Читать книгу Фармакология взаимодействия регуляторных пептидных систем головного мозга в механизмах подкрепления (Александр Анатольевич Смирнов) онлайн бесплатно на Bookz (7-ая страница книги)
bannerbanner
Фармакология взаимодействия регуляторных пептидных систем головного мозга в механизмах подкрепления
Фармакология взаимодействия регуляторных пептидных систем головного мозга в механизмах подкрепленияПолная версия
Оценить:
Фармакология взаимодействия регуляторных пептидных систем головного мозга в механизмах подкрепления

4

Полная версия:

Фармакология взаимодействия регуляторных пептидных систем головного мозга в механизмах подкрепления

Anand B.K. Localization of a feeding center in the hypothalamus of the rat. /Anand B.K., Brobeck J.R. // Proc. Soc. Exp. Biol. Med. 1951; 77:323–324. [PubMed]

Asakawa A. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. / Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, et al // Neuroendocrinology. 2001;74:143–147. [PubMed]

Asakawa, A. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. /Asakawa, A., Inui, A., Kaga, T., Yuzuriha, H., Nagata, T., Ueno, N., Makino, S., Fujimiya, M., Niijima, A., Fujino, M.A., Kasuga, M.//Gastroenterology120 (2) – 2001 – P.337–345.

Aston-Jones, G. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. /G. Aston-Jones, R. J. Smith, G. C. Sartor et al. // Brain Research. – 2010. – Vol.1314. – P.74–90.

Baimel, C. Hypocretinmodulation of drug-induced synaptic plasticity. /C. Baimel, S. L. Borgland // Progress in Brain Research. – 2012. – Vol.198.

Berridge K.C. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? /Berridge K.C., Robinson T.E.// Brain Res. Rev. 1998. V.28. P.309–369.

Berridge, K.C. Parsing reward Trends in. /Berridge, K.C., Robinson, T.E. // Neurosciences 26 (9) -2003 – P.507–513.

Borgland, S. L. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. /S.L. Borgland, S.A. Taha, F. Sarti et al. // J. Neuron. 2006. V.49. P.589–601.

Borgland, S. L. Orexin A/hypocretin selectively promotes motivation for positive reinforcers. /S. L. Borgland, S. G. Chang, M. S. Bowers et al. // The J. Neuroscience. – 2009. – V.29. – P.11215–11225.

Boutrel B. Addiction and arousal: the hypocretin connection. /Boutrel B., de Lecea L. // Physiol. behav. 2008, 93 (4-5): 947-51.

Bowers, C.Y. On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. /Bowers, C.Y., Momany, F.A., Reynolds, G.A., Hong, A.//Endocrinology 114 (5) – 1984 – P.1537–1545.

Breese G.R. Stress sensitization of ethanol withdrawal-induced reduction in social interaction: inhibition by CRF-1 and benzodiazepine receptor antagonists and a 5-HT1A-receptor agonist /Breese G.R., Knapp D.J., Overstreet D.H. // Neuropsychopharmacology. 2004. V. 29. P.470–482.

Breiter H.C. Functional imaging of neural responses to expectancy and experience of monetary gains and loses /Breiter H.C., Aharon I., Kahneman D., Dale A., Shizgal P.// Neuron. 2001. V.30. P.619–639.

Breiter H.C. Functional magnetic resonance imaging of brain reward circuitry in the human /Breiter H.C., Rosen B.R. // Ann. N.Y., Acad. Sci. 1999. V.877. P.523–547.

Broberger, C. Hypocretin/orexin – and melanin-concentrating hormone-expressing cells from distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. /C. Broberger, L. De Lecea, J. G. Sutcliffe et al. // J. Comp. Neurol. – 1998. – Vol.402. – P.460–474.

Bruijnzeel A.W. Stressinduced sensitization of CRH-ir but not P-CREB-ir responsivity in the rat central nervous system /Bruijnzeel A.W., Stam R., Compaan J.C., Wiegant V.M. // Brain Res. 2001. V. 908. P.187–196.

Bruijnzeel A.W. The role of corticotrophin-releasing factor-like peptide4s in cannabis, nicotine, and alcohol dependence /Bruijnzeel A.W., Gold M.S. // Brain Res. Rev. 2005. V.49. P.505–528.

Cabral A. /Ghrelin indirectly activates hypophysiotropic CRF Neurons in rodents /A. Cabral, O. Suescun, Jeffrey M. Zigman and M. Perello // PLoS One., 2012.

Cador M. Central administration of corticotropin releasing factor induces long-term sensitization to d-amphetamine /Cador M., Cole B.J., Koob G.F. et al. // Brain Res. 1993. V. 606. P.181–186.

Calissendorff, J. Alcohol ingestion does not affect serum levels of peptide YY but decreases both total and octanoylated ghrelin levels in healthy subjects. /Calissendorff, J., Danielsson, O., Brismar, K., Rojdmark, S.//Metabolism – Clinical and Experimental55 (12) – 2006 – P.1625–1629.

Calissendorff, J. Inhibitory effect of alcohol on ghrelin secretion in normal man. /Calissendorff, J., Danielsson, O., Brismar, K., Rojdmark, S. //European Journal of Endocrinology152 (5) – 2005 – P.743–747.

Carroll, M.E. Food-deprivation increases oral and intravenous drug intake in rats. /Carroll, M.E., France, C.P., Meisch, R.A. //Science 205 (4403) – 1979 – P.319–321.

Cason, A. M. Role of orexin (hypocretin) in reward-seeking and addiction: Implication for obesity. /T. C. Chou, R. J. Smith, P. Tashili-Fahadan et al. // Physiology and Behavior. – 2010. – Vol.100. – P.419–428.

Cassell M.D. The intrinsic organization of the central extended amygdale /Cassell M.D., Freedman L.J., Shi C. // Ann. N.Y. Acad. Sci. 1999. V.877. P.217–241.

Chalmers D.T. Corticotrophin-releasing factor receptors: from molecular biology to drug design /Chalmers D.T., Lovenberg T.W., Grigoriadis D.E. et al. // Trends Pharmacol. Sci. 1996. V. 17. P.166–172.

Chalmers D.T. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression /Chalmers D.T., Lovenberg T.W., De Souza E.B. // J. Neurosci. 1995. V. 15. P.6340–6350.

Chen R. Expression cloning of a human corticotropin-releasing-factor receptor /Chen R., Lewis K.A., Perrin M.H., Vale W.W. // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P.8967–8971.

Chevrette J. Both the shell of the nucleus accumbens and the central nucleus of the amygdala support amphetamine self-administration in rats /Chevrette J., Stellar J.R., Hesse G.W., Markou A. // Pharmacol. Biochem. Behav. 2002. V.71. P.501–507.

Chuang J.C. Ghrelin mediates stress-induced food-reward behavior in mice. / Chuang J.C., Perello M., Sakata I., Osborne-Lawrence S., Savitt J.M., et al. // J Clin Invest. 2011;121:2684–2692. [PMC free article] [PubMed]

Cole B.J. Central administration of a CRF antagonist blocks the development of stress-induced behavioral sensitization /Cole B.J., Cador M., Stinus L. et al. // Brain Res. 1990. V. 512. P.343–346.

Cole B.J. Propranolol antagonizes the enhanced conditioned fear produced by corticotropin releasing factor /Cole B.J., Koob G.F. // J. Pharmacol. Exp. Ther. 1988. V. 247. P.902–910.

Conover K. Competition and summation between rewarding effects of sucrose and lateral hypothalamic stimulation in the rat /Conover K., Shizgal P. // Behav. Neurosci. 1994. V.108. P.537–548.

Cook C.J. Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdale /Cook C.J. // Physiol. Behav. 2004. V. 82. P.751–762.

Cryan J.F. Assessing antidepressant activity in rodents: recent developments and future needs /Cryan J.F., Markou A., Lucki I. // Trends Pharmacol. Sci. 2002. V. 23. P.238–245.

Cummings. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. /Cummings, D.E., Purnell, J.Q., Frayo, R.S., Schmidova, K., Wisse, B.E., Weigle, D.S. // Diabetes 50 (8) – 2001 – Р.1714–1719.

Cummings. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. /Cummings, D.E., Frayo, R.S., Marmonier, C., Aubert, R., Chapelot, D. //American Journal of Physiology – Endocrinologyand Metabolism 287 (2) – 2004 – Р.297–304.

Date, Y. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. /Y. Date, Y. Ueta, H. Yamashita et al. // Prog. Natl. Acad. Sci. – 1999. – Vol.96. – P.748–753.

De Lecea, L. Hypocretins and the neurobiology of sleep-wake mechanisms. /L. De Lecea // Prog. Brain Res. – 2012. – Vol.196. – P.234–248.

De Souza E.B. Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study /De Souza E.B., Insel T.R., Perrin M.H. et al. // J. Neurosci. 1985. V. 5. P.3189–3203.

De Souza E.B. Corticotropin-releasing factor receptors in rat pituitary gland: autoradiographic localization /De Souza E.B., Perrin M.H., Rivier J. et al. // Brain Res. 1984. V. 296. P.202–207.

Di Chiara G. Dopamine and drug addiction: the nucleus accumbens shell connection. /Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D. // Neuropharmacology 2004;47(suppl 1):227–241.

Di Sebastiano, A. R. Orexin mediates initiation of sexual behavior in sexually naïve male rats, but is not critical for sexual performance. /A. R. Di Sebastiano, S. Yong-Yow, L. Wagner // Hormones and Behavior. – 2010. – Vol.58. – P.397–404.

Dickson, S.L. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. /Dickson, S.L., Hrabovszky, E., Hansson, C., Jerlhag, E., Alvarez-Crespo, M., Skibicka, K.P., Molnar, C.S., Liposits, Z., Engel, J.A., Egecioglu, E. // Neuroscience 171 (4) – 2010 – Р.1180–1186.

Doyon W.M. Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. /Doyon W.M, York JL, Diaz L.M, Samson H.H, Czachowski C.L, Gonzales R.A. // AlcoholClin Exp Res 2003; 27:1573–1582.

Dunn A.J. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? /Dunn A.J., Berridge C.W. // Brain Res. Brain Res. Rev. 1990. V. 15. P.71–100.

Dunn A.J., File S.E. Corticotropin-releasing factor has an anxiogenic action in the social interaction test. /Dunn A.J., File S.E. // Horm. Behav. 1987. V. 21. P.193–202.

Dworkin S.I. Lack of an effect of 6-hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration. /Dworkin S.I, Guerin G.F, Co C, Goeders N.E, Smith J.E. // Pharmacol Biochem Behav 1988;30:1051–1057

Edwards, C. M. The effect of the orexins on food intake comparison with neuropeptide Y, melanin concentrating hormone and galanin. /C. M. Edwards, S. Abusnana, S. Sunter et al. // J. Endocrinol. – 1999. – Vol.160. – P.7–12

Egecioglu, E. Ghrelin increases intake of rewarding food in rodents. /Egecioglu, E., Jerlhag, E., Salome, N., Skibicka, K.P., Haage, D., Bohlooly, Y.M., Andersson, D., Bjursell, M., Perrissoud, D., Engel, J.A., Dickson, S.L. //Addiction Biology 15 (3) – 2010 – Р.304–311.

Egecioglu, E. Hedonic and incentive signals for body weight control. /Egecioglu, E., Skibicka, K.P., Hansson, C., Alvarez-Crespo, M., Friberg, A., Jerlhag, E., Engel, J.A., Dickson, S.L. // Reviews in Endocrine and Metabolic Disorders, in press (Epub ahead of print). doi:10.1007/s11154-011-9166-4.

Elias, C. F. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamus area. /C. F. Elias, C. D Saper, E. Maratos-Flier et al. // J. Comp. Neurol. – 1998. – Vol.402. – P.442–459

Ericson, M. The smoking cessation medication varenicline attenuates alcohol and nicotine interactions in the rat mesolimbic dopamine system. /Ericson, M., Löf, E., Stomberg, R., Soderpalm, B. // Journal of Pharmacology and Experimental Therapeutics329 (1) – 2009 – Р.225–230.

Fadel J. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. /Fadel J., Deutch A.Y. // Neuroscience. 2002; 111:379–87. [PubMed]

Faulconbridge, L.F. Hyperphagic effects of brainstem ghrelin administration. /Faulconbridge, L.F., Cummings, D.E., Kaplan, J.M., Grill, H.J. //Diabetes 52 (9), 2260–2265. Grigson, P.S., 2002. Like drugs for chocolate: separate rewards modulated by common mechanisms? Physiology & Behavior 76 (3) – 2003 – Р.345–346.

Funk C.K. Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanoldependent rats. /Funk C.K., O’Dell L.E., Crawford E.F., Koob G.F. // J Neurosci 2006;26:11324–11332.

Gallistel C.R. Measuring the subjective magnitude of brain stimulation reward by titration with rate of reward. /Gallistel C.R., Leon M. // Behav. Neurosci. 1991. V.105. №6. P.913–925.

Gastard M. The caudal sublenticular region/anterior amygdaloid area is the only part of the rat forebrain and mesopontine tegmentum occupied by magnocelluar cholinergic neurons that receives outputs from the central division of extended amygdala /Gastard M., Jensen S.L., Martin J.R., Williams E.A., Zahm D.S. // Brain Res. 2002. V.957. P.207–222.

George O. CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine selfadministration in nicotine-dependent rats. /George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, O’Dell LE, Richardson HN, Koob GF. // Proc Natl Acad Sci USA 2007;104:17198–17203.

Goeders N.E. The impact of stress on addiction /Goeders N.E. // Eur. Neuropsychopharmacol. 2003. V. 13. P.435–441.

Gotter, A. L. Orexin receptors as therapeutic drug targets. /A. L. Gotter, A. J. Roecker, R. Hargreaves et al. // Progress in Brain Research. – 2012. – Vol.198, – P.48–56.

Greenwell T.N. Corticotropin-releasing factor-1 receptor antagonists decrease heroin self-administration in long-, but not short-access rats. /Greenwell T.N., Funk C.K., Cottone P., Richardson H.N., Chen S.A., Rice K., Lee M.J., Zorrilla E.P., Koob G.F. // Addict Biol. 2009 in press

Griebel G. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist: II. Characterization in rodent models of stress-related disorders /Griebel G., Simiand J., Steinberg R. et al. // J. Pharmacol. Exp. Ther. 2002. V. 301. P.333–345.

Griebel G. Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154, 526 in anxiety models in rodents, comparison with diazepam and buspirone. /Griebel G., Perrault G., Sanger D.J. // Psychopharmacology (Berl.). 1998. V. 138. P.55–66.

Grivel, J. The wake-promoting hypocretin/orexin neurons change their response to horadrenaline after sleep deprivation. /J. Grivel, V. Cvetkovic, L. Bayer et al. // J.Neurosci. – 2005. – Vol.25, – P.4127–4130.

Gualillo O. Effect of food restriction on ghrelin in normal-cycling female rats and in pregnancy. /Gualillo, O., Caminos, J.E., Nogueiras, R., Seoane, L.M., Arvat, E., Ghigo, E., Casanueva, F.F., Dieguez, C. // Obesity Research 10 (7) – 2002 – Р.682–687.

Guan, X.M. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. /Guan, X.M., Yu, H., Palyha, O.C., McKee, K.K., Feighner, S.D., Sirinathsinghji, D.J.S., Smith, R.G., VanderPloeg, L.H.T., Howard, A.D. // Molecular Brain Research 48 (1) – 1997 – Р.23–29.

Hand G.A. Differential release of corticotropin-releasing hormone (CRH) in the amygdala during different types of stressors /Hand G.A., Hewitt C.B., Fulk L.J. et al. // Brain Res. 2002. V. 949. P.122–130.

Hara, J. C. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. /J. Hara, C. T. Beuckmann, T. Nambu et al. // Neuron. – 2001. – Vol.30, – P.345–354.

Haynes, A. C. A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. /A. C. Haynes, B. Jackson, H. Chapman et al. // Regulatory Peptides. – 2000. – Vol.96, – P.45–51.

Haynes, A. C. Anorectic, thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in ob/ob mice. /A. C. Haynes, H. Chapman, C Taylor et al. // Regulatory Peptides. – 2002. – Vol.104, – P.153–159.

Hernandez G. Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. /Hernandez G, Hamdani S, Rajabi H, Conover K, Stewart J, Arvanitogiannis A, Shizgal P. // Behav Neurosci 2006;120:888–904.

Heyser C.J., Central administration of an opiate antagonist decreases oral ethanol self-administration in rats. /Heyser C.J., Roberts A.J., Schulteis G., Koob G.F. // Alcohol Clin Exp Res 1999;23:1468–1476.

Holst, B. Constitutive ghrelin receptor activity as a signaling set-point in appetite regulation Trends in Pharmacological. /Holst, B., Schwartz, T.W. // Sciences 25 (3) – 2004 – Р.113–117.

Holst, B. High constitutive signaling of the ghrelin receptor – identification of a potent inverse agonist. /Holst, B., Cygankiewicz, A., Jensen, T.H., Ankersen, M., Schwartz, T.W // Molecular Endocrinology 17 (11) – 2003 – Р.2201–2210.

Howard, A.D. A receptor in pituitary and hypothalamus that functions in growth hormone release. /Howard, A.D., Feighner, S.D., Cully, D.F., Arena, J.P., Liberator, P.A., Rosenblum, C.I., Hamelin, M., Hreniuk, D.L., Palyha, O.C., Anderson, J., Paress, P.S., Diaz, C., Chou, M., Liu, K.K., McKee, K.K., Pong, S.S., Chaung, L.Y., Elbrecht, A., Dashkevicz, M., Heavens, R., Rigby, M., Sirinathsinghji, D.J.S., Dean, D.C., Melillo, D.G., Patchett, A.A., Nargund, R., Griffin, P.R., DeMartino, J.A., Gupta, S.K., Schaeffer, J.M., Smith, R.G., VanderPloeg, L.H.T. // Science 273 (5277) – 1996 – Р.974–977.

Ida T. Possible involvement of orexin in the stress reaction in rats. /Ida T., Nakahara K., Murakami T., Hanada R., Nakazato M., Murakami N. // BiochemBiophys Res Commun. 2000; 270:318–23. [PubMed]

Ikemoto S. Dissociations between appetitive and consummatory responses by pharmacological manipulations of rewardrelevant brain regions /Ikemoto S., Panksepp J. // Behav. Neurosci. 1996. V.110. №2. P.331–345.

Jerlhag E. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors are involved in mediating the ghrelin-induced locomotor stimulation and dopamine overflow in nucleus accumbens. / Jerlhag, E., Egecioglu, E., Dickson, S.L., Svensson, L., Engel, J.A. // European Neuropsychopharmacolology 18 (7) – 2008 – Р.508–518.

Jerlhag E. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. /Jerlhag, E., Egecioglu, E., Dickson, S.L., Engel, J.A. // Psychopharmacology (Berl) 211 (4) – 2010 – Р.415–422.

Jerlhag E. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. /Jerlhag, E., Egecioglu, E., Dickson, S.L., Engel, J.A. // AddictionBiology 16 (1) – 2011 – Р.82–91.

Jerlhag, E. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. /Jerlhag, E., Egecioglu, E., Dickson, S.L., Douhan, A., Svensson, L., Engel, J.A. // Addiction Biology 12 (1) – 2007 – Р.6–16.

Jerlhag, E. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. /Jerlhag, E., Egecioglu, E., Dickson, S.L., Andersson, M., Svensson, L., Engel, J.A. // Addiction Biology 11 (1) – 2006a – Р.45–54.

Jerlhag, E. Requirement of central ghrelin signaling for alcohol reward. /Jerlhag, E., Egecioglu, E., Landgren, S., Salome, N., Heilig, M., Moechars, D., Datta., R., Perrissoud, D., Dickson, S.L., Engel, J.A. // Proceedings of the National Academy of Sciences of the United States of America 106 (27) – 2009 – Р.11318–11323.

Jerlhag, E. Role of the subunit composition of central nicotinic acetylcholine receptors for the stimulatory and dopamine-enhancing effects of ethanol. /Jerlhag, E., Grotli, M., Luthman, K., Svensson, L., Engel, J.A. // Alcohol and Alcoholism 41 (5) – 2006b – Р.486–493.

Jerlhag, E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. /Jerlhag, E. // Addiction Biology 13 (3–4) – 2008 – Р.358–363.

Jerlhag, E. The alcohol induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. /Jerlhag, E., Landgren, S., Egecioglu, E., Dickson, S.L., Engel, J.A. // Alcohol, in press (Epub ahead of print) doi:10.1016/j.alcohol.2010.10.002.

Jiang, H. Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/ dopamine receptor subtype 1 heterodimers. /Jiang, H., Betancourt, L., Smith, R.G. // Molecular Endocrinology 20(8) – 2006 – Р.1772–1785.

Jones G.A. Conduction velocities and membrane properties of different classes of rat septohippocampal neurons recorded in vitro /      Jones G.A., Norris S.K., Henderson Z. // J. Physiol. 1999. V.517. P.867–877.

Jӧhren, O. Preproorexin and orexin receptor mRNAs are differentially expressed in peripheral tissues of male and female rats. /O. Jӧhren, S. J. Neidert, M. Kummer et al. // Endocrinology. – 2001. – Vol.142. – P.3324–3331.

Kalivas P.W. Brain circuitry and the reinstatement of cocaine-seeking behavior. / Kalivas P.W., McFarland K. // Psychopharmacology (Berl) 2003;168:44–56. [PubMed]

Kalivas P.W. Neural systems for behavioral activation and reward. /Kalivas P.W., Nakamura M. // Curr. Opin. Neurobiol. 1999. V.9. P.223–227.

Kaur, S. Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotor urocortin-containing neurons. /Kaur, S., Ryabinin, A.E. // Alcoholism – Clinical and Experimental Research 34 (9) – 2010 – Р.1525–1534.

Keck M.E. The anxiolytic effect of the CRH(1) receptor antagonist R121919 depends on innate emotionality in rats. /Keck M.E., Welt T., Wigger A. et al. // Eur. J. Neurosci. 2001. V. 13. P.373–380.

Kelley A.E. The neuroscience of natural rewards: relevance to addictive drugs. /Kelley A.E., Berridge K.C. // J. Neurosci. 2002. V.22. №9. P.3306–3311.

Kojima M. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. /Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K. // Nature 402(6762) – 1999 – Р.656–660.

Kojima M. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. /Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, et al // Nature. 1999; 402:656–660. [PubMed]

Koob G.F. A role for brain stress systems in addiction. /Koob G.F. // Neuron 2008; 59:11–34.

Koob G.F. A role for corticotropin-releasing factor and urocortin in behavioral responses to stressors. /Koob G.F., Heinrichs S.C. // Brain Res. 1999. Vol.848. P.141-152.

Koob G.F. Addiction and the brain antireward system. /Koob G.F., Le Moal M. //Ann Rev Psychol 2008b;59:29–53.

Koob G.F. Alcoholism: allostasis and beyond. /Koob G.F. // Alcohol Clin. Exp. Res. 2003. V. 27. P.232–243.

Koob G.F. Corticotropin-releasing factor, norepinephrine and stress. /Koob G.F. // Biol Psychiatry 1999; 46:1167–1180.

Koob G.F. Drug abuse: Hedonic homeostatic dysregulation. /Koob G.F., Le Moal M. //Science 1997; 278:52–58.

Koob G.F. Drugs of abuse: anatomy, pharmacology, and function of reward pathways. /Koob G.F. // TrendsPharmacol Sci 1992; 13:177–184.

Koob G.F. Neuroadaptive mechanisms of addiction: studies on the extended amygdala. /Koob G.F. // Eur. Neuropsychopharmacol. 2003. V.13. P.442–452.

Koob G.F. Neuroscience of addiction. / Koob G.F., Sanna P.P., Bloom F.E // Neuron. 1998; 21:467–76. [PubMed]

Koob G.F. Stress, corticotropin-releasing factor, and drug addiction. /Koob G.F. // Ann. N.Y. Acad. Sci. 1999. V. 897. P.27–45.

Koob G.F. The role of the striatopallidal and extended amygdala systems in drug addiction. /Koob G.F. // Ann. N.Y. Acad. Sci. 1999. V.877. P.445–460.

Kornetsky C. Euphorigenic drugs: Effects on the reward pathways of the brain. /Kornetsky C., Esposito R.U. // Fed Proc 1979;38:2473–2476.

Kornetsky C. The role of the olfactory tubercle in the effects of cocaine, morphine, and brain-stimulation reward. /Kornetsky C., Huston-Lyons D., Porrino L.J // Brain Res. 1991. V.541. P.75–81.

Korotkova T.M. Selective excitation of GABAergic neurons in the substantianigra of the rat by orexin/hypocretin in vitro. / Korotkova T.M., Eriksson K.S, Haas H.L., Brown R.E // RegulPept. 2002;104:83–89. [PubMed]

Kostich W.A. Molecular identification and analysis of a novel human corticotropin-releasing factor (CRF) receptor: the CRF2gamma receptor. /Kostich W.A., Chen A., Sperle K., Largent B.L. // Mol. Endocrinol. 1998. V. 12. P.1077–1085.

Kretschmer B.D. Functional aspects of the ventral pallidum. /Kretschmer B.D. // Amino Acids. 2000. V.19. P.201–210.

Lall, S. Growth hormone (GH)-independent stimulation of adiposity by GH secretagogues. /Lall, S., Tung, L.Y.C., Ohlsson, C., Jansson, J.O., Dickson, S.L. // Biochemicaland Biophysical Research Communications 280 (1) – 2001 – Р.132–138.

bannerbanner