banner banner banner
Физика. Порядок вещей, или Осознание знаний. Книга 2
Физика. Порядок вещей, или Осознание знаний. Книга 2
Оценить:
Рейтинг: 0

Полная версия:

Физика. Порядок вещей, или Осознание знаний. Книга 2

скачать книгу бесплатно


). Причём в обеих частях уравнения моментов, что не имеет физического смысла ни для работы, ни для правила рычага. Это математическая абстракция и физический абсурд!

В отсутствие поддерживающей вращение силы, угловая скорость, например, при увеличении радиуса уменьшается. Поэтому поддерживающей силе приходится компенсировать эти потери, восстанавливая линейную скорость до прежнего значения. На это уходит половина поддерживающей силы, реакция на которую составляет половину классической силы Кориолиса.

Однако поскольку эти силы полностью скомпенсированы, то скомпенсированы и их реакции. Следовательно, эта уравновешенная часть поддерживающей силы не может определять силу Кориолиса, и совместно с истинной силой Кориолиса (см. гл. 3.4.2.) определяет лишь внутреннее напряжение ускоряющейся замкнутой системы тело—физический радиус (направляющая), которое естественно не определяет ускорение самой системы.

Далее, после полного восстановления линейной скорости, угловая скорость с учётом увеличившегося радиуса, всё ещё остаётся невосстановленной. При этом вторая половина поддерживающей силы, как раз и затрачивается на увеличение линейной скорости свыше её прежнего значения, за счёт чего окончательно восстанавливается и угловая скорость. Реакция на эту неуравновешенную половину поддерживающей силы и определяет силу Кориолиса, которая, таким образом вдвое меньше полной поддерживающей силы.

Аналогичный процесс происходит и при уменьшении радиуса. Подробное теоретическое обоснование равенства затрат обеих частей поддерживающей силы и структуры этих затрат приведено в главе (4.2.) в выводе силы и ускорения Кориолиса через мерный радиан.

Используя абсолютно правильный абстрактно-символьный математический аппарат, Фейнман допустил физическую ошибку в наиболее простой и доступной для понимания области физики – механике, в которой все физические законы и физические величины уже достаточно достоверно представлены в математике в виде символов, знаков и формул, представляющих собой алфавит и грамматику языка физики – математики. И уж тем более голая абстрактно-символьная математика без физики бессильна в тех областях физики, где алфавит и грамматика языка физики ещё окончательно не сложились.

Таким образом, сам по себе правильный абстрактно-символьный математический аппарат бессилен в изучении природы, если он идёт вразрез с физическим смыслом, т.е. с философией природы в целом.Вывод Фейнмана – это даже не подгонка под ответ, это фундаментальная ошибка классической науки, как в математике, так и в физике. Это нарушение Закона сохранения истины, стоящего на охране всех остальных законов природы.

Если бы современные физики не были бы столь повально и бездумно увлечены голой математикой, то сила Кориолиса не была бы такой странной и загадочной в современной физике. И в ней давно бы нашлось место Истинной силе Кориолиса—Кеплера, которая объективно определяет сущность явления Кориолиса.

***

Единственно правильное уравнение динамики вращательного движения имеет вид:



 = m * ? * dr

/ dt (4.2.13)

По внешнему виду уравнение (4.2.13) абсолютно идентично второму закону Ньютона, а уравнением динамики вращательного движения оно становится после приведения его к мерному радиану (r

= 1 [м

]). В уравнении (4.2.13) фактически произведена равноценная замена переменной (?

) на переменную (r

). Такая замена вполне правомерна и физически и математически. При этом в радиальной системе отсчёта сила Кориолиса, выраженная через мерное вращение равна:



 = m * ?

 * V» (4.2.14)

где V»: – абстрактная для приведённого вращения с постоянным радиусом радиальная скорость

Уравнение (4.2.14) соответствует традиционному виду классического выражения для силы Кориолиса только без «двойки», но пока они идентичны только по общему виду. Для того чтобы убедиться в полной идентичности этих уравнений осталось показать, что:

?

 * V» = ?

 * V

То есть необходимо показать, что угловая скорость приведённого вращения эквивалентна переносной угловой скорости, а абстрактная, т.е. несуществующая для приведённого вращения с постоянным радиусом радиальная скорость, всё же косвенно эквивалентна реальной радиальной скорости относительного движения. Вообще говоря, это автоматически следует из приведения выражения (4.2.3) к традиционному виду, показанного выше в настоящей главе. Но для скептиков покажем это другим строго математическим способом.

Из мерной динамики вращательного движения следует:

?

/ ?

= r / r

 (*)

Радиусы можно представить, как произведение радиальной скорости на время (V

 * t):

t * V

/ (t * V») = r / r

Следовательно, для того чтобы любая заданная радиальная скорость относительного движения в любом заданном интервале времени поворотного движения была бы эквивалентна абстрактной радиальной скорости приведённого вращения, должно соблюдаться соотношение, полученное после сокращения последнего выражения на время (t):

V

/ V» = r / r

Тогда, учитывая (*) получим:

?

/ ?

= V

/ V»

Но это есть не что иное, как:

?

 * V» = ?

 * V

Следовательно:



 = m * ?

 * V» = m * ? * V

Что и требовалось показать (ЧТП)!

***

Некоторые современные авторы в отношении величины силы и ускорения Кориолиса имеют точку зрения, сходную с нашей моделью поворотного движения. Однако наши взгляды на природу явления Кориолиса расходятся, тем не менее, и с ними. Наиболее близки к нашей точке зрения на явление Кориолиса авторы из Удмуртии (maholet.aero.ru (https://ridero.ru/link/bzhA32ISf9)), они пишут:

Применение теоремы Кориолиса для свободного движения (например, планеты) не соответствует закону сохранения энергии.

Ускорение у Кориолиса завышено в 2 раза ошибкой при взятии производной вектора переносной скорости, из—за отрыва от физики.

Сила Кориолиса (при движении в трубке) количественно верна, но не обоснована физически (жирный шрифт наш). Половина силы Кориолиса, действительно, является силой инерции: при приближении к центру вращения тело тормозится трубкой, при удалении – разгоняется. Другая же половина силы обусловлена действием центробежной силы, точнее, её проекцией на направление, перпендикулярное радиусу движения в плоскости орбиты (о ней будем говорить далее). Эта половина силы не даёт ускорения – не позволяет трубка. Сила Кориолиса – это сумма двух различных сил».

Мы не согласны с авторами «Махолета» в их трактовке статической части поддерживающей силы, т.к. она обусловлена не центробежной силой, а именно внешней тангенциальной закручивающей силой, поддерживающей вращение на неизменном уровне и истинной силой Кориолиса. Не трубка нейтрализует половину поддерживающей силы Кориолиса, т.к. в отсутствие истинной силы Кориолиса ничто в принципе не мешает такой силе ускорить и саму трубку, а истинная сила Кориолиса.

Более подробно работа авторов из Удмуртии рассматривается в главе 10.

Другая версия, по некоторым параметрам сходная с нашей точкой зрения изложена в статье КОРИОЛИСОВА СИЛА И КОРИОЛИСОВО УСКОРЕНИЕ Канарёва Ф. М. от 2.06.2010 г., источник: SciTecLibrary.ru. (E—mail: kanphil@mail.ru (https://ridero.ru/link/CzurvSjZaj)). Более подробно работа Канарёва также рассмотрена в главе 10.

На сегодняшний день мы узнали только о двух авторах, которые в той или иной степени близки нам по взглядам на явление Кориолиса. Однако ни у кого из них нет чёткого представления о физическом смысле явления Кориолиса. Во всяком случае, в своих работах они его чётко не излагают.

Канарев Ф. М. сам ещё не определился, какую версию он считает правильной. Его статья больше похожа на размышления вслух, чем на научную работу. Интуиция учёного подсказывает ему, что что—то не так в классической модели поворотного движения. Однако пока что он не нашёл правильного решения проблемы. Не вяжется у Канарёва и с направлениями силы и ускорения Кориолиса. Поэтому мы с нетерпением ждём продолжения его статьи, в котором он намеревался представить коррекцию кинематики сложного движения.

PS: Недавно продолжение статьи появилось, но к сожалению в нём Канарев Ф. М. допускает всё те же ошибки, что и в первой статье. Физический смысл явления Кориолиса так и остался не раскрытым. Анализ новой статьи см. в главе 10.

Удвоение силы вовсе не обязательно связано с удвоением ускорения. Причина удвоения классической силы (напряжения) Кориолиса прояснена в нашей версии явления Кориолиса. В классическом поворотном движении с постоянной угловой скоростью удвоение классического напряжения Кориолиса обеспечивает истинная сила Кориолиса, которую приходится компенсировать при сохранении неизменной угловой скорости. Канарёв не разделяет силу Кориолиса на статическую и динамическую часть. В этом отношении нашими единомышленниками являются только авторы «Махолета, да и то только в некотором приближении.

К сожалению, никто из авторов этих двух работ не представил своего видения природы явления Кориолиса на уровне его физического механизма. Тем не менее, обнадеживает тот факт, что не всех устраивает классическая версия поворотного движения, т.е. основания для сомнений в ее непогрешимости все же есть. Люди, для которых истина важнее опасений навредить своей репутации подвергая сомнению прописные с точки зрения официальной науки истины и важнее званий, все—таки не скрывают своего видения противоречий классической физики и в частности в поворотном движении. Таким образом, мы, по крайней мере, не одиноки в своих сомнениях.

Совпадение величины силы (напряжения) Кориолиса с ее классическим теоретическим значением, рассчитанным по неправильному линейному приращению можно, конечно же, отнести и к случайным совпадениям. Однако для большинства авторов, повторяющих классический вывод, это фактически банальная подгонка под ответ. Кто—то однажды допустил ошибку, приняв на веру абсурдную классическую динамику вращательного движения, а потом под напряжение Кориолиса, которое возможно было подтверждено экспериментально, подвели теорию. При этом все последующие авторы в своих выводах учитывали лишь авторитет предшественников и исторически сложившееся научное мнение.

Ошибка определения ускорения поворотного движения прочно вошла в математический метод дифференцирования криволинейного движения по приращению его координат. А может быть, она только закрепила это ошибочное дифференцирование. Приращение скорости это всегда приращение расстояния, пройденного с ускорением, но приращение координат не всегда соответствует приращению этого расстояния. Поэтому вторая производная от приращения координат не всегда соответствует реальному геометрическому ускорению криволинейного движения. Классическое дифференцирование приращения криволинейного движения этого не учитывает, что диктует необходимость пересмотра динамики и кинематики сложного движения в классической физике.

4.4. Второй вариант проявления ускорения Кориолиса. Относительная скорость направлена вдоль окружности, перпендикулярно радиусу вращающейся системы

Второй вариант классического ускорения Кориолиса, которое якобы проявляется при перпендикулярном радиусу поворотном движении, описан, например, в упомянутой выше работе Матвеева А. Н. «Механика и теория относительности» 3—е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003г. (см. фотокопию в главе 4.1). На странице (404) Матвеев пишет:

«В случае движения точки перпендикулярно радиусу, т.е. по окружности, относительная скорость (v

.= ?

* r), а угловая скорость вращения точки в неподвижной системе координат (? + ?

), где ? – угловая скорость вращающейся системы координат. Для абсолютного ускорения получаем следующее выражение:

а

= (? + ?

)

* r = ?

r + ?

* r +2 * ? * ?

* r (66.6)»

Матвеев утверждает, что первый член выражения (66.6) – (?

r) определяет непосредственно переносное ускорение, второй член (?

* r) определяет относительное ускорение, а третий член (2 * ? * ?

* r) выражения (66.6) с классической точки зрения и представляет собой ускорение Кориолиса.

Надо полагать, что в общем случае переносное и относительное движения, как при радиальном, так и при перпендикулярном радиусу относительном движении могут быть как равномерными, так и переменными. В последнем случае задача определения силы и ускорения Кориолиса значительно усложняется, т.к. появляется необходимость учитывать мгновенные значения радиуса и угловой скорости. Поэтому классическая физика рассматривает частный случай поворотного движения, в котором для упрощения вывода формулы силы и ускорения Кориолиса переносное и относительное движения считаются постоянными.

Затем, якобы переходя к мгновенным, а по сути, к средним значениям параметров переносного и относительного движения, классическая физика распространяет полученные теоретические зависимости на общий случай проявления ускорения Кориолиса. Например, поясняя переносное ускорение при выводе ускорения Кориолиса «простым вычислением», (см. фотокопию выше, стр. 405, ф. 66.14) Матвеев подчёркивает, что речь в его выводе идет только о равномерном вращении:

«Таким образом, переносное ускорение является центростремительным(напомним, что угловая скорость вращения считается постоянной)».

Ранее в отношении формулы (66.6) на странице (404) Матвеев так же утверждает:

«Все ускорения в (66.6) направлены на центр вращения».

Это означает, что все составные вращения, которые появляются в формуле разложения центростремительного ускорения по формуле квадрата суммы двух чисел, представляют собой равномерные вращательные движения. Следовательно, во втором варианте речь у Матвеева идёт исключительно только о равномерном вращательном движении, в котором, прежде всего именно с классической точки зрения, нет и не может быть никакого ускорения Кориолиса. Следовательно, называть два центростремительных ускорения (2 * ? * ?

* r = 2 * ? * V

) ускорениями Кориолиса, по меньшей мере, некорректно.

В нашей модели равномерного вращательного движения центростремительное ускорение представляет собой академическую величину, в которой обобщены все ускорения, проявляющиеся на микроуровне в пределах одного цикла формирования сложного по своей реальной физической структуре вращательного движения. Однако на уровне его обобщённой кинематики центростремительное ускорение в классической физике всегда считалось ускорением единого элементарного движения с элементарным линейным центростремительным ускорением. Но в составе элементарного ускорения элементарного движения нет, и не может быть никаких составных частей. На то оно и элементарное движение.

Причём, как это ни странно для классической физики, ускорения Кориолиса по второму варианту в равномерном вращательном движении нет и на микроуровне. Как показано в главе (3) преобразование величины линейной скорости по направлению на микроуровне равномерного вращательного движения осуществляется в соответствии с механизмом отражения, который неразрывно связан с радиальным движением. Поэтому в равномерном вращательном движении на микроуровне присутствует ускорение Кориолиса только по первому варианту при радиальном относительном движении.

Тело может двигаться относительно центра вращения непосредственно с абсолютной линейной скоростью (Va) или через промежуточные звенья в виде вращающихся со своей переносной скоростью (Vе) круговых направляющих. Тогда абсолютное вращение (Vа) может быть достигнуто в виде суммы скоростей всех направляющих и самого тела. Однако сколько бы ни было промежуточных звеньев все они обеспечивают единую связь конечного тела с центром вращения (единое связующее тело), единую центростремительную силу для конечного тела и его единое центростремительное ускорение.

Рис. 4.4.1

Для человечка, изображённого на рисунке (4.4.1) нет никаких других вращений кроме его собственного абсолютного вращения с абсолютной линейной окружной скоростью (Vа) и с абсолютным центростремительным ускорением (a

= а

). Он не может расслоиться на разные вращения (?