе брата-астронавта. Получается парадокс парадокса близнецов.
Астронавт, в отличие от землянина, испытает огромные перегрузки, что плохо скажется на его здоровье. Выходит, логичней взять точкой отсчёта ракету, раз уж есть свобода выбора.
Впрочем, о парадоксе близнецов мы ещё поговорим.
Стрела
Апории «Ахиллес и черепаха» и «Дихотомия» исходят из гипотезы непрерывности пространства и времени, которые бесконечно делимы.
Николя Бурбаки (псевдоним группы французских математиков ХХ века) сделал вывод: «Вопрос о бесконечной делимости пространства (бесспорно, поставленный ещё ранними пифагорейцами) привёл, как известно, к значительным затруднениям в философии: от Элеатов до Больцано и Кантора математики и философы не в силах были разрешить парадокса – как конечная величина может состоять из бесконечного числа точек, не имеющих размера».
Третья апория Зенона – «Стрела» – предполагает другой вариант: время и пространство делимы на элементарные дискретные моменты времени и точки пространства. Однако и в этом случае, как выясняется, нельзя обойтись без противоречий.
Стрела – третья апория Зенона
Летящую стрелу есть все основания считать неподвижной. Ведь в каждый момент времени она занимает равное себе положение, то есть покоится. Но если она покоится в каждый момент времени, то она так же неподвижна и в сумме этих моментов.
Напомню: Зенона не надо было убеждать в существовании движения, прохаживаясь перед ним. Он и сам мог с таким же успехом ходить, рассуждая о том, что летящая стрела неподвижна. Для него было важно показать, что в нашем понимании сути движения есть противоречия.
Из Интернета: «В студенческие годы я написал курсовую по апориям Зенона. В ней я утверждал, что апории возникают потому, что движение субстанциально, а покой частный и побочный случай, парадоксальная форма движения, а поэтому при помощи покоя осмыслить движение невозможно. Получил “неуд”. Как вы думаете – заслуженно, или я был прав?»
Мне кажется, умный студент был прав. Хотя бы отчасти.
Движение не может быть частным случаем всеобщего покоя. Ибо покой исключает какое-либо движение.
Состояние покоя – частный предельный или даже исходный момент движения. В этом случае скорость тела равна нулю, только и всего.
Впрочем, и тут не обходится без парадокса. Неподвижное тело относительно одного объекта может находиться в движении относительно другого объекта. Предположим, стрела летит равномерно прямолинейно в космическом пространстве, не испытывая сопротивления. Где-то в стороне движется ракета с космонавтом. Как узнать, летит стрела или покоится?
Раз уж она оказалась в космосе, значит, каким-то образом преодолела земное (лунное) притяжение или была сброшена с космического корабля. В любом случае, она находилась в движении, а теперь продолжает его. Но узнать её скорость нельзя, не зная, когда и где начался её полёт; формально можно считать, что она неподвижна.
Если иметь точки отсчёта в пространстве и времени, то нетрудно будет вычислить скорость стрелы. Без этих сведений остаётся неопределённость: допустимо считать стрелу или летящей, или неподвижной.
В современном варианте эта апория выглядит так. Скоростной киносъёмкой запечатлён полёт стрелы. Прокручивая кадры с обычной скоростью, мы увидим её медленное движение. А на каждом отдельном кадре она будет неподвижной.
Минимальна порция энергии – квант. Если есть подобные «кванты» пространства и времени, то скорость летящей стрелы в каждый квант пространства и времени равна нулю. Сумма таких моментов тоже будет равна нулю. Значит, стрела не движется, хотя известно, что она летит.
Апория свидетельствует о решительном противоречии логичных рассуждений и реальности. Приходится признать ошибочность идеи о кванте времени и пространства. Они не состоят из мельчайших неделимых частей, не дискретны (от латинского слова, означающего «делимый»).
Однако предыдущие апории («Ахиллес и черепаха», «Дихотомия») показали, что время и пространство нет оснований считать непрерывными, то есть бесконечно делимыми. Что же получается? Есть два варианта, и оба сомнительны. Получается неопределённость решения. Хотя есть ещё один, наиболее разумный вывод.
Надо признать время и пространство категориями идеальными. То есть мы ими пользуемся произвольно, чаще всего успешно и с пользой, но порой вступая в противоречие с явлениями материального мира.
Что же имел в виду Зенон в апории «Стрела»? Сам он об этом не обмолвился. Есть такие варианты. Он имел в виду проблемы:
• Сходящихся числовых рядов.
• Теории множеств.
• Бесконечной или ограниченной делимости пространства.
• Бесконечной или ограниченной делимости времени.
• Зависимость решения задачи от её формулировки.
Зенон полагал, что на основе апорий можно доказать:
• Отсутствие абсолютного пространства.
• Отсутствие абсолютного времени.
• Как результат – отсутствие абсолютного движения.