
Полная версия:
Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras
Geographical changes would be still more important, and it is almost impossible to exaggerate the modifications of the organic world that might result from them. A subsidence of land separating a large island from a continent would affect the animals and plants in a variety of ways. It would at once modify the climate, and so produce a series of changes from this cause alone; but more important would be its effect by isolating small groups of individuals of many species and thus altering their relations to the rest of the organic world. Many of these would at once be exterminated, while others, being relieved from competition, might flourish and become modified into new species. Even more striking would be the effects when two continents, or any two land areas which had been long separated, were united by an upheaval of the strait which divided them. Numbers of animals would now be brought into competition for the first time. New enemies and new competitors would appear in every part of the country; and a struggle would commence which, after many fluctuations, would certainly result in the extinction of some species, the modification of others, and a considerable alteration in the proportionate numbers and the geographical distribution of almost all.
Any other changes which led to the intermingling of species whose ranges were usually separate would produce corresponding results. Thus, increased severity of winter or summer temperature, causing southward migrations and the crowding together of the productions of distinct regions, must inevitably produce a struggle for existence, which would lead to many changes both in the characters and the distribution of animals. Slow elevations of the land would produce another set of changes, by affording an extended area in which the more dominant species might increase their numbers; and by a greater range and variety of alpine climates and mountain stations, affording room for the development of new forms of life.
Geographical Mutations as a Motive Power in Bringing about Organic Changes.—Now, if we consider the various geographical changes which, as we have seen, there is good reason to believe have ever been going on in the world, we shall find that the motive power to initiate and urge on organic changes has never been wanting. In the first place, every continent, though permanent in a general sense, has been ever subject to innumerable physical and geographical modifications. At one time the total area has increased, and at another has diminished; great plateaus have gradually risen up, and have been eaten out by denudation into mountain and valley; volcanoes have burst forth, and, after accumulating vast masses of eruptive matter, have sunk down beneath the ocean, to be covered up with sedimentary rocks, and at a subsequent period again raised above the surface; and the loci of all these grand revolutions of the earth's surface have changed their position age after age, so that each portion of every continent has again and again been sunk under the ocean waves, formed the bed of some inland sea, or risen high into plateaus and mountain ranges. How great must have been the effects of such changes on every form of organic life! And it is to such as these we may perhaps trace those great changes of the animal world which have seemed to revolutionise it, and have led us to class one geological period as the age of reptiles, another as the age of fishes, and a third as the age of mammals.
But such changes as these must necessarily have led to repeated unions and separations of the land masses of the globe, joining together continents which were before divided, and breaking up others into great islands or extensive archipelagoes. Such alterations of the means of transit would probably affect the organic world even more profoundly than the changes of area, of altitude, or of climate, since they afforded the means, at long intervals, of bringing the most diverse forms into competition, and of spreading all the great animal and vegetable types widely over the globe. But the isolation of considerable masses of land for long periods also afforded the means of preservation to many of the lower types, which thus had time to become modified into a variety of distinct forms, some of which became so well adapted to special modes of life that they have continued to exist to the present day, thus affording us examples of the life of early ages which would probably long since have become extinct had they been always subject to the competition of the more highly organised animals. As examples of such excessively archaic forms, we may mention the mud-fishes and the ganoids, confined to limited fresh-water areas; the frogs and toads, which still maintain themselves vigorously in competition with higher forms; and among mammals the Ornithorhynchus and Echidna of Australia; the whole order of Marsupials—which, out of Australia, where they are quite free from competition, only exist abundantly in South America, which was certainly long isolated from the northern continents; the Insectivora, which, though widely scattered, are generally nocturnal or subterranean in their habits; and the Lemurs, which are most abundant in Madagascar, where they have long been isolated, and almost removed from the competition of higher forms.
Climatal Revolutions as an Agent in Producing Organic Changes.—The geographical and geological changes we have been considering are probably those which have been most effective in bringing about the great features of the distribution of animals, as well as the larger movements in the development of organised beings; but it is to the alternations of warm and cold, or of uniform and excessive climates—of almost perpetual spring in arctic as well as in temperate lands, with occasional phases of cold culminating at remote intervals in glacial epochs,—that we must impute some of the more remarkable changes both in the specific characters and in the distribution of organisms.99 Although the geological evidence is opposed to the belief in early glacial epochs except at very remote and distant intervals, there is nothing which contradicts the occurrence of repeated changes of climate, which, though too small in amount to produce any well-marked physical or organic change, would yet be amply sufficient to keep the organic world in a constant state of movement, and which, by subjecting the whole flora and fauna of a country at comparatively short intervals to decided changes of physical conditions, would supply that stimulus and motive power which, as we have seen, is all that is necessary to keep the processes of "natural selection" in constant operation.
The frequent recurrence of periods of high and of low excentricity must certainly have produced changes of climate of considerable importance to the life of animals and plants. During periods of high excentricity with summer in perihelion, that season would be certainly very much hotter, while the winters would be longer and colder than at present; and although geographical conditions might prevent any permanent increase of snow and ice even in the extreme north, yet we cannot doubt that the whole northern hemisphere would then have a very different climate than when the changing phase of precession brought a very cool summer and a very mild winter—a perpetual spring, in fact. Now, such a change of climate would certainly be calculated to bring about a considerable change of species, both by modification and migration, without any such decided change of type either in the vegetation or the animals that we could say from their fossil remains that any change of climate had taken place. Let us suppose, for instance, that the climate of England and that of Canada were to be mutually exchanged, and that the change took five or six thousand years to bring about, it cannot be doubted that considerable modifications in the fauna and flora of both countries would be the result, although it is impossible to predict what the precise changes would be. We can safely say, however, that some species would stand the change better than others, while it is highly probable that some would be actually benefited by it, and that others would be injured. But the benefited would certainly increase, and the injured decrease, in consequence, and thus a series of changes would be initiated that might lead to most important results. Again, we are sure that some species would become modified in adaptation to the change of climate more readily than others, and these modified species would therefore increase at the expense of others not so readily modified; and hence would arise on the one hand extinction of species, and on the other the production of new forms.
But this is the very least amount of change of climate that would certainly occur every 10,500 years when there was a high excentricity, for it is impossible to doubt that a varying distance of the sun in summer from 86 to 99 millions of miles (which is what occurred during—as supposed—the Miocene period, 850,000 years ago) would produce an important difference in the summer temperature and in the actinic influence of sunshine on vegetation. For the intensity of the sun's rays would vary as the square of the distance, or nearly as 74 to 98, so that the earth would be actually receiving one-fourth less sun-heat during summer at one time than at the other. An equally high excentricity occurred 2,500,000 years back, and no doubt was often reached during still earlier epochs, while a lower but still very high excentricity has frequently prevailed, and is probably near its average value. Changes of climate, therefore, every 10,500 years, of the character above indicated and of varying intensity, have been the rule rather than the exception in past time; and these changes must have been variously modified by changing geographical conditions so as to produce climatic alterations in different directions, giving to the ancient lands either dry or wet seasons, storms or calms, equable or excessive temperatures, in a variety of combinations of which the earth perhaps affords no example under the present low phase of excentricity and consequent slight inequality of sun-heat.
Present Condition of the Earth One of Exceptional Stability as Regards Climate.—It will be seen, by a reference to the diagram at page 171, that during the last three million years the excentricity has been less than it is now on eight occasions, for short periods only, making up a total of about 280,000 years; while it has been more than it is now for many long periods, of from 300,000 to 700,000 years each, making a total of 2,720,000 years; or nearly as 10 to 1. For nearly half the entire period, or 1,400,000 years, the excentricity has been nearly double what it is now, and this is not far from its mean condition. We have no reason for supposing that this long period of three million years, for which we have tables, was in any way exceptional as regards the degree or variation of excentricity; but, on the contrary, we may pretty safely assume that its variations during this time fairly represent its average state of increase and decrease during all known geological time. But when the glacial epoch ended, 72,000 years ago, the excentricity was about double its present amount; it then rapidly decreased till, at 60,000 years back, it was very little greater than it is now, and since then it has been uniformly small. It follows that, for about 60,000 years before our time, the mutations of climate every 10,500 years have been comparatively unimportant, and that the temperate zones have enjoyed an exceptional stability of climate. During this time those powerful causes of organic change which depend on considerable changes of climate and the consequent modifications, migrations, and extinctions of species, will not have been at work; the slight changes that did occur would probably be so slow and so little marked that the various species would be able to adapt themselves to them without much disturbance; and the result would be an epoch of exceptional stability of species.
But it is from this very period of exceptional stability that we obtain our only scale for measuring the rate of organic change. It includes not only the historical period, but that of the Swiss Lake dwellings, the Danish shell-mounds, our peat-bogs, our sunken forests, and many of our superficial alluvial deposits—the whole in fact, of the iron, bronze, and neolithic ages. Even some portion of the palæolithic age, and of the more recent gravels and cave-earths may come into the same general period if they were formed when the glacial epoch was passing away. Now throughout all these ages we find no indication of change of species, and but little, comparatively, of migration. We thus get an erroneous idea of the permanence and stability of specific forms, due to the period immediately antecedent to our own being a period of exceptional permanence and stability as regards climatic and geographical conditions.100
Date of Last Glacial Epoch and its Bearing on the Measurement of Geological Time.—Directly we go back from this stable period we come upon changes both in the forms and in the distribution of species; and when we pass beyond the last glacial epoch into the Pliocene period we find ourselves in a comparatively new world, surrounded by a considerable number of species altogether different from any which now exist, together with many others which, though still living, now inhabit distant regions. It seems not improbable that what is termed the Pliocene period, was really the coming on of the glacial epoch, and this is the opinion of Professor Jules Marcou.101 According to our views, a considerable amount of geographical change must have occurred at the change from the Miocene to the Pliocene, favouring the refrigeration of the northern hemisphere, and leading, in the way already pointed out, to the glacial epoch whenever a high degree of excentricity prevailed. As many reasons combine to make us fix the height of the glacial epoch at the period of high excentricity which occurred 200,000 years back, and as the Pliocene period was probably not of long duration, we must suppose the next great phase of very high excentricity (850,000 years ago) to fall within the Miocene epoch. Dr. Croll believes that this must have produced a glacial period, but we have shown strong reasons for believing that, in concurrence with favourable geographical conditions, it led to uninterrupted warm climates in the temperate and northern zones. This, however, did not prevent the occurrence of local glaciation wherever other conditions led to its initiation, and the most powerful of such conditions is a great extent of high land. Now we know that the Alps acquired a considerable part of their elevation during the latter part of the Miocene period, since Miocene rocks occur at an elevation of over 6,000 feet, while Eocene beds occur at nearly 10,000 feet. But since that time there has been a vast amount of denudation, so that these rocks may have been at first raised much higher than we now find them, and thus a considerable portion of the Alps may have been more elevated than they are now. This would certainly lead to an enormous accumulation of snow, which would be increased when the excentricity reached a maximum, as already fully explained, and may then have caused glaciers to descend into the adjacent sea, carrying those enormous masses of rock which are buried in the Upper Miocene of the Superga in Northern Italy. An earlier epoch of great altitude in the Alps coinciding with the very high excentricity 2,500,000 years ago, may have caused the local glaciation of the Middle Eocene period when the enormous erratics of the Flysch conglomerate were deposited in the inland seas of Northern Switzerland, the Carpathians, and the Apennines. This is quite in harmony with the indications of an uninterrupted warm climate and rich vegetation during the very same period in the adjacent low countries, just as we find at the present day in New Zealand a delightful climate and a rich vegetation of Metrosideros, fuchsias and tree-ferns on the very borders of huge glaciers, descending to within 700 feet of the sea-level. It is not pretended that these estimates of geological time have any more value than probable guesses; but it is certainly a curious coincidence that two remarkable periods of high excentricity should have occurred, at such periods and at such intervals apart, as very well accord with the comparative remoteness of the two deposits in which undoubted signs of ice-action have been found, and that both these are localised in the vicinity of mountains which are known to have acquired a considerable elevation at about the same period of time.
In the tenth edition of the Principles of Geology, Sir Charles Lyell, taking the amount of change in the species of mollusca as a guide, estimated the time elapsed since the commencement of the Miocene as one-third that of the whole Tertiary epoch, and the latter at one-fourth that of geological time since the Cambrian period. Professor Dana, on the other hand, estimates the Tertiary as only one-fifteenth of the Mesozoic and Palæozoic combined. On the estimate above given, founded on the dates of phases of high excentricity, we shall arrive at about four million years for the Tertiary epoch, and sixteen million years for the time elapsed since the Cambrian, according to Lyell, or sixty millions according to Dana. The estimate arrived at from the rate of denudation and deposition (twenty-eight million years) is nearly midway between these, and it is, at all events, satisfactory that the various measures result in figures of the same order of magnitude, which is all one can expect when discussing so difficult and exceedingly speculative a subject.
The only value of such estimates is to define our notions of geological time, and to show that the enormous periods, of hundreds of millions of years, which have sometimes been indicated by geologists, are neither necessary nor warranted by the facts at our command; while the present result places us more in harmony with the calculations of physicists, by leaving a very wide margin between geological time as defined by the fossiliferous rocks, and that far more extensive period which includes all possibility of life upon the earth.
Concluding Remarks.—In the present chapter I have endeavoured to show that, combining the measured rate of denudation with the estimated thickness and probable extent of the known series of sedimentary rocks, we may arrive at a rude estimate of the time occupied in the formation of those rocks. From another point of departure—that of the probable date of the Miocene period, as determined by the epoch of high excentricity supposed to have aided in the production of the Alpine glaciation during that period, and taking the estimate of geologists as to the proportionate amount of change in the animal world since that epoch—we obtain another estimate of the duration of geological time, which, though founded on far less secure data, agrees pretty nearly with the former estimate. The time thus arrived at is immensely less than the usual estimates of geologists, and is so far within the limits of the duration of the earth as calculated by Sir William Thomson, as to allow for the development of the lower organisms an amount of time anterior to the Cambrian period several times greater than has elapsed between that period and the present day. I have further shown that, in the continued mutations of climate produced by high excentricity and opposite phases of precession, even though these did not lead to glacial epochs, we have a motive power well calculated to produce far more rapid organic changes than have hitherto been thought possible; while in the enormous amount of specific variation (as demonstrated in an earlier chapter), we have ample material for that power to act upon, so as to keep the organic world in a state of rapid change and development proportioned to the comparatively rapid changes in the earth's surface.
We have now finished the series of preliminary studies of the biological conditions and physical changes which have affected the modification and dispersal of organisms, and have thus brought about their actual distribution on the surface of the earth. These studies will, it is believed, place us in a condition to solve most of the problems presented by the distribution of animals and plants, whenever the necessary facts, both as to their distribution and their affinities, are sufficiently well known; and we now proceed to apply the principles we have established to the interpretation of the phenomena presented by some of the more important and best known of the islands of our globe, limiting ourselves to these for reasons which have been already sufficiently explained in our preface.
PART II
INSULAR FAUNAS AND FLORAS
CHAPTER XI
THE CLASSIFICATION OF ISLANDS
Importance of Islands in the Study of the Distribution of Organisms—Classification of Islands with Reference to Distribution—Continental Islands—Oceanic Islands.
In the preceding chapters, forming the first part of our work, we have discussed, more or less fully, the general features presented by animal distribution, as well as the various physical and biological changes which have been the most important agents in bringing about the present condition of the organic world.
We now proceed to apply these principles to the solution of the numerous problems presented by the distribution of animals; and in order to limit the field of our inquiry, and at the same time to deal only with such facts as may be rendered intelligible and interesting to those readers who have not much acquaintance with the details of natural history, we propose to consider only such phenomena as are presented by the islands of the globe.
Importance of Islands in the Study of the Distribution of Organisms.—Islands possess many advantages for the study of the laws and phenomena of distribution. As compared with continents they have a restricted area and definite boundaries, and in most cases their geographical and biological limits coincide. The number of species and of genera they contain is always much smaller than in the case of continents, and their peculiar species and groups are usually well defined and strictly limited in range. Again, their relations with other lands are often direct and simple, and even when more complex are far easier to comprehend than those of continents; and they exhibit besides certain influences on the forms of life and certain peculiarities in their distribution which continents do not present, and whose study offers many points of interest.
In islands we have the facts of distribution presented to us, sometimes in their simplest forms, in other cases becoming gradually more and more complex; and we are therefore able to proceed step by step in the solution of the problems they present. But as in studying these problems we have necessarily to take into account the relations of the insular and continental faunas, we also get some knowledge of the latter, and acquire besides so much command over the general principles which underlie all problems of distribution, that it is not too much to say that when we have mastered the difficulties presented by the peculiarities of island life we shall find it comparatively easy to deal with the more complex and less clearly defined problems of continental distribution.
Classification of Islands with Reference to Distribution.—Islands have had two distinct modes of origin—they have either been separated from continents of which they are but detached fragments, or they have originated in the ocean and have never formed part of a continent or any large mass of land. This difference of origin is fundamental, and leads to a most important difference in their animal inhabitants; and we may therefore first distinguish the two classes—oceanic and continental islands.
Mr. Darwin appears to have been the first writer who called attention to the number and importance, both from a geological and biological point of view, of oceanic islands. He showed that with very few exceptions all the remoter islands of the great oceans were of volcanic or coralline formation, and that none of them contained indigenous mammalia or amphibia. He also showed the connection of these two phenomena, and maintained that none of the islands so characterised had ever formed part of a continent. This was quite opposed to the opinions of the scientific men of the day, who almost all held the idea of continental extensions, and of oceanic islands being their fragments, and it was long before Mr. Darwin's views obtained general acceptance. Even now the belief still lingers; and we continually hear of old Atlantic or Pacific continents, of "Atlantis" or "Lemuria," of which hypothetical lands many existing islands, although wholly volcanic, are thought to be the remnants. We have already seen that Darwin connected the peculiar geological structure of oceanic islands with the permanence of the great oceans which contain them, and we have shown that several distinct lines of evidence all point to the same conclusion. We may therefore define oceanic islands, as follows:—Islands of volcanic or coralline formation, usually far from continents and always separated from them by very deep sea, entirely without indigenous land mammalia or amphibia, but with a fair number of birds and insects, and usually with some reptiles. This definition will exclude only two islands which have been sometimes classed as oceanic—New Zealand and the Seychelles. Rodriguez, which was once thought to be another exception, has been shown by the explorations during the Transit of Venus Expedition to be essentially volcanic, with some upraised coralline limestone.