banner banner banner
Сотворение Земли. Как живые организмы создали наш мир
Сотворение Земли. Как живые организмы создали наш мир
Оценить:
Рейтинг: 0

Полная версия:

Сотворение Земли. Как живые организмы создали наш мир

скачать книгу бесплатно


С/

С) в исследуемом образце от такового в стандарте, выраженное в количестве частиц на тысячу – промилле (‰). Этот показатель рассчитывается по формуле:

?

С = [(

С/

С)

 – (

С/

С)

/(

С/

С)

] ? 10

.

По той же формуле определяются отклонения изотопной подписи (?) других элементов, о которых речь пойдет ниже (

О/

О,

Si/

Si,

S/

S,

B/

B,

N/

N,

Li/

Li). Разными для каждой пары являются только стандартные образцы.

В отличие от радиоактивного изотопа (

С) доля стабильных изотопов углерода в современном мире постоянна (

С/

С = 98,89/1,11). Поэтому любые отклонения от стандартной пропорции определимы и значимы, а в случае углерода практически всегда опосредованы деятельностью живых существ.

Метанобразующие археи вполне могли поддержать концентрацию метана в атмосфере, достаточную для создания парникового эффекта, – на уровне 0,1 % (ныне < 0,0002 %) или его смесь с СО

. Поскольку в отсутствие главного окислителя – кислорода – продолжительность существования молекул метана могла быть на три порядка больше, чем нынешний 10-летний срок, по достижении соотношения СН

/СО

, близкого к 1, молекулы метана полимеризовались до этана (С

Н

). И легкая дымка превратилась в туман, в котором содержание метана могло в 600 раз превышать современный уровень. (Похожая по составу атмосфера с метановыми облаками и дождями существует на Титане, спутнике Сатурна.) При определенной размерности частиц и наличии в нем паров воды туман мог оставаться проницаемым и не препятствовал нагреву поверхности Земли. Под защитой метано-этанового тумана могла повыситься и концентрация NН

, OСS и серных соединений, включая аэрозоли полиатомной серы (S

).

Глава 5

Архей и археи

Сиренево-оранжевый туман не просто уберег Землю от переохлаждения, но, возможно, сделал планету даже более жаркой, чем ныне. Соотношение стабильных изотопов кислорода (

О/

О) и кремния (

Si/

Si) в архейском (3,5–2,5 млрд лет) осадочном кремнеземе, удержавшем первичный изотопный сигнал, указывает на температуру океанических вод в пределах 50–60 °C. Близкое соотношение этих изотопов выявлено и в естественных пробах архейской воды – капельках, заключенных в кристаллах галита (каменной соли), а также в керогенах (только для

О/

О). Если повышенные значения изотопных подписей кислорода и кремния в кремнеземе еще можно объяснить осаждением этого минерала вблизи гидротерм или в теплых изолированных водоемах, то кероген формировался в нормально-морских условиях.

Да и первично осадочный кремнезем можно отличить от других его разностей по определенным минералогическим и геохимическим критериям. В архейском океане молекулы ортокремневой кислоты (Н

SiО

) полимеризовались в водной толще, образуя коллоидные наносферы, которые в условиях высокой солености слипались друг с другом и оседали на дно, где некоторое время продолжали расти. Поэтому слои кремнезема нацело сложены сферическими гранулами (?0,2 мм). (Протерозойский кремнезем, образование которого связано с полосчатыми железными формациями, имеет иную структуру, а все фанерозойские кремневые отложения состоят из скелетов разных организмов.)

Редкость волновых знаков (ряби) на поверхности относительно глубоководных турбидитов – отложений морских мутьевых потоков (от англ. turbid – взвешенный, мутный) возрастом 2,7 млрд лет – предполагает низкую вязкость морской воды, также обусловленную повышенной температурой. Особенности архейских эвапоритов уже отмечались.

Если же обратиться к молекулярным корням древа жизни, то самыми древними организмами оказываются термофильные археи – прокариоты, обитающие в горячих источниках, обычно с повышенной кислотностью. (Кстати, «архей» и «археи» – слова однокоренные, подчеркивающие древность понятий, ими определяемых.) Близкие к ним метанобразующие археи также предпочитают жить при 40–85 °C, причем с повышением температуры объемы произведенного ими метана растут. Более того, реконструированные предковые белки группы факторов элонгации (удлинения), отвечающие за последовательное присоединение аминокислот к синтезируемому на органелле-рибосоме белку (иначе говоря, за удлинение белковой молекулы), являются устойчивыми к высоким температурам (45–80 °C и даже выше 80 °C). Поскольку и бактерии, и археи не обходятся без таких компонентов, то, скорее всего, унаследовали их от общего раннеархейского предка, и этот предок имел термостойкий белок-удлинитель.

Так что жизнь не только могла зародиться в «теплом прудике», как предполагал Чарлз Дарвин в письме к своему другу, английскому ботанику Джозефу Гукеру, но и долгое время существовать в тепличной обстановке. В теплой среде и темпы эволюции, вероятно, были выше. Поэтому уже в архейском эоне существовали всевозможные группы бактерий и архей, освоивших разные обстановки и образовавшие сложные сообщества. Обычно мы их не видим, а если видим, то отличить одни округлые микроскопические тельца от других (большинство прокариот имеет именно такую, коккоидную, форму) даже на современном материале без специальных анализов невозможно, но их присутствие чувствуется. В первую очередь благодаря изотопной подписи, оставленной фототрофами, буквально – «питающимися светом» (от греч. ??? – свет и ????? – пища).

Фототрофы фракционируют стабильные изотопы углерода – отбирают изотоп с меньшей массой и более высокой колебательной энергией (реакция с ним требует меньших энергетических затрат). Поэтому в ходе фотосинтеза органическое вещество обогащается легким изотопом (

С), а среда – обедняется, что и фиксируется в конечном счете в осадочных горных породах в виде изотопной подписи.

Необычная изотопная углеродная подпись вроде бы уже стоит на отложениях возрастом 3,8 млрд лет на западе Гренландии. Выражается она в заметной изотопной разнице между графитом, заключенным в кристаллах апатита (от –13‰ до –49‰), и углеродом в составе самого минерала (–2,3‰). При дальнейшем изучении этого апатита выяснилось, что графит образует не внутрикристаллические включения, а, наоборот, оторочку вокруг первичных кристаллов и, значит, сформировался позже, чем апатит. А вот насколько позже, сказать сложно. В целом, чтобы установить биогенную природу подобных и даже морфологически более сложных включений, требуется доказать: 1) осадочную природу самих отложений; 2) первичность включений, которые должны быть достаточно обильны; 3) их тесную генетическую связь с первичными минералами в породе; 4) сходство степени изменения включений с таковой первичных минералов; 5) невозможность объяснить изотопную подпись углерода абиогенными процессами; 6) приложить усилия к поиску следов других биогенных элементов – О, N, S, P и 7) молекулярных органических остатков – биомаркеров. Казалось бы, все это невозможно, но ведь получается!

Вряд ли фракционированием изотопов на заре жизни занимались оксигенные фототрофы, такие как цианобактерии: в архейских водах, учитывая высокое содержание растворенного железа и кремния, не могло находиться достаточно фосфора для поддержания жизни этих микробов. А вот аноксигенные фотоферротрофы в таких условиях процветать могли. Таким бактериям тоже нужна энергия света для синтеза органических соединений, но в качестве донора электрона, необходимого для протекания окислительно-восстановительных реакций, они используют закисное железо (Fe

), а не воду, поэтому побочными продуктами их деятельности является Fe

(и различные минералы железа), а не кислород. Другие хемотрофы примерно тогда же получили доступ и к энергии недр, особенно на срединно-океанических хребтах, где позднее сложились необычные глубоководные сообщества черных курильщиков. Признаки их жизнедеятельности заметны по изотопной подписи другого элемента – серы (

S/

S, или ?

S).

Сохранилось ли что-нибудь от архейских организмов, кроме почти невидимых дырок в древних базальтах и изотопных подписей? Конечно, и немало. О метанобразующих археях и метанокисляющих бактериях из Пилбары уже говорилось. Там же, в Пилбаре (формация Стрелли-Пул) и в поясе Барбертон (соответственно, 3,43 и 3,2 млрд лет), найдены коккоидные тельца с органической оболочкой, состоящей из разных углеводородных молекул и азота, и связанные с ними кристаллы пирита, сохранившие изотопную подпись серы, характерную для серных бактерий.

На первый взгляд, учитывая обилие сульфидов – минералов серы, осаждение которых редко обходится без участия серных бактерий, – в этом нет ничего удивительного, но особая изотопная подпись видна не всегда, а остатки тех, кто «расписался», практически не сохраняются. Предполагается, что серные бактерии, подобные пурпурным и зеленым, были главными архейскими фототрофами и продуцентами (от лат. pro-duco – производить, создавать) органического вещества. Используя сероводород и сульфиды, они освобождали необходимые для фотосинтеза электроны и окисляли исходные молекулы до серы (S

) и в незначительной степени до сульфата (SO

). Последние взаимодействовали с катионами железа и никеля, недостатка которых в архейском эоне не было, с образованием соответствующих сульфидов (например, пирита). Причем объемы серных соединений уравновешивали объемы органического вещества.

Особенно интересно, что часть бактериального сообщества Стрелли-Пул населяла приливно-отливную зону несмотря на смертельный уровень ультрафиолета: микробы закрепились когда-то под кварцевыми зернами, которые лежали на литорали, среди черного пиритового песка. Они выживали под прозрачным кварцем, подобно тому как в пустыне Намиб сейчас выживают почвенные колониальные цианобактерии носток (Nostoс flagelliforme). Кварц – это и экран, предохраняющий от коротковолнового излучения, и прозрачное окно, пропускающее достаточно света для фотосинтеза, и аккумулятор влаги: вода конденсируется на нижней поверхности камешка из-за суточного перепада температур. Более того, возвращаясь к архейским бактериям, в приливно-отливной зоне благодаря естественной, пусть и слабой аэрации воды им был доступен кислород, полностью отсутствовавший даже на небольшой глубине. (Пока не появился озоновый щит, кислород в небольших количествах образовывался за счет фотолиза воды.) Вероятно, в такой обстановке могли возникнуть и более сложные организмы. Во всяком случае, в той же формации Стрелли-Пул, в ее морских мелководных отложениях выявлены цепочковидные колонии из чечевицеподобных клеток (20–100 мкм в диаметре) с оторочкой и мелкими сферическими тельцами внутри. Эти «чечевичины» не похожи на каких-либо современных прокариот, но не имеют сложно устроенной оболочки, которая выдавала бы в них эукариот (организмов с клеточными органеллами, включая ядро – от греч. ?? – совершенно и ?????? – орех, ядро).

Хотя самые древние микроскопические ископаемые остатки на сегодня выявлены в формации Стрелли-Пул, следы архейской и протерозойской бактериальной жизнедеятельности видны во всем. Даже перекатывавшиеся по морскому дну песчинки обрастали бактериальными пленками, продолжавшими осаждение карбоната, и превращались в причудливые слоистые шарики – ооиды, иногда достигавшие в диаметре нескольких сантиметров (рис. 5.1). В целом же подавляющая масса архейских и протерозойских карбонатов, значительно нарастивших площадь континентов, обязана своим происхождением бактериальным сообществам. Без них это было просто физически (и химически) невозможно: при повышенном уровне углекислого газа возрастает и кислотность среды, что усиливает растворимость карбонатов, особенно кальцита и арагонита. Воспрепятствовать растворению карбонатных минералов способны микробы, преобразуя среду из кислой в щелочную хотя бы в придонном слое.

Поскольку в архейском и протерозойском мире еще не было животных, а до рубежа 850–800 млн лет – и простейших, способных питаться биоматами и пленками, они покрывали все свободное пространство, где содержалась хоть какая-то влага (рис. 5.2).


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 11 форматов)