Читать книгу Поля и вихроны. Структуры мироздания Вселенной. Третье издание (Александр Александрович Шадрин) онлайн бесплатно на Bookz (15-ая страница книги)
bannerbanner
Поля и вихроны. Структуры мироздания Вселенной. Третье издание
Поля и вихроны. Структуры мироздания Вселенной. Третье издание
Оценить:
Поля и вихроны. Структуры мироздания Вселенной. Третье издание

3

Полная версия:

Поля и вихроны. Структуры мироздания Вселенной. Третье издание

излучения низкоэнергетических (1—2 эв) фотонов или ультразвуковых фононов в локальных объёмах микроструктур, зависящая извне от параметров (фронт и форма импульса, напряжение, плотность потока пучка лазера, ток, мощность ультразвука) электрических, лазерных или звуковых импульсов, подаваемых в конденсированной среде (вода, твёрдое тело), способна порождать и  возбуждения атомов и дезинтеграцию вещества. Суть этих процессов заключается в синхронном  вращающихся магнитных или гравитационных безмассовых монополей на волноводах одного знака отдельных фотонов или фононов в их объёме, а в случае их поглощения – в  объёмах ГЭМД (или других мультиполей) замкнутых электромагнитных или механических вихронов. В результате многократных процессов слияния рождаются «» фотоны и фононы, которые вначале запускают возбуждение-ионизацию , а после их высвечивании дополнительных потоков резонансных фотонов, запускают и механизмы пороговых возбуждений-ионизаций атомных . Такие  процессы – атомов запускают пороговые механизмы –  в конденсированной среде. Здесь уже атомные процессы возбуждения и излучения, дополнительно рождённых  потоков излучения «» локально пороговый распад ядерных оболочек, приводящий к быстрому синтезу новых ядер химических элементов. Высокая интенсивность многофотонные многофононные каскадные процессы локальном слиянии суммарном фазовом фазовых тяжёлые атомов ядер каскадные возбуждения ионизации последовательно распада синтеза ядер короткодействующих поджигают

фонон-фотонного взаимодействия гиперзвука со светом заключается в изменении показателя преломления ЭМВ под действием резонансной волны – дифракция света на ультразвуке. Таким образом существует прямые и обратные магнито-гравитационные квантовые переходы резонансных взаимодействий между и  микровихронами. Определим такие переходы как свойство электромагнитных вихронов. Отсюда следует, что гравитационные монополи – это такая форма материи (или просто мост), через которую происходят квантовые переходы сброса или зарядки энергии из электромагнитных вихронов в механические и наоборот. При этом названные вихроны играют роль квантов индуктированной энергии – волн Луи де Бройля, механических и электромагнитных. Пример обратного электромагнитными механическими двадцать четвёртое носителей

Подведем важный итог – изменение внутренней энергии одного атома порождает или поглощает фотон, а изменение внутренней энергии коллектива атомов кластера вещества порождает или поглощает кванты звука – механические микровихроны.

Если этот коллектив атомов по массе превосходит значение планковской массы (2,2 х 10г), то гравитационные взаимодействия, т. е. индукция механических вихронов, и названные квантовые явления начинают превалировать над электромагнитными. К таким может приводить быстрое поглощение энергии ИК-излучения веществом, механический удар, электрический разряд, локальный термический нагрев кластера вещества, детонация и взрыв химического или ядерного заряда и т. д. Например, тепловой нагрев кластера кристалла твёрдого тела, увеличивает среднее межатомное расстояние в этом кластере и порождает такие явления, как увеличение его объёма и теплопроводность, которое осуществляется посредством , способных с помощью вихревых токов атомов, возникающих на волноводах из опорных гравпотенциалов после разряда гравитационного монополя, переносить энергию  нагрева от одного кластера к другому. При этом главную роль играет длина свободного пробега при поступательно-вращательных колебаниях атома вблизи положения равновесия. Это явление и есть самое элементарное и самое высокочастотное проявление звука, т. е. гиперзвука, так как его верхняя граница длины волны может быть только больше удвоенного межатомного расстояния и соответствует частоте 10 Гц. При этом следует отметить, что амплитуда колебаний атомов существенно меньше их межатомного расстояния. Область звуковых частот снизу неограниченна – в природе встречаются инфразвуковые колебания с частотой в сотые и тысячные доли герц. Частотный диапазон гиперзвуковых волн имеет ограничения, вызванное атомным и молекулярным строением среды. В газах длина волны может быть только больше длины свободного пробега молекул. Поэтому верхняя граница гиперзвука в газе 10 Гц. —5  13 9 изменениям фононов состояния 177

Основное свойство звука (гравитационного тока), распространяющегося в какой-либо вещества – это перенос энергии звуковой волны в форме гравитационного заряда через посредство состояния атомов – это процесс, определяющий скорость распространения звука в данной среде. Вначале зарождается гравитационный монополь при сбросе энергии кластером вещества. Затем этот монополь разряжается подобно магнитному с образованием волновода из опорных гравпотенциалов. После чего по этому волноводу устремляются микрочастицы с массой, создавая вихревые токи, которые и заряжают новый гравитационный монополь, но с противоположным зарядом и на новом месте. Заметим, что в ЭМВ перенос энергии происходит за счёт переменного магнитного заряда не имеющего массы с опорой на электропотенциалы. среде механического последовательный самодвижения 178 179

Как происходит этот перенос или как происходит самодвижение звука, т. е. гравитационного тока в среде?

Здесь уже уместно заметить, что источника самодвижения, порождающего структуры механического кванта звуковых волн, как и механизма его самодвижения в САП, автором в открытой литературе данных не обнаружено, как это положение существует и со структурой электромагнитного фотона. Другими словами, на микроскопическом уровне физический механизм распространения звука . Законы распространения звуковых волн определены лишь на основе экспериментальных данных и носят, исключительно феноменологический характер. 180 неизвестен математически

могутбыть,какиприрождениифотонов, быстрое энергетического состояния атомов, в данном случае, механического состояния атомов, образующих связанную Механизм распространения звука в среде – зарядка потока монополей с последующей их разрядкой и периодическим повторением этого процесса, образующим гравитационный ток в ней. Из анализа воздействия ИК-излучения на атомы, исследований механизма электрогидравлического разряда Л. А. Юткина, механического удара по твёрдому телу, детонации и последующего взрыва или какого-либо иного локального возмущения, следует, что всегда изменение состояния поступательно-вращательного движения кластера вещества даже на пределе длины свободного пробега атомов при колебательно-вращательном движении их около положения равновесия в веществе индуктирует 4π-поток . Это аналог индукции магнитного монополя в изменяющемся электрическом поле, т. е. в механически покоящейся атомно-молекулярной Такое пространство-среда должно состоять из подвижных микрочастиц с массой – атомы, молекулы, ионы, электроны и т. д. Например, при механическом ударе по кластеру твёрдого тела, т. е. в связанной системе масс, в его пространстве приходят в движение атомы, сохраняя своё инертное состояние покоя. Это движение сложное и состоит из механических колебательно-вращательных движений атомов около положения равновесия и их вынуждено-возмущённого детонирования путём удара поступательного движения из состояния инертного покоя. Такое синфазное дебройлевское коллектива атомов приводит к зарядке микросфер-источников из спиралей гравпотенциалов (гравитационных монополей), т. е. квантов индуктированной энергии – кластеров вихревых полей. Сливаясь в один, они уже образуют квантово разрешённый суммарный гравитационный заряд со структурой (фото 2.1) подобной структуре магнитного монополя. Далее следует разрядка этого монополя в пространстве кластера с производством волноводов-поля из опорных гравпотенциалов – с этого момента начинается жизнь . После чего, вдоль них синфазно возникают вихревые токи атомов, которые квантовано переносят соответствующую энергию материи на позволенной длине свободного пробега в различной форме (давление, плотность, температуру, магнитное состояние и т. д.) и они же регенерируют-заряжают новый коллектив, но противоположных по знаку гравмонополей впереди на 1/4 длины волны и на новом месте. При этом скорость распространения звука уже определяется продольной составляющей винтового движения атомов вдоль потенциалов волновода и соизмерима с их тепловой скоростью. Синфазное движение атомов приводит к созданию фронта звуковой волны. Это и есть ответ на вопрос – зачем нужна для распространения звука и  обусловлена скорость звука в ней? При распространении звука в среде индуктированные гравмонополи меняются по знаку последующими вихревыми токами микрочастиц вдоль потенциалов волноводов – этим обеспечивается полное квантовое преобразование индуктированной в гравмонополе энергии при сохранении средней, этим отличается механизм формирования скорости звука от скорости света фотонов, этим отличается механический микровихрон от электромагнитного. Источниками квантов звука   изменение коллектива систему масс. гравитационных вынужденное гравитационных монополей вокруг точки детонации возмущённом пространстве-поле среды. движение носителей механического микровихрона или идёт гравитационный ток (гравитационные волны) среда чем свободный

Локальные термическиеколебания атомов кристалла вызывают распространение в веществе системы звуковых волн, квантами которых являются фононы. Фононы и их взаимодействия с электронами играют фундаментальную роль в современных представлениях по физике сверхпроводников, процессах теплопроводности, процессах рассеяния в твердых телах. Законы распространения волн – дифракция, интерференция, отражение, преломление и для электромагнитных волн и для звука. Однако есть отличия в  потенциалах на волноводах и скоростях распространения звука и света. Электромагнитные вихроны устанавливают электрические потенциалы, которые вызывают вихревые электрические токи в проводниках, а механические – гравитационные потенциалы, которые вызывают вихревые гравитационные токи микрочастиц с массой и формируют тем самым фронты давления и скорости их движения, а также, в некоторых случаях, – вихревые токи ионов и электронов. Поэтому при распространении звуковой волны происходит следующее: – на расстоянии в полволны амплитудное значение давления из положительного становится отрицательным, т. е. разница давлений в двух точках, отстоящих друг от друга на полволны пути распространения волны, превышает в два раза. одинаковы опорных

– давление, оказываемое на частицы среды при распространении волны, является результатом действия вихревых токов вдоль потенциалов волновода.

– пробег частиц среды, участвующих в вихревых токах при передаче энергии волны и электрического заряда, не превышает длины их свободного пробега в среде при данных условиях. 181

На основании этого можно сделать заключение о том, что при переносе энергии звука происходит полное квантовое преобразование энергии вихревой материи микрочастиц с массой в этих волновых процессах, т. е. данный механический микровихрон является соспиномравнымединицепоаналогии движения и переноса энергии фотоном. свободным   ,

. Этот процесс возникает при прохождении в воде звуковой волны большой интенсивности. В настоящее время акустическая кавитация, которая чаще называется ультразвуковой кавитацией, широко используется в научных и практических целях для ускорения различных технологических процессов. Однако этот тип кавитации недостаточен для инициирования ядерных реакций. Согласно фундаментальной работы по ультразвуковой деструкции материи А. Ф. Кладова для инициирования ядерных реакций необходимо в 10 раз повысить интенсивность излучения звука, по сравнению с обычной ультразвуковой аппаратурой. Кроме того, необходимо заменить современные представления о механизме кавитационного воздействия на объект, которые не позволяют объяснить экспериментальные результаты (Кладов А. Ф.), полученные при использовании ультразвука сверхвысокой интенсивности. В таких условиях первичный газовый пузырек размерами в несколько микрон, возбуждаемый акустическими колебаниями в сферическом стеклянном сосуде и имеющий вначале не совсем правильную сферическую форму, испускает световые импульсы столь интенсивные, что они видны невооруженным глазом. Длительность такого импульса является рекордно короткой и составляет от 10—50 пс до 100—300 пс, и зависит от концентрации растворенного газа и амплитуды звукового давления, спектр излучения сплошной, без выраженных характеристических линий и полос, размер светящейся области исчезающее мал и составляет менее 1 микрона. Причем вспышки происходят в основном при переходе от пузырька большего диаметра в жидкости к наименьшему диаметру. Кавитационный пузырёк, рождающийся и схлопывающийся миллионы раз в секунду, генерирует лишь усреднённый свет. Яркость света резко увеличивается при охлаждении воды. На последней стадии сжатия кавитационного пузырька его стенки развивают скорость до 1—1,5 км/с, что соизмеримо со скоростью звука в данной жидкости. Акустическая кавитация (обратный процесс) сонолюминесцентный сонолюминесцентного

и этоквантовые переходы носителей индуктированной энергии от гравитационных к магнитным зарядам в образовавшихся замкнутых макровихронах квазичастиц – сфера пузырька. Это ещё один пример наряду с генерацией ИК-излучения нагретыми телами – явление сонолюминесценции, т. е. свечение жидкости под действием колебаний в пузырьке, в которой происходит передача энергии из акустической волны в электромагнитные фотоны, т. е. непрерывность тока энергии независимо от формы её прерывания – электрическим зарядом в веществе для фотона или механическим гравитационным зарядом в узле стоячей звуковой волны. Механизм образования такого пульсирующего пузырька заключается в следующем. При прохождении резонансного звукового кванта через воду гравитационный заряд механического вихрона производит волновод из гравпотенциалов, который при встрече с аналогичным встречным волноводом отражённой от стенки другого аналогичного кванта звука рождает кавитационный пузырёк, который следует рассматривать, как макрочастицу типа связанной пары электрон-позитрон. Эта пара вихронов начинает пульсировать изменяя геометрические и физические параметры плёнки пузырька. Процесс аналогичен рождению пары в поле атомного ядра – рождение замкнутых электромагнитных микро-вихронов в режиме противодавления, т.е. электрический монополь вихрона- электрическое поле атома. В кавитационном пузырьке противодавление – это давление двух встречных узлов волноводов. Гравитационный монополь замкнутого механического вихрона вынужденно при указанных условиях (обратный процесс) совершает квантовый переход и при разрядке рождает магнитный заряд. Здесь роль электрического монополя электромагнитного микровихрона и поля атомного ядра берут на себя локальные звуковое давление (плотность) и встречающееся на его пути локальное встречное противодавление. В одном случае это гребной винт, в другом – стоячая звуковая волна. В образовавшемся кавитационном пузырьке при разрядке гравитационного монополя вдоль его волноводов начинают пульсировать вихревые токи, которые перегревают плёнку слоя жидкости и образуют пузырёк, поверхность раздела между жидкостью и газом – индикатор закипания жидкости. Этот же процесс заряжает и магнитный монополь – диаметр пузырька уменьшается и становится совсем невидимым в момент, когда магнитный заряд достигает максимальной величины. А перед тем как совершить квантовый переход в гравитационный заряд, магнитный успевает при установке на волноводе в жидкости самых больших по значению электропотенциалов возбудить и ионизировать атомы, по которым затем идут вихревые электрические и гравитационные токи, порождающие кавитационную эрозию в твёрдом металле. Переходя в основное состояние атомы излучают световые фотоны. Итак, вихревые токи вдоль гравпотенциалов нагревают и образуют пузырёк локального перегрева, а вихревые токи вдоль электропотенциалов уменьшают его в диаметре и излучают свет – процесс пульсаций периодический с ресурсом от 10 до 10 циклов, зависимый от значения величины гравитационного или магнитного заряда. По существу – это процесс рождения механическим вихроном корпускулярной с ограниченным возрастом, подобный структуре или паре электрон-позитрон. Механизм кавитации сонолюминесценции – замкнутым квазичастицы шаровой молнии 6 12

  (и наоборот) используется в современной оптике, оптоэлектронике, лазерной технике для управления когерентным световым излучением. Акустооптические устройства позволяют управлять амплитудой, частотой, поляризацией, спектральным составом светового сигнала и направлением распространения светового луча. Из прикладных аспектов акустооптических эффектов практическое применение имеют системы обработки информации, где акустооптические устройства используются для обработки СВЧ-сигналов в реальном масштабе времени. Взаимодействие света со звуком

Фононы и ротоны – элементарные высокочастотные проявления механических вихронов. Физический смысл появления ротонов соответствует появлению вихревого движения микрокластера в сверхпроводящей жидкости. Энергетический спектр элементарных возбуждений в жидком гелии имеет зависимость в начальной части. Локальный минимум энергии соответствует тем-пературе около 8,6 К. Элементарные возбуждения части спектра соответствуют рождению фононов, а возбуждения в области, близкой к минимуму – рождению ротонов. Они тесно связаны взаимными квантовыми энергетическими переходами с электромагнитными фотонами и электронами среды. Фононы взаимодействуют не только друг с другом, но и с другими квазичастицами, как с электронами проводимости в металлах и полупроводниках, так и с магнонами в магнито-упорядоченных средах. Испускание и поглощение фононов электронами – основной механизм электрического сопротивления металлов и полупроводников. линейную линейной 182

Таким образом, механические (тепловые и звуковые) микровихроны – это продукты направленного поступательно-вращательного и . Установленное свойство выводит закон Луи де Бройля на качественно новый уровень – в указанном состоянии конусно-винтовой кластер движущихся микрочастиц способен заряжать монополь (источник), который при разрядке создаёт волновод (поле) из гравпотенциалов. По этому волноводу в следующее мгновение начинается винтовое движение кванта близлежащих атомов – , который в свою очередь опять заряжает гравитационный заряд, но с противоположным знаком. Так рождается тепловая или звуковая волна, т. е. свободные механические дебройлевские волны. движения атомов молекул, формирующих гравитационные токи в среде механический гравитационный вихревой гравитационный ток



2.3. Электрон – позитрон

Скажи мне, что такое электрон, и я объясню тебе всё остальное. William Thomson

Электрон, как , а поэтому инертное и стабильное микропространство с массой, обладает структурой, внутренними и внешними физическими свойствами. Его комптоновская длина волны составляет величину 2,4 х 10 см. Дебройлевскаядлина волны электрона в атоме (т. е. размер сферической области, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10— 10 см а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10— 10 см. Таким образом, высоко возбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны. замкнутое 183 184 —10 —7  —8 —3  —4

У электрона в системе СИ самая минимально возможная масса-энергия инертного покоя (511 Кэв) обусловлена ограничением движения носителя индуктированной энергии ГЭММ в рамках его замкнутой структуры волноводов (фото 2.15). В результате этого свободный кластер гравитационных зёрен-потенциалов из обновлённого волновода электрона, взаимодействуя с полем тяготения Земли с образованием холодной плазмы, проявляет силовые линии притяжение. Электрон становится непрерывно связанным с полем тяготения, т.е. инертен. свободного

Источником пульсаций излучения внешнего поля с частотой около 10Гц четверть-волноводов электронов является (ГЭММ) с размером сферы 10см. Эффективный размер фазового объёма четверть-волноводов свободного электрона в состоянии покоя составляет величину 1,2 х 10 см, а его волновод существенно превосходит размеры атомного ядра. Его стабильное по возрасту жизни микропространство имеет полуцелый спин и отрицательный в системе СИ (позитрон – положительный) заряд 1,6 х 10 Кл, а также собственный магнитный момент, равный магнетону Бора. 20  —20  —10 —19 гравиэлектромагнитный монополь

Электроны рождаются в природе, с одной стороны, при образовании заряженных атомных ядер химических элементов, путём распада нейтральных ядер типа нейтрона, в процессах бета-распада ядер атомов химических элементов, при распаде нейтрона и других нестабильных элементарных частиц. А с другой стороны, при взаимодействии фотонов с атомно-молекулярным веществом в различных агрегатных состояниях – фотоэффект и пар – образование.

Свойства структуры электрона, кроме названных явлений, могут также дополнить распады короткоживущих элементарных частиц, таких как мюон, а также весьма явления бета-распада кобальта-60, нейтрона и некоторых других частиц. В этих превращениях ориентированные по спину внешним магнитным полем распадающиеся ядра излучают в одну сторону больше электронов, чем в другую. Это же явление наблюдается и у античастиц. Эксперименты, выполненные в этом направлении с 1956 по 1964 мировым научным сообществом, показали о наличии у электронов, позитронов и других микрочастиц сложной лево и право вращательной структуры. загадочные

Дополнительная информация по структуре электрона может быть получена из ответа на вопрос о его электрическом заряде и массе покоя. Достоверно установлено, что электрические заряды раздельно существуют в двух видах – положительные и отрицательные. При этом разноимённые заряды притягиваются, а одноимённые отталкиваются. В квантовой электродинамике понятия знака заряда не существует, а позитрон описывается как электрон, движущийся во . обратно времени

Внешнее проявление свойств формы и размера волноводов электрона с вращающимся полярным магнитным монополем зависит от скорости его движения и состояния степени свободы (связан в атоме или полностью свободен) – это его спин, электрический заряд, геометрическая структура с определёнными размерами и индуктируемая масса (в терминах системы СИ или СГС), а также бесконечно долгое время жизни. 185

Внутренние свойства электрона, ответственные за эти внешние проявления, обусловлены процессами, происходящими в резонансном полярном вихроне, в котором магнитный монополь периодически и всегда движется-вкручивается (имплозия осевая) в одном направлении в сторону к центру поверхности полусферы, где исчезая, заряжает гравитационный монополь. Последний, разряжаясь (внутренняя спираль разрядки гравитационного монополя, показанная на фото 2.15) в поле волновода (внешняя спираль), опять регенерирует его – индуктирует и заряжает магнитный монополь на удалении четверти длины волны, и так идут пульсации четверть-волноводов ГЭММ до бесконечности.

Фото 2.15. Схема электрона, обозначенная электро (синими) и гравпотенциалами (красными) его волновода ГЭММ и структура отбрасываемого контура из зёрен-потенциалов, который формирует его внешнее поле.

bannerbanner