banner banner banner
Во все уши. Про многозадачный орган, благодаря которому мы слышим, сохраняем рассудок и держим равновесие
Во все уши. Про многозадачный орган, благодаря которому мы слышим, сохраняем рассудок и держим равновесие
Оценить:
Рейтинг: 0

Полная версия:

Во все уши. Про многозадачный орган, благодаря которому мы слышим, сохраняем рассудок и держим равновесие

скачать книгу бесплатно

– Это еще не все. В этом случае тебе сделают инъекцию в оба уха.

– Что значит в оба уха? Куда-то в слуховой проход?

– Придется проколоть барабанную перепонку и впрыснуть контрастное вещество в среднее ухо.

По моей спине ползут мурашки. Ужасно! Длинный шприц в ухе кажется мне более страшным, чем лечение зубного нерва у тюремного врача-садиста!

Андреас добавляет:

– Не бойся, тебе предварительно сделают местную анестезию. Возможно, будет немного неприятно, но не болезненно.

– О’кей. Все равно спасибо за предупреждение.

Об этом, естественно, врач тоже ничего не говорил. Мы прощаемся, и, после того как я завершаю вызов, на дисплее смартфона отображается время разговора продолжительностью три четверти часа. Это примерно на сорок минут дольше беседы с лечащим врачом. Теперь я чувствую себя во всеоружии перед новой встречей с немецкой системой здравоохранения, у которой, очевидно, не хватает времени на пациентов с жизненно важными диагнозами. Тем не менее теперь у меня в рукаве есть два туза: я располагаю ценными профессиональными знаниями и в любое время могу позвонить Андреасу, если в дальнейшем понадобятся его советы.

Следующее, что я делаю – в очередной раз за этот сумасшедший день набираю номер жены, чтобы рассказать ей о недавно приобретенных знаниях. Кроме того, нам нужно обсудить, сможет ли она забрать со вчерашнего места проведения вечеринки мой фургон вместе с музыкальной установкой. Я надеюсь, что моя техника пережила ночь с необузданной толпой за пультом управления, и задаюсь вопросом, как вообще этот праздник прошел без диджея…

Звук, ша-ла-ла-ла-ла

Акустический концерт, акт первый: о волнах, которые на самом деле представляют собой сферы

Чтобы понять, как развивался наш слух и на какие невероятные достижения он способен, сначала следует обратиться к вездесущему явлению природы – звуку. Мы установили, что доисторические рыбы посредством волосковых клеток в органе боковой линии могли чувствовать простые движения воды, но еще не звук, или, точнее, звуковые волны. Вы, определенно, много раз слышали этот термин, и, возможно, он вызывал те же ассоциации, что и у меня: я представлял себе волны на поверхности воды, подобные тем, какие можно увидеть на озере или море. Я считал, что и звук похожим образом раскачивается вверх и вниз по воздуху. Однако такое представление ошибочно: звуковые волны выглядят совершенно иначе!

Вообще, они для нас, конечно, ни на что не похожи, ведь наши глаза не могут их различить. Чтобы получить наглядное представление о том, что такое звуковые волны и как они распространяются, придется покинуть мир видимого. Предположим, вы хлопаете в ладоши, а мы увеличиваем это движение с помощью гигантского микроскопа. Тогда мы смогли бы увидеть, что пространство между ладонями и вокруг него вовсе не пустое. Там носятся миллионы молекул воздуха. Для простоты на мгновение представим их в виде маленьких синих шариков (даже если какой-нибудь специалист по физике элементарных частиц, услышав такое сравнение, начнет рвать на себе волосы). До того, как ваши руки приходят в движение, эти шарики парят между ними, равномерно распределившись в пространстве. Через наш микроскоп мы можем наблюдать все, как в замедленной съемке: ладони медленно двигаются навстречу друг другу и сильнее сдвигают шарики. Синий цвет сгущается между руками, так как все больше молекул воздуха сталкиваются друг с другом. Затем ладони встречаются, и в этот момент раздается звук хлопка. По логике вещей, когда руки соприкасаются, между ними едва ли остается место для синих молекул воздуха. Они резко выдавливаются по бокам. Молекулы толкают соседние молекулы, которые также врезаются в соседей и приводят их в движение. Поскольку частицы не всегда отлетают прямо вперед, но и смещаются в стороны, рикошеты образуют замкнутую сферу вокруг ваших рук. Это достойно стоп-кадра. Итак, пауза!

Мы плавно приближаем внутренность сферы и обнаруживаем, что здесь молекулы снова распределились равномерно, как до хлопка в ладоши. Таким образом, плотная синяя стенка сферы имеет определенную толщину, и это сгущение всегда передается соседним группам молекул. Шарики толкают шарики, словно опрокидывающие друг друга костяшки домино. Отличие от домино в том, что молекулы сами возвращаются к первоначальному расстоянию друг от друга, а костяшки просто остаются лежать. Конечно, в итоге ни одна молекула не оказывается именно в том месте, где была раньше, но дистанция между ними сохраняется такой же, как и прежде. Потому что частицы в состоянии покоя отталкиваются друг от друга и удерживаются на расстоянии.

Давайте продолжим смотреть фильм в замедленной съемке. Сфера расширяется и становится все больше, распространяясь на всю комнату, и ее часть проникает в ваши слуховые проходы. Как только молекулы воздуха достигают барабанной перепонки, эта крошечная пленочка начинает вибрировать. Это позволяет услышать хлопок после его преобразования в среднем и внутреннем ухе.

Теперь подведем итог тому, что мы узнали о распространении звуковых волн при хлопке:

• состоят из молекул воздуха, которые толкают друг друга подобно костяшкам домино;

• распространяются сферически вокруг источника звука;

• стенка звуковой сферы состоит из прижатых друг к другу молекул воздуха, в то время как внутри нее преобладает первоначальная плотность воздуха;

• звуковые волны – это не что иное, как систематическое изменение давления воздуха, которое распространяется в пространстве.

Акустический концерт, акт второй: о волнах, которые на самом деле представляют собой луковицы

Большинство шумов сложнее, чем простой хлопок. В отличие от упомянутого в начале Большого взрыва, они на самом деле представляют собой взрыв, то есть резкое изменение плотности воздуха. Это довольно громкий, но очень короткий звук.

Как выглядит звуковая волна при более длительном звучании? Например, в случае свиста или работающего двигателя?

Для нашего микроскопа подойдет пример звенящего бокала для вина. Если ударить по бокалу ложкой, он завибрирует, сталкиваясь при этом с окружающими молекулами воздуха. Здесь движение снова распространяется сферически, но вместо одной сферы в течение всей продолжительности колебаний постоянно создаются новые. На неподвижном кадре формирование молекул воздуха вокруг бокала выглядит как луковица. При рассмотрении в замедленной съемке отдельные ее слои непрерывно перемещаются изнутри наружу, увеличиваясь при этом.

Акустический концерт, акт третий: о волнах, которые представляют собой сплошной хаос

То, что мы увидели под микроскопом, – не что иное, как игра воображения. В реальной жизни ситуация выглядит гораздо сложнее. Прежде всего, все происходит безумно быстро: звук распространяется в воздухе со скоростью около 343 метров в секунду – независимо от того, хлопаете вы в ладоши или стучите по бокалу, за доли секунды доминоподобное движение молекул уже достигает стен, потолка и пола помещения. Молекулы отскакивают от каждой преграды и выбрасываются в пространство под разными углами. Их траекторию способны изменить даже предметы мебели.

Кроме того, в повседневной жизни ни один звук практически никогда не получается услышать отдельно. Предположим, в ресторане, где кто-то намеревается сказать тост перед большой компанией, собравшейся отпраздновать свадьбу, ударили по бокалу. Вокруг слышны голоса, звон столовых приборов, шелест одежды, шаги официантов, тихая фоновая музыка, шум автомобилей на улице. Все эти источники шума образуют звуковые сферы и луковицы, перекрывающие друг друга. Молекулы, которые оттолкнулись от одного источника звука, в воздухе встречаются с другими движущимися молекулами и сбиваются с курса. Стены, люстры, столы и человеческие тела отклоняют движения. Если на стоп-кадре, сделанном в этом ресторане, мы начнем искать сферу или луковицу, то не найдем ее. Вместо этого, по всей вероятности, обнаружим лишь сплошной хаос диких завихрений перемешанных молекул воздуха.

Для наших ушей все по-другому! В этом хаосе они способны определить, откуда исходит звук и что он означает. Музыка слышится как музыка, звон бокалов – как звон бокалов, голоса – как голоса. Звон бокала доносится от столика в центре, шаги официанта – справа, смех гостя – слева. Благодаря ушам мы распознаем все это, ни на минуту не задумываясь.

В конце концов, всеми акустическими впечатлениями мы обязаны малейшим колебаниям пленочки, которая не больше ногтя на мизинце, – барабанной перепонке. Эта высокочувствительная мембрана может ощущать воздействие даже отдельных молекул воздуха. Без барабанной перепонки мы были бы практически глухими. Итак, пришло время узнать, как, собственно, появилась в ухе драгоценная перепонка.

Водные обитатели выходят на сушу: дыхание через уши

Звуковые волны в воде распространяются так же сферически, как и в воздухе. Однако в жидкой среде они достигают скорости около 1500 метров в секунду, что быстрее более чем в четыре раза. Волосковые клетки в органе боковой линии первобытных рыб не могли их воспринимать. Когда именно у рыб развился слух, можно только догадываться. Знания о существах, живших на нашей планете сотни миллионов лет назад, получают в основном от ископаемых – окаменелостей вымерших животных. К сожалению, внутренние структуры их тел часто не сохраняются. Это касается и частей уха, таких как барабанная перепонка. Тем не менее исследователи могут делать выводы о наших давних предках, обитавших в воде, по животным, которых можно встретить и по сей день. В поисках источника происхождения слуха особенно помогают всем известные кистеперые рыбы. Эти существа считаются живыми ископаемыми, потому что вплоть до прошлого века считалось, что они вымерли около 70 миллионов лет назад. Это возраст наиболее свежих окаменелых находок, самые же древние насчитывают более 400 миллионов лет. На самом деле в водных глубинах скрывались животные длиной до двух метров – первый живой экземпляр был обнаружен в 1938 году у побережья Южной Африки. Даже сегодня мы можем наблюдать там этот древний вид, а также перед одним из индонезийских островов.

Звуковые волны в жидкой среде распространяются в 4 раза быстрее, чем в воздухе.

Кистеперые рыбы имеют не только органы боковой линии, но и небольшие слуховые уплотнения с волосковыми клетками. Они настолько чувствительны, что могут воспринимать быстрые звуковые волны. У кистеперых и современных рыб под водой они прекрасно работают, потому что ткани и телесные жидкости животных имеют плотность, аналогичную жидкой окружающей среде. Таким образом, молекулы воды в своем движении, подобном костяшкам домино, сталкиваются непосредственно с молекулами тела, и звуковые волны продолжают беспрепятственно распространяться внутри самих животных. У кистеперой рыбы кость нижнечелюстного сустава проводит вибрацию к слуховым уплотнениям, заключенным в черепе. Благодаря этому миллионы лет назад ее предки уже могли слышать звуки, издаваемые другими животными, и спасаться от хищников. Слух оказался преимуществом, необходимым для выживания, и передался потомкам.

Ситуация усложнилась, когда первые морские жители вышли на сушу. По сравнению с водой воздух не такой плотный, и его звуковые волны не способны проникать в тело рыбы. Зато воздух дает много кислорода для дыхания. У одного древнего предка сегодняшней кистеперой рыбы появилась способность объединять дыхание со слухом. Целых 370 миллионов лет назад он поднимался на поверхность мелководья в Прибалтике, где регулярно поглощал воздух. Он делал это не так, как мы, через рот или нос, а через так называемое брызгальце. Наверняка вам известно, что киты и дельфины выпускают фонтаны воды через такое отверстие в спине. У древней кистеперой рыбы их было два, по одному за каждым глазом. Но она не выплевывала воду, а, наоборот, стремилась избегать попадания чего-либо в это отверстие – в конце концов, оно было предназначено для вдыхания воздуха. Предположительно, когда животное погружалось в воду, отверстие могло закрываться жаберной крышкой.

Исследователи считают, что более поздними потомками кистеперой рыбы были земноводные, жившие на материке, у которых барабанная перепонка развилась из жаберной крышки. Даже сегодня у нас, людей, в обоих ушах есть область за барабанной перепонкой, соединяющаяся с глоткой. Этот узкий канал называется слуховой, или евстахиевой, трубой. Если бы барабанная перепонка не закрывала слуховой проход, мы могли бы втягивать воздух в легкие через уши. Правда, евстахиева труба настолько узкая, что количества проходящего через нее воздуха, безусловно, не хватало бы для дыхания.

Последняя поездка

Я лежу на боку на неудобном процедурном столе и жду, пока докторша затолкает мне в ухо пропитанный химическим составом ватный тампон. Это должно обезболить мою барабанную перепонку перед тем, как ее проколет шприц с контрастным веществом. Не знаю, чего я больше боюсь: иглы или результата обследования. Хоть Андреас и советовал не думать о болезни Меньера, пока не будет поставлен диагноз, мне пришлось провести на больничной койке долгих два дня. А здесь все равно совсем нечего делать, кроме как думать. И тут есть вездесущий интернет, который не под силу сдержать даже дверям больницы. Я не смог удержаться и вбил название болезни в поисковую строку. Информация, подействовала на меня уничтожающе:

• активная болезнь Меньера снижает качество жизни до одного из самых низких уровней среди всех пациентов, не находящихся на длительном стационарном лечении;

• пациенты с болезнью Меньера причисляют себя к хронически депрессивным;

• во время острого приступа болезнь Меньера дает одну из самых высоких нагрузок по сравнению со всеми заболеваниями, которые когда-либо переживал человек.

Ну прекрасно! Однако меня это не коснется, говорю я себе. Андреас сказал, что эта болезнь встречается только у одного из тысячи. Почему это должен быть именно я? По крайней мере, за последние два дня были и хорошие новости. Глава компании, чью рождественскую вечеринку я сорвал, оказался опытным диджеем-любителем. В тот вечер он заставил подчиненных плясать не под собственную дудку вокруг директорского кресла, а под музыку от моего микшерного пульта. В этой шутке оказалось достаточно правды, и он самостоятельно довел вечеринку до конца. После сотрудники площадки, где проходило мероприятие, разобрали мою музыкальную установку и заперли в складском помещении. Сегодня жена увезет все на фургоне.

Я вздрагиваю, когда что-то мягкое и прохладное касается моего уха.

– Не бойтесь, – говорит врач. – Это всего лишь ватный тампон с анестетиком. Сейчас может быть немного неприятно, но это скоро пройдет.

Едва она успевает засунуть эту штуку в мой слуховой проход, как он начинает адски гореть. Черт побери! Что это за проклятое обезболивание, которое само причиняет боль? Настало время стиснуть зубы! Я пытаюсь отвлечься и думаю о жене. Как она будет сегодня управлять моим фургоном? У нее нет опыта работы с громоздкими транспортными средствами! Обычно я езжу на нем на свои выступления по всей Германии, преодолевая за год более 20 тысяч километров. Но что, если за рулем у меня случится приступ головокружения, как в прошлую пятницу? Еще и, чего доброго, посреди трассы на полной скорости? Немыслимо! Вчера врач-ассистент во время своего короткого визита в палату сказал, что в ближайшие несколько дней мне нельзя садиться за руль. Он не смог назвать конкретный промежуток времени. Быть может, эта докторша знает больше.

– Вы знаете, когда я снова смогу водить автомобиль?

– Точно не могу сказать, – сквозь вату ее голос звучит приглушенно. – Хотя подождите, в прошлом месяце один адвокат читал здесь лекцию о головокружениях и дорожном движении. Текст должен был сохраниться в электронном письме.

Краем глаза я вижу, как она достает смартфон и начинает прокручивать ленту на экране. Со временем жжение в ухе медленно угасает. Очень хорошо. Остается лишь надеяться, что лекарство поможет не только от боли, которую оно вызывает, но и от укола иглы!

– А вот и оно, – говорит докторша. – Итак, если исследование выявит болезнь Меньера, вы не сможете управлять транспортными средствами до двух лет после последнего приступа головокружения[6 - В России такого запрета не предусмотрено.].

Должно быть, я ослышался. Дурацкий ватный тампон.

– Вы сказали, две недели?

– Нет, два года. Отсчет всегда ведется от последнего приступа головокружения. Если в течение двух лет не случится нового приступа, вам разрешат снова водить автомобиль.

У меня начинается головокружение. На этот раз оно никак не связано с моей болезнью. Все дело в мыслях, носящихся в голове. Будучи мобильным диджеем, на выступления я всегда привожу собственную отстроенную музыкальную технику, а после увожу ее в отель или домой. Прочистив пересохшее горло, я интересуюсь:

– А что будет, если у меня случится новый приступ до того, как пройдут два года?

– Тогда все начинается сначала, а это значит, что придется ждать еще два года.

Мысленным взором я вижу свою карьеру лежащей в руинах. Вместе с моим фургоном, только что разбившимся в щепки о подводные камни, простодушно расставленные докторшей с дружелюбным голосом. Она достает вату из моего уха и оттягивает ушную раковину вдоль головы по диагонали вверх. Я знаю, что вслед за этим сразу последует укол шприцем, но больше не боюсь его. Наверняка он покажет, что у меня нет болезни Меньера, ведь этого просто не может быть! Хороший шприц, делай свое дело! Затем раздается треск, становится холодно, и боль совсем не чувствуется.

Путешествие внутрь уха

В ранней юности я посмотрел увлекательный фильм «Фантастическое путешествие». Команду ученых, помещенных в подводную лодку, уменьшили до микроскопических размеров и ввели в организм мужчины, чтобы они удалили тромб. И хоть за сцены и спецэффекты в 1967 году фильму дали Оскара, с точки зрения современного телезрителя они невольно вызывают смех. Как будто фильм снимали внутри лавовой лампы с плавающей повсюду квашеной капустой в качестве злых антител. Но в детстве я не мог оторваться от экрана телевизора: никогда не видел ничего подобного. То, что мое тело так выглядит изнутри, поражало воображение.

Давайте представим, что сидим в такой уменьшенной подводной лодке и находимся на кончике иглы, которую втыкают мне в ухо. На пути к барабанной перепонке и дальше мы сможем лицезреть потрясающие панорамные виды. Путешествие начинается сбоку от головы. Сначала к нам приближается левая ушная раковина.

Ушная раковина

Мы на мгновение зависаем в подводной лодке над холмистым пейзажем телесного цвета, который выглядит словно поверхность чужой планеты. Фактически он напоминает гигантскую раковину, обращенную к нам открытой стороной. В глаза бросается утолщенное обрамление поверхности на горизонте, так называемый завиток. Перед ним, чуть дальше вовнутрь, подобно дюне, поднимается выступ – противозавиток. К югу от нас мы видим большое плато – мочку уха. Под нами лежит ущелье – полость уха. С левой стороны от нее находится воронкообразный провал, вход в который теряется во тьме. Это ушное отверстие. С запада над ним нависает небольшой уступ – козелок.

Пока мы удивляемся странным холмам и долинам вокруг нас, докторша со шприцем в руке говорит: «А теперь, пожалуйста, не двигайтесь». Молекулы воздуха над ландшафтом отталкиваются от ее рта и приходят в движение, возникают звуковые волны. От завитка отскакивает несколько синих шариков, противозавиток отклоняет некоторые из них от траектории, другие следуют за кривизной долин между ними и скачут из стороны в сторону в ущелье под нами, прежде чем исчезнуть в черной воронке.

То, что мы переживаем в настоящий момент, демонстрирует важнейшую функцию ушной раковины: она изменяет звуковые волны в зависимости от того, с какой стороны они попадают на ландшафт. В результате один и тот же звук звучит по-разному, когда раздается спереди, сзади или рядом с нами. По изменениям звука мы способны определять, в какой стороне находится его источник. Даже одним ухом можно очень хорошо различить, раздается шум спереди или сзади, сверху или снизу. Правда, чтобы точнее определять левую и правую стороны, нам нужны два уха, но об этом узнаем позже. А пока шприц приходит в движение, и наше путешествие продолжается. Мы приближаемся к темному провалу, который называется наружным слуховым проходом.

Наружный слуховой проход

Перед нами раскинулась темная пещера. К счастью, у нашей подводной лодки есть прожекторы, и можно осветить сцену событий. При входе в пещеру и сразу за ним стоят полупрозрачные древесные стволы молочного оттенка. По крайней мере, такими они кажутся, потому что нас очень сильно уменьшили: в действительности это тонкие волоски, едва заметные при дневном свете. У наших ранних предков они, очевидно, были гуще и защищали ушной канал от грязи и насекомых. В конце концов, в те времена, по всей вероятности, спали на полу в пещере, а не в кровати с чистыми простынями. Сегодня эти волоски не имеют никакой другой функции помимо увеличения числа продаж у производителей триммеров для волос в носу и ушах.

Звериные уши у людей

Большинство млекопитающих могут поворачивать свои ушные раковины в направлении источника звука. Люди утратили эту способность в ходе эволюции. Тем не менее некоторые из нас все еще могут шевелить ушами. Более того, у нас имеется еще один пережиток, оставшийся от звериных предков: выпуклое образование на внешнем крае ушной раковины.

Примерно у каждого четвертого человека имеется так называемый Дарвинов бугорок, который когда-то венчал остроконечные уши наших предков-животных.

Мы оставляем лес позади и проникаем глубже. Пещера слегка поднимается, и после пересечения ее трети хрящевая наружная область головы встречается с височной костью. Хотя мы не можем понять этого по стенке пещеры, потому что вся она покрыта кожей, но здесь путь снова меняет направление и уводит наискосок влево. Теперь мы находимся внутри черепа. Изгиб слухового прохода – вот причина, по которой врач перед введением шприца оттягивает ушную раковину назад и вверх: только так она сможет увидеть барабанную перепонку напрямую.

На стенках пещеры виднеются желто-коричневые пятна. Мы выдвигаем из подводной лодки манипулятор с захватывающей рукой и при соприкосновении замечаем, что вещество имеет маслянистую, липкую структуру. Перед нами то, что обычно называют ушной серой. Она вырабатывается железами кожи слухового прохода и, в отличие от волосков в ухе, выполняет важную функцию. Благодаря своей клейкой консистенции она улавливает отмершие частички кожи, пыль и прочий мусор, попадающий в слуховой проход. Со временем сера высыхает, а после в небольших количествах высыпается из слухового прохода.

Все происходит именно так, если только кому-то не приходит в голову идея ковыряться в ухе ватной палочкой, проталкивая массу в направлении барабанной перепонки. Это может привести к закупориванию слухового прохода и ухудшению слуха. Так что ватным палочкам нечего делать в ушном канале длиной от двух до трех сантиметров! По этой причине в США ватные палочки теперь имеют предупреждающую этикетку на упаковке.

Помимо очищения у серы есть еще одна важная функция: она убивает бактерии, выполняя таким образом функции санитарной полиции наружного слухового прохода, поэтому наша теплая пещера защищена от инфекций. Мы же приближаемся к ее концу и видим серую стену. Перед нами появляется барабанная перепонка.

Гадание на ушной сере

Гадалки читают по кофейной гуще, ученые – по содержимому ушей: если сера липкая и имеет цвет от желтоватого до темно-коричневого, она, скорее всего, взята у американца, европейца или африканца. Если же перед нами, наоборот, сухой образец светлого цвета, его хозяин, предположительно, из Азии. Женщины с сухой ушной серой производят меньше грудного молока, но зато лучше реагируют на лечение противораковыми препаратами, чем женщины с влажной ушной серой.

Барабанная перепонка

Перед нами серая стена, и в ней отражаются наши прожекторы. Вокруг отражений она выглядит немного прозрачной. В глаза бросается форма, которая изгибается в направлении от нас, напоминая спутниковую антенну. Самая дальняя выступающая точка располагается примерно в центре барабанной перепонки.

Характеристики барабанной перепонки

• Толщина: 0,1 мм

• Вес: 25 мг

• Диаметр: 9–10 мм (соответствует ногтю мизинца)

Докторша снаружи говорит: «Сейчас сделаю прокол». Поток молекул воздуха под разными углами проносится через слуховой проход и наталкивается на серую поверхность перед нами. Она начинает вибрировать. Мы отчетливо видим: это едва заметное движение передает всю слышимую информацию от окружающей среды в мозг. Барабанная перепонка настолько чувствительна, что достаточно уже одного радиуса перемещения диаметра единственной молекулы воздуха, чтобы она начала колебаться. Однако невозможно представить вот что: каким образом одни только мелкие вибрации крошечной прозрачной пленочки формируют в голове предложение «Сейчас сделаю прокол». И это, не считая восприятия фоновых шумов, раздающихся одновременно, например, шума машины скорой помощи под окном, шагов в коридоре и кашля пациента, ожидающего очереди в холле.

Мы хотели бы задержаться здесь и с благоговением наблюдать дальнейшие колебания барабанной перепонки, но уже двигаемся дальше в ее направлении. Как только мы вошли в соприкосновение с серой стенкой, происходит толчок, затем цвет меняется на теплый красно-оранжевый, и мы попадаем в среднее ухо.

Пять наиболее абсурдных заменителей поврежденных барабанных перепонок в истории медицины

• Во время Тридцатилетней войны – кишка свиньи.

• 1848 – влажный ватный шарик.

• 1880 – диск из продезинфицированной губки.

• 1885 – оболочка со скорлупы куриного яйца.

• 1960 – латекс от презерватива на серебряной проволоке.

Сегодня используют либо собственную ткань одной из лицевых мышц, либо хрящ ушной раковины. В настоящее время ведутся эксперименты с плетением из паутины, поскольку этот натуральный продукт обладает антибактериальными свойствами и чрезвычайно прочен.

Среднее ухо

Мы находимся в коротком высоком зале – барабанной полости. Под нами на полу, который поднимается под небольшим наклоном, располагается отверстие евстахиевой трубы. Это тот самый канал, ведущий в полость глотки, через который кистеперые рыбы дышали миллионы лет назад. Стенка напротив выгнута в нашем направлении. На ее нижней стороне находится мембрана, так называемое круглое окно.

Над нами раскинулась впечатляющая система перекрытий: от барабанной перепонки вверх взмывает булавовидная кость. Этот молоточек врезается в точно подогнанное углубление другой кости, наковальни, форма которой напоминает вытянутый зуб. Но здесь работает не кузнец, а молоточек, и наковальня вибрирует под воздействием барабанной перепонки. Через третью кость, названную из-за ее формы стремечком, это колебание передается овальному окну в противоположной стенке. Стремечко знакомо нам еще по кистеперым рыбам: у них это была единственная кость в ухе, передающая вибрации слуховым уплотнениям. При длине всего три миллиметра эта кость самая мелкая во всем человеческом теле.

Три слуховые косточки сохраняют свою форму с помощью трех гибких связок, резонирующих при вибрации. Благодаря взаимодействию между косточками этот механизм представляет собой мощный усилитель звуковых волн. Здесь мы находимся в последней части уха, заполненной воздухом. За противоположной стенкой располагается улитка. Внутри у нее содержатся две жидкости, которые гораздо плотнее воздуха, и поэтому их можно привести в колебательное движение только под воздействием большой силы. Это необходимо, потому что только там волосковые клетки готовы к обработке звуковых волн. Следовательно, слуховые косточки действуют как усиливающее соединение между барабанной перепонкой и овальным окном. Без них в улитку поступал бы лишь 1 % всего звука – остальное бесцельно рассеивалось бы в барабанной полости. Это было бы подобно дуновению над поверхностью озера. Благодаря среднему уху эффект больше похож на работу кувалды, которая бьет по воде, производя соответствующие волны. В связи с этим назвать самую крупную косточку молоточком было вполне уместно! Но как же он и наковальня возникли?

Бодибилдинг для ушей

Две небольшие мышцы при помощи сухожилий соединяются со слуховыми косточками в среднем ухе. Когда мы чихаем или подвергаемся воздействию шума, эти мышцы натягиваются и снижают передачу звука через слуховые косточки в тысячи раз! Это защищает слух от повреждений. Но для этого мышцам требуется сотая доля секунды, поэтому будьте осторожны с резкими хлопками. Поскольку при длительных нагрузках мышцы устают, и их защитный эффект ослабевает, следует периодически давать ушам отдыхать от постоянного шума.

Смешение в среднем ухе: немного от рыб, немного от рептилий

Кистеперая рыба 376 миллионов лет назад уже дышала воздухом, но так и осталась в воде. Ее сородич, тиктаалик, появившийся примерно в то же время, напротив, был уже на шаг впереди – в прямом смысле этого слова. По всей вероятности, эта рыба большую часть времени проводила на мелководье, но могла выползать и на сушу. Там она могла дышать и передвигаться с помощью плавников. Это были первые шаги по твердой поверхности и одни из последних шагов эволюции к самым ранним наземным позвоночным животным – амфибиям. Они жили на суше, но продолжали размножаться в воде. Сегодня к ним относятся лягушки, жабы и другие земноводные.

Слух первых амфибий еще не был приспособлен к жизни на суше. Как уже упоминалось, к умению слышать в воде предъявляются иные требования, нежели к умению слышать на воздухе. На самом деле, по сравнению с нами и другими современными обитателями суши, эти животные были в высшей степени тугоухими. Если в воде звук проходил сквозь их тела, достигая ушей, то на воздухе это больше не работало. На суше они опускали нижние челюсти на землю и улавливали колебания поверхности костями челюстей и черепа. Так они могли чувствовать движения других живых существ или сил природы в окружающей среде.

В дальнейшем развитии амфибии использовали структуры своих предков-рыб. Во-первых, из жаберной крышки брызгальца образовалась барабанная перепонка. Во-вторых, соединительная кость между челюстью и черепом была преобразована в проводник звуков. Позже из нее развилось стремечко в среднем ухе млекопитающих и людей. С его помощью низкие звуки удавалось расслышать лучше, чем при прикладывании нижней челюсти к земле.

Слух на суше и в воде совсем разный, и для каждого необходимы свои умения.

Но прежде чем молоточек и наковальня вступили в игру и усилили высокие звуки в воздухе, должно было пройти еще какое-то время. Сначала, 312 миллионов лет назад, на сцену вышел новый вид – рептилии. В отличие от амфибий, они производили свое потомство на суше и дышали исключительно легкими. Поначалу они тоже использовали челюстные кости, чтобы улавливать звуковые волны через землю. Их нижняя челюсть состояла из нескольких сросшихся костных элементов. Часть, где росли зубы, за миллионы лет становилась все больше, в то время как остальные части утрачивали свои функции. Они становились меньше и задвигались дальше в череп, где наконец превратились в слуховые косточки. Соединение с уже существующим стремечком усиливало колебание барабанной перепонки при передаче во внутреннее ухо. Таким образом получалось слышать и высокие звуки, а также определять их источник. Теперь можно было распознавать как приближающихся хищников, так и добычу. Для этого приходилось отличать все окружающие шумы друг от друга. Незначительные звуки, такие как шум ветра, нужно было отделять от важных – например, шагов другого животного. Чем более дифференцированной была слуховая способность животного, тем выше были его шансы на выживание. В этом смысле акустический анализ окружающей среды был, скорее всего, самым важным движущим фактором эволюции слуха. Улучшение слуховой способности также означало, что мозгу приходилось очень быстро обрабатывать все большее количество информации. Этому суждено было проявиться позже, главным образом, у нового вида, к которому мы также относимся, – у млекопитающих.