banner banner banner
Применение квантового туннельного эффекта код
Применение квантового туннельного эффекта код
Оценить:
Рейтинг: 0

Полная версия:

Применение квантового туннельного эффекта код

скачать книгу бесплатно


Далее на поверхность кристалла эмиттера, покрытого пленкой плазмы, то есть на поверхности твердого тела есть распределенный отрицательный заряд, поступает жидкость, распределяемая по ней центробежными и молекулярными силами в виде тонкой пленки.

Необходимая для эффективного, то есть энергетически выгодного процесса лизиса расчетная толщина пленки жидкости определяется, первое, исходя из физическо-химических свойств полупроводника. Максимального объема плазмы, генерируемого кристаллом минимально возможных размеров, определенный объем, заряд в кулонах, способен катализировать определенное количество находящейся в пленке жидкости. Что, в свою очередь, определяется квантовой физико-химической структурой кристалла полупроводника и такой толщиной слоя воды, что жидкость реагирует полностью с объемом выделяющейся плазмы так, что химические связи воды ослабевают настолько, что вероятно, что процесс в целом экзотермичен, то есть толщина пленки определяется экспериментально.

Источник внешнего электромагнитного поля, антенна излучения, воздействует на пленку воды заданной толщины, и в процессе взаимодействия поля с ослабленными плазмой внутримолекулярными и водородными связями химические связи молекул в пленке разрываются, вода разлагается на составляющие – водород и воду. Вырожденная плазма, электронный газ, распределенный по поверхности экрана-эмиттера, есть катализатор, в процессах на уровне химических реакций не расходуется, и исходя из этого подпитка необходима для возмещения уноса плазмы газами.

Далее, для исключения из процесса энергетических потерь частота подпитки по расположению максимумов противоположна частоте подачи внешнего переменного импульса от СВЧ-источника, и подпитка в общей цепи взаимосвязанных событий в устройстве в пространстве-времени есть первый акт. Делаем следующий вывод: восстановителем связей воды в данном энергетическом устройстве является полупроводник, в кристалле арсенида галлия есть энергетические уровни, с которых электроны способны туннелировать с выходом на поверхность, процесс туннельной эмиссии и образования плазмы на поверхности эмиттера.

Процесс возможно стимулировать внешним электромагнитным полем, уменьшая ширину энергетического барьера, подпитку расхода электронов осуществляем, подведя к полупроводнику с внешней стороны, подсоединив к контактам электрическую цепь, находящуюся под переменным электрическим током, противоположным по частотным характеристикам полю антенны излучения максимально для уменьшения нецелевого расхода энергии. Так как арсенид галлия в процессе не расходуется, определяем, что процесс каталитический, плазмохимический каталитический процесс туннельной эмиссией электронов полупроводника на поверхность и далее в тонкую пленку жидкости.

В энергетический баланс устройства включены следующие параметры: для расчета необходимо знать энтальпию реакции лизиса воды, для того чтобы рассчитать количество энергии, затрачиваемой на работу антенны излучения СВЧ, электромагнитного поля, расходуемой на процесс разложения единицы массы воды в пленке на поверхности в единицу времени, далее необходимо рассчитать энергетический выход от камеры сгорания, количество энергии, выделяющейся в процессе горения газовой смеси, состоящей из водорода и кислорода, в расчете учитывается энтальпия химической реакции горения водорода в кислороде.

В расчете массового баланса жидкости скользящей пленки по поверхности воды необходимо учесть зависимости толщины пленки жидкости от скорости и объема подачи воды на эмиттер и скорости вращения вала привода, сцепленного механически с приемной антенной СВЧ поля, далее учитываются вязкость воды и смачиваемость поверхности экрана приемной антенны. Учитывая данные параметры, мы имеем заданную толщину термолизуемой пленки и метод управления жидкостью применяем, управляющие (см. выше) параметры, независимо от положения в пространстве работу устройства.

Далее, рассчитаем зависимость параметров выходящего электромагнитного поля от количества подаваемой на антенну излучения электрической энергии и находим зависимость потенциала электрического поля равномерно распределенной по поверхности эмиттера плазмы, измеряемой в кулонах, от напряженности поля антенны излучения на поверхности антенны приема и расстояния от антенны излучения до поверхности туннельного эмиттера.

Поставим эксперимент: найдем зависимость температуры лизиса воды электромагнитным полем от потенциала холодной электронной плазмы на поверхности эмиттера и управляемой толщины пленки жидкости. Вычислив, исходя из полученных данных, количество энергии, подаваемой на приемную антенну от антенны излучения, снижающее температуру лизиса, и вероятностный результат, что данная величина меньше выхода энергии от реакции окисления в камере сгорания.

Убедившись в данном, мы сможем утверждать, что применение квантовой структуры энергетических уровней кристалла полупроводников, в том числе арсенида галлия, соответственно процесса туннельной эмиссии электронного газа на твердую поверхность и взаимодействия электронов холодной плазмы с тонкой пленкой, скользящей по поверхности эмиттера, то есть катализ холодной плазмой лизиса жидкости в пленке дает нам экзотермический выход от процесса термолизиса воды с последующим горением компонентов. То есть применение (см. выше) физических свойств квантового уровня материальных объектов и взаимодействие данных свойств с химическим уровнем материи позволяет наряду с физическими свойствами ядер атомов, реакции термоядерного синтеза, дает нам метод применения низкомолекулярных неорганических соединений, воды, в качестве источника энергии, топлива.

Данная величина, а именно рассмотренная энергетическая трата, в расчете есть в сумме с необходимой затратой электрической энергии на подпитку баланса электронного газа в системе, так как плазма диффундирует и далее уносится газами, не возобновляется необходимо доставить электроны (лептоны) в систему, применяя контакт находящегося под током проводника с полупроводником эмиттера, количество затрачиваемой энергии на подпитку плазмы находится экспериментально.

Далее, необходимо учитывать радиоотражающие свойства слоя полупроводника и массива антенны приема электромагнитного поля, численные значения данных характеристик. Экспериментально определяется толщина полупроводникового покрытия приемной антенны эмиттера (примеры формирования полупроводниковых пленок заданной толщины см. лит. 16).

Глава пятая

Выбор конструкционных материалов и геометрической формы частей аппарата и энергетического устройства в целом

Выбор материала антенны приема электромагнитного поля обусловлен потерями электронов в процессе перехода, в том числе и туннельного, квантовых частиц из массива полупроводника в проводник. Исходя из этого, наносить полупроводниковое покрытие на проводник энергетически невыгодно, и вероятно, что потери энергии превысят эффект применения туннельной эмиссии электронов, поэтому применяем материал, способный отражать электромагнитное поле. Причем сопротивление массива материала, контактирующего со слоем полупроводника, должно настолько превышать сопротивление проводника, что величина потерь минимальна и эффект туннельной эмиссии энергетически выгоден.

Данный материал – диэлектрик. То есть антенна приема электромагнитного поля, массив диэлектрика, форма массива – параболоид вращения, обусловлена методом управления массообмена воды и толщиной пленки, вращением вокруг оси симметрии поверхности вогнутого тела параболоида, далее, применяя данную форму, равномерно распределяем поток лучистой энергии по поверхности полупроводникового покрытия.

Геометрическая форма космического технического объекта в целом c точки зрения энергетической и химической технологии – плоская башня, c других точек зрения – эллипсоид, диск, обусловлена применением в данной конструкции центробежных сил. Плоская башня состоит из двух эллиптических днищ, в которых в верхней, более суженной, части есть отверстие правильной формы, геометрически – окружность с центром симметрии, расположенным на оси симметрии днища, к эллиптическому днищу либо приварена, либо закреплена на крепежных деталях полусфера, камера синтеза топливного газа. Далее выше относительно одного из днищ располагается цилиндрическая часть башни, обечайка, соединенная крепежными деталями либо приваренная.

В двух полусферах расположены камеры синтеза газа, далее в эллиптических днищах, секторах эллипсоида – камеры сгорания, в цилиндрической части – источник электромагнитного поля и генератор электрической энергии с лопастной турбиной. Давление расширяющегося газа принимают лопатки турбины, в подвеске турбины применены СП, исходя из этого потери на трение минимальны, выхлоп энергетического устройства – водяной пар, применяется далее в экосистеме космического корабля либо научно-исследовательского поселения.

Конструкционный материал полусферических камер синтеза, эллиптических днищ, обечайки, корпуса аппарата в целом должен обладать следующими свойствами. Первое и наиболее важное, так как данное устройство относится к аппаратам водородной энергетики (космической водородной энергетики) и в камерах синтеза, в камере сгорания у нас есть газ, водород в достаточно высокой концентрации, конструкционный материал должен быть устойчив к действию водородной коррозии.

Водородная коррозия – частный случай газовой коррозии, она обусловлена активной диффузией газа в толщу металла, изменяющей свойства конструкционного материала и приводящей к его разрушению, а также малым размером атомов газа.

Конструкционным материалом, подходящим по устойчивости к водородной коррозии, сохраняющим необходимые механические, то есть прочностные свойства в заданные параметрами синтеза водорода и его горения, должна быть легированная сталь. Распространенные в технике и технологии сплавы цветных металлов, к примеру дюралюминий, исключаются, так как не вписываются в температурные параметры горения водорода. Исключение – полусферическая камера синтеза, вероятно, так как для утверждения данного требуется постановка опыта, температура в камере синтеза по сравнению с камерой сгорания ниже, соответственно, применив дюралюминий либо другой сплав, мы снизим массу устройства.

Глава шестая

Биохимический катализ

Наиболее распространены на планетарном уровне относительно синтетических, активны и достаточно эффективны катализаторы лизиса эндотермичных к атмосферному кислороду неорганических соединений, участвующие в процессе биогеоценоза, биосферные катализаторы. Масса биосферы относительно техносферы выше на несколько порядков, биохимически активные формы, живые молекулы данных соединений существуют в биосфере миллиарды лет, соответственно, энергетический вклад, то есть количество выработанной биосферой энергии с участием данных молекулярных форм, намного выше общего количества энергии, выработанной всей энергосистемой человечества за всю ее историю.

Таким образом, метод выработки энергии из эндотермичных к атмосферному кислороду низкомолекулярных неорганических соединений эффективен и работает в биосфере в течение миллиардов лет. Соответственно, одним из вариантов решения энергетического кризиса, обусловленного использованием в качестве топлива высокомолекулярных органических соединений, содержащихся в нефти, газе и каменном угле – невозобновляемых источниках энергии, является использование данных катализаторов и более каталитически активных форм, созданных на основе природных катализаторов в техносфере, то есть в устройствах и установках выработки энергии, в контексте данной работы устройств первого порядка в концепции субстратционной границы техносферы.

Рассмотрим данный катализатор. Это часть природного фермента хлорофилла, содержащегося в организмах растений, от древнейших сине-зеленых водорослей до высших растений, то есть физико-химическая и биохимическая система, содержащая в своем составе магний, металлопорфирин. В процессе каталитического разложения воды с участием данного химического соединения энергии, по сравнению с процессами прямого разложения, затрачивается существенно меньше, и потому применение данного процесса в устройствах первого порядка, то есть формирование каталитического покрытия, содержащего металлопорфирин, эффективно и выход энергии от данных устройств положительный.

Синтетические катализаторы лизиса воды

Кроме имеющихся в биосфере катализаторов разложения воды на водород и кислород, существуют синтетические соединения, и применение данных физико-химических систем в ЭУ эффективно. Рассмотрим данные химические соединения. Их применение в качестве прямого катализатора разложения воды на водород и кислород неэффективно, так как с водой данные химические соединения не взаимодействуют, но они настолько хорошо растворяют кислород, то есть молекулы кислорода образуют неустойчивые связи каталитического характера, что возможно применение соединения в качестве вторичного катализатора рабочего тела.

Подробнее в основных частях данной работы мы рассматривали процесс взаимодействия тонкой водяной пленки с холодной плазмой, вырабатываемой воздействием на экран-эмиттер электромагнитного поля. Ведущим процессом в данной установке является процесс туннельной эмиссии электронного газа на твердую поверхность полупроводника арсенида-галлия.

В данном процессе молекулы воды так взаимодействуют с туннелирующим на поверхность электронным газом, что химические связи ослабевают, плазма, рассматривая дипольную структуру молекулы воды, взаимодействует с водородом.

Поэтому применяем эмульсию на основе перфторана и воды, и, подавая через штуцер данную смесь на экран-эмиттер, мы имеем следующее. Молекулы воды находятся под воздействием трех сил, водород взаимодействует с плазмой, процесс восстановления, кислород образует слабые связи каталитического характера с перфтораном. Соответственно, в ЭУ мы применяем. H

O + перфторан = ракетное топливо.

Глава седьмая

Катализаторы, применяемые в ЭУ

Рассмотрим применяемые в процессах данных энергетических устройств катализаторы, механизм катализа, каталитическую активность, метод синтеза катализатора и нанесения на поверхность.

Данные катализаторы – катализаторы на основе биополупроводников металлопорфиринов, хлорофилла. В данных соединениях мы заменили полупроводниковую часть на синтетический полупроводник арсенид галлия. Катализатор металлопорфиринарсенидгаллия более термически устойчивый, чем хлорофилл. Методы нанесения на поверхность, закрепления и синтеза соединены в одном методе магнитосшития материала. В данной методике применяем электромагниты-соленоиды, установленные на расчетном расстоянии от экрана магнитосшития материала. Предварительно тонкие порошки металлопорфирина и арсенида галлия наносим на экран. Катализаторы – адсорбенты, они адсорбируют молекулы рассматриваемых соединений, соответственно, образуют ослабляющую внутримолекулярные связи каталитическую связь.

Мы применяем следующие катализаторы-адсорбенты: металлы, палладий, амальгаму металла адсорбера водорода, амальгаму палладия, пленкообразующую жидкость, катализатор, амальгамы металлов-адсорберов (адсорберов водорода), катализаторы – адсорбенты кислорода, перфтораны.

Газообразные катализаторы, применяем вырожденную плазму, лептонный газ, метод синтеза катализатора, применяем квантовый эффект, процесс туннельной эмиссии электронов на поверхность туннельного полупроводникового материала, применяемые нами эмиттеры – карбиды металлов, арсенид галлия. Механизм каталитической активности лептонных газов следующий: эмитирующие на поверхность полупроводника лептоны взаимодействуют с молекулами катализируемого соединения (пример – взаимодействие с полярными молекулами воды), далее осуществляется каталитический процесс лептонного ослабления внутримолекулярной связи полярных молекул воды.

Рассмотрим следующий квантовый катализатор: находящиеся в материале СП (ВТСП) электроны образуют квантовую, бозоновскую жидкость, часть неспаренных электронов контактна, соответственно, наблюдается процесс короткоимпульсного преодоления магнитного барьера. Магнитный барьер обуславливает процесс вытеснения магнитного поля на поверхность СП. Чем короче импульс на СП электрического тока, тем выше вероятность преодоления магнитного барьера, взаимодействия неспаренных электронов с внешними соединениями, контактного образования бозоновской жидкости. Далее в процессе охлаждения СП, аккумулирующего электроны, электроны внешних, контактирующих с поверхностью СП соединений сорбируются и отбираются в бозоновскую жидкость.

Мы применяем следующий процесс: когерентное поле квантового источника ЭМ поля (квантового генератора) упорядочивает структуру магнитного материала, процесс намагничивания когерентным полем внешнего источника охлаждает материал до СП.

Рассмотрим подробнее механизм катализа металлопорфиринарсенидгаллием и основу данного катализа – механизм фотокаталитического лизиса воды на магниевом металлопорфирине биополупроводника хлорофилла.

Механизм фотокатализа хлорофиллом: биополупроводник хлорофилл в процессе воздействия на субстрат внешнего источника энергии, электромагнитного поля, солярного электромагнитного поля генерирует разность потенциалов на магниевом металлопорфирине, входящем в состав биомолекул. Металлопорфирин хлорофилла подключен к биополупроводниковой части биомолекулы, так что на данном элементе биокатализатор, есть возобновляемая реакция лизиса воды. В соответствии с данным механизмом мы заменили биополупроводниковую часть хлорофилла, синтезировали катализатор металлопорфиринарсенидгаллия, полупроводниковая часть катализатора металлопорфиринарсенидгаллия подключена к металлопорфирину, функционирует от внешнего источника тока либо внешнего источника электромагнитного поля, соответственно, на металлопорфирине есть возобновляемая реакция лизиса жидкости.

Глава восьмая

Катализ лизиса воды магнитным полем

Нам известно, что в состав низкомолекулярного неорганического соединения воды входит водород, способный образовывать связи нековалентного характера. Ядро данного соединения, протон, способно к определенному эффекту поля (ЯМР), то есть в переменном магнитном поле ядро реагирует с магнитным полем частоты, равным процессу, образующему магнитный момент протона, и далее происходит расщепление энергетических уровней ядра, так что характер нековалентных связей, водородных связей меняется и, соответственно, энергия данных связей ослабевает. Исходя из этого делаем вывод, что переменное магнитное поле способно быть катализатором лизиса воды. Применяем следующую техническую схему процесса.

Облучаем от внешнего источника СВЧ электромагнитного поля (механизм С. проводимости см. лит. 7). Антенны излучения – экран-параболоид, состоящий из тонкого листа СП материала. В СП материале образуются токи наведения, так как бозоновская жидкость, состоящая из квантовосвязанных электронов, вытесняет магнитное поле к поверхности СП. На ней образуется тонкий «слой» переменного магнитного поля (динамический магнитный слой), ЯМР-катализатор процесса лизиса.

Переменное магнитное поле взаимодействует с молекулами воды, находящимися в тонкой пленке на поверхности вращаемого экрана, далее происходит сочетание полей СП и протонов, изменяется характер водородных связей, они ослабевают, и, соответственно, энергии на лизис воды последующим разрядом электромагнитного поля от СВЧ антенны затрачивается меньше, то есть возможен процесс с положительным выходом энергии от энергоустройства.

Каталитические свойства СП, применение эффекта Джозефсона в СП, в устройствах генерации энергии, ЯМР—Джозефсон процесс

В установке ЭУ мы используем эффект Джозефсона (механизм эффекта см. лит. 13), и для данного процесса генерации энергии применяем следующую схему. Два СП переложены диэлектриком, частота тока в СП соответствует ЯМР протона, к СП приложена разность потенциалов, через диэлектрик производим прокачку водорода, далее есть захват электрона водорода туннелирующей частицей и низкотратная ионизация водорода в протон.

Применяя в схеме формулу, лед-диэлектрик +2 СП = низкотратное разложение воды при низких температурах. Схема эффективна в космическом пространстве, учитывая низкую температуру вакуума.

Глава девятая

Математический аппарат энергетического устройства

1. Формулы, описывающие процессы пленкообразования на вращаемом экране эмиттере-параболоиде, гидравлические процессы подачи жидкости, необходимые для управления толщиной пленки воды.

Для эффективного осуществления процесса управления толщиной пленки жидкости нам необходимо определить связь между толщиной пленки, количеством воды, выходящей через подающий жидкость на экран-эмиттер штуцер, и скоростью вращения экрана геометрической формы.

1) Формула расчета расхода жидкости через штуцер следующая:

G = q * g * ?*d0? / 4*?* ?2g*h+W1? * R1?

либо

G = q * g * ? * d0? / 4 * ? * W1 * ?R1? – R2?,

где ? = 3,14.

Далее,

G – массовый расход жидкости через отверстие,

q – плотность жидкости,

d0 – диаметр отверстия истечения,

h – напор,

W1 – угловая скорость вращения оболочки,

? – коэффициент расхода,

R1 – внутренний радиус тонкостенной оболочки,

Rп – внутренний радиус свободной поверхности жидкости.

2) Уравнения «статики» жидкости в сосуде определенной формы

Согласно физической теории относительности поле, создаваемое вращением физического тела, и гравитационное поле, создаваемое статической массой, эквиваленты. Рассмотрим экран-эмиттер, сосуд с жидкостью относительно процесса образования первого поля, то есть предположим, что на жидкость действует потенциал поля, равномерно распределенный по поверхности сосуда, и исходя из этого жидкость принимает форму экрана и сосуд жидкость держит, то есть вода не выливается.

Затем найдем зависимость высоты слоя, равной в разных точках измерения данного параметра, так как потенциал, эквивалентный гравитационному полю, в данных точках один, то есть найдем зависимость высоты контактного слоя от объема поступившей жидкости.

2.1) Формула высоты контактного слоя жидкости,

решение исходя из уравнения

P = U? * qж / 2 * (R-r),

где

Р – давление жидкости на стенку вращаемого сферического сосуда либо сектора сферы,

U – угловая скорость вращения сосуда, экрана-эмиттера,

R – радиус пограничной поверхности,

r – радиус сферы, то есть внутренней поверхности сферического сосуда, либо максимальный внутренний радиус вращаемого сосуда – шарового (примем, что экран-эмиттер – полусфера) слоя

то искомое уравнение следующее:

2.2) Н = 2P / U? * qж

либо

H = 2P / 2 * ? / 60 / n*qж,

где

Н – искомая высота контактного слоя жидкости,

qж – плотность жидкости,

n – число оборотов в минуту вала движителя устройства.

2.3) Уравнение «статического» объема жидкости, находящегося в сосуде сферической формы либо открытого сосуда-шарового слоя

Допустим, у сосуда-шарового слоя есть цилиндрическая отбортовка высотой выше, чем возможная высота слоя налитой в него жидкости, то есть жидкость не заполняет шаровой слой полностью, как в варианте распределения жидкости гравитационным полем стационарного объекта. Мы рассчитываем объем исходя из того, что жидкость принимает форму сосуда под воздействием поля, эквивалентного гравитационному, по формуле:

V = S * H – объем контактной жидкости,

где

S = 2? * Rп * Hп – площадь шарового пояса,

H – высота контактного слоя жидкости,

Rп – радиус сферы, вписывающийся в сегментную поверхность,

Нп – высота шарового пояса.

Примем вариант, что количество поступившей на поверхность экрана-эмиттера жидкости не более, чем необходимо для процесса пленкообразования, и нет протечки, поэтому жидкость поступает в сосуд полностью, то есть принимаем, что

G = V

G = 2? * Rп * Hп * H

либо

2.4) G = 2? * Rп * Hп * 2P / 2 * ? / 60 / n * qж – уравнение управления системой.