banner banner banner
Размышления об информации, или Информация к размышлению
Размышления об информации, или Информация к размышлению
Оценить:
Рейтинг: 0

Полная версия:

Размышления об информации, или Информация к размышлению

скачать книгу бесплатно


Переход на каждый следующий иерархический уровень происходит в результате символьного отображения подмножеств слов и текстов предыдущего уровня, отбираемых по совокупности критериев, задающих значения слов нового иерархического уровня.

На всех рассмотренных уровнях возможные значения слов и отношения между ними, а также правила мышления, по которым создаются тексты, являются изначально заданными, или врождёнными, в случае биологических организмов.

Описанное представление об алгоритме формирования очередного иерархического уровня позволяет рассмотреть процесс становления нового – четвёртого уровня, происходящий в настоящее время. На этом уровне словами являются поименованные подмножества слотов, называемые фреймами, значения которых, по существу, представляют обособленные части глобальной базы знаний. Находясь на четвёртом уровне информационной иерархии, фреймы, в свою очередь, могут также иметь сложную структуру, в том числе и иерархическую.

Безусловно, между фреймами существуют определённые отношения, но они не являются изначально определёнными в человеческом социуме. Поэтому возникновение фреймовой семантической сети, также как и процесс формирования глобального научного знания, может осуществляться только на основе вербального мышления отдельных представителей социума. Однако на индивидуальном уровне такая задача невыполнима, так как значение каждого фрейма открывается только в процессе изучения составляющих его слотов, и индивидуальной жизни может не хватить даже на один сложный фрейм, такой как, например, физика.

Но на социальном уровне эта задача может оказаться вполне осуществимой в результате интегрирования в социум искусственных ИС и современных коммуникативных сетей, способных аккумулировать индивидуальный опыт и использовать его как изначально заданный. И если фреймовая семантическая сеть будет сформирована, возникнет возможность создания фреймового мышления – той системы правил, по которым могут формироваться фреймовые тексты, описывающие на метауровне законы и взаимосвязи на всей глобальной базе знаний.

Рассматривая иерархическую структуру информации, следует иметь в виду, что доступность для организма каждого информационного уровня определяется иерархическим уровнем ИС, представляющей организм.

Так, первичный информационный уровень доступен для простейших организмов, способных отображать реальность в символьной форме. Образный – для многоклеточных, обладающих нервной системой. Вербальный уровень используется социальными организмами, способными создавать и накапливать знания в среде социального общения. По-видимому, четвёртый – фреймовый – информационный уровень потребует и нового иерархического уровня ИС. Есть все основания полагать, что таким новым уровнем может стать симбиотический биокибернетический социальный организм. При этом фреймовый язык такого организма окажется недоступным для человеческого индивида, информационная система которого останется на предыдущем уровне. В таком случае обмен информацией в виде фреймовой речи и письменности будет происходить только в кибернетических структурах социума, а биологические организмы смогут воспринимать подобную информацию лишь в виде интуитивных знаний, источник которых останется неизвестным.

На рис. 1 приведена схема иерархической структуры сенсорной информации. На этой схеме показано, как работает единый алгоритм образования информационных структур на каждом иерархическом уровне (ИУ) и какие ИС способны реализовывать и использовать каждый из четырёх описанных иерархических уровней информации.

Рис. 1. Схема иерархической структуры сенсорной информации

Итак, мы рассмотрели движение и функционирование информации от первичных баз данных, отображающих конкретные события окружающей реальности, к вербальным текстам и базам знаний, аккумулирующим наиболее общие законы и принципы существования действительности. При этом важно, что на всех наблюдаемых иерархических уровнях семантика информации поддерживалась тезаурусом ИС, базовая часть которого является врождённой, то есть закладывается в систему материнским организмом. В случае искусственных ИС таким материнским организмом является человеческий социум.

С точки зрения современной науки, в биологических ИС врождённые знания и программы поведения должны содержаться в кодовых последовательностях молекул ДНК. Но в настоящее время нет даже понимания того, как на основе информации, существующей в ДНК, решается проблема морфогенеза – проблема создания органов и форм многоклеточных организмов. И уж тем более не ясно, какой путь физических и химических преобразований символов и их значений проходят знания от уровня ДНК до своей представленности в нервной системе организма.

При этом, конечно, должен существовать и обратный процесс – знания и программы поведения, освоенные во время жизнедеятельности организма и необходимые для эволюционного прогресса, должны быть встроены и закреплены в геноме организма. А то, что в природе такие задачи в принципе решаемы, показывает стремительная эволюция искусственных ИС, не прибегающая к случайным мутациям и принципам естественного отбора.

Следует подчеркнуть, что в данном разделе мы рассмотрели иерархию только одного типа информации – информации, моделирующей внешнюю реальность на основе первичных сенсорных баз данных. Наблюдаемые проявления этого типа информации – данные, сообщения, сведения, знания – часто фигурируют в «определениях» информации, реальное содержание которых заключается только в том, чтобы обозначить явления, не сводимые к материальным процессам.

Но в информационных системах существуют и другие типы информации. Это генетическая информация, ответственная за существование и функционирование конкретных ИС, и управляющая информация, реализующая согласованное поведение отдельных частей и всей ИС в целом.

В следующем разделе мы рассмотрим эти типы информации более подробно.

1.3. Типы и виды информации

Согласно информационной парадигме, предложенной в разделе 1.1, информация представляет собой самостоятельную реальность, не сводимую к свойствам каких-либо систем материального мира. А это значит, что её изучение надо начинать со структурирования информационной реальности и классификации обособленных информационных структур.

Конечно, как и в физическом мире, где всё взаимосвязано, в мире информационном различные виды информации также взаимосвязаны. Поэтому, пока эти взаимосвязи ещё недостаточно изучены, принципы, по которым проводится классификация информации, могут существенно различаться. Например, в работе [Корогодин, 2000] информация классифицируется по своей принадлежности к определённым видам носителей, используемых ИС. В этой классификации на молекулах ДНК или РНК базируется генетическая информация, на структурах нервной системы – поведенческая, а на внешних носителях, используемых в социуме, – логическая.

Такой подход вряд ли можно считать удачным, так как искусственные ИС, основанные на компьютерных технологиях, не обладают ни ДНК, ни нервной системой и явно выпадают из этой классификации.

На наш взгляд, гораздо большей общностью обладает классификация, основанная на функциональном использовании информации в ИС. В таком подходе совершенно отчётливо проявляется три типа информации: модельный (М-тип), управляющий (С-тип) и генетический (G-тип информации). При этом в каждом из перечисленных типов можно выделить два информационных вида. Первый вид связан с информацией, которая определяет целенаправленное поведение ИС в окружающей реальности. Это R-вид информации. Второй – это информация S-вида, используемая для построения и функционирования самой информационной системы.

Таким образом, можно классифицировать 3 типа и 6 видов информации, которые, используя аббревиатуры от английских аналогов предложенных названий, можно обозначить как MR и MS для модельного типа, CR и CS для управляющего типа, а также GR и GS для генетического типа.

Информация обладает ещё одним важным свойством, присущим любому типу и виду, – её «наблюдаемостью» или осознаваемостью. Использованные здесь кавычки подчеркивают интуитивный характер этого термина, базирующийся на ещё не обсуждавшемся в данной работе феномене сознания. Как правило, информация R-вида является осознаваемой, а S-вида – остаётся неосознанной.

Теперь рассмотрим каждый тип и вид информации более подробно.

1.3.1. Модельная информация MR-вида

Информация MR-вида – это информация, формирующаяся в результате сенсорного восприятия ИС окружающей реальности. Иерархическая структура именно этого вида информации обсуждалась в предыдущем разделе.

MR-информация необходима для существования активных ИС, способных совершать целенаправленные действия во внешней среде. К подобным ИС относятся и все биологические организмы, для осуществления жизнедеятельности которых необходим обмен веществ с окружающей средой, обеспечивающий поддержание гомеостаза системы. Но решение этой задачи невозможно без представления о том, что эта среда собой представляет и каким образом она меняется.

При этом, в зависимости от иерархического уровня, на котором расположен биологический организм, и от сложности решаемых задач, реализуются и используются разные иерархические уровни MR-информации.

Первичный уровень связан с ситуативным поведением в конкретной внешней обстановке. Образный уровень уже способен обеспечивать целенаправленные действия организмов в окружающей реальности. Такие действия учитывают прогноз развития событий и могут игнорировать обстоятельства текущей ситуации. В ИС, использующих вербальный уровень, возможно моделирование скрытых закономерностей физического мира и их целенаправленное применение для его преобразования.

Следует отметить, что информационные модели реальности отражают иерархическую природу физического мира и, следовательно, в своих развитых формах MR-информация также является иерархичной.

Как отмечалось в разделе 1.2, формирование первичных, образных или вербальных структур MR-информации невозможно без существования врождённых знаний, определяющих значения слов и их отношений в семантических сетях. Такие знания, устанавливающие логические и пространственно-временные отношения между словами, составляют фундамент всей иерархии MR-информации, моделирующей воспринимаемую реальность в ИС биологических организмов.

По существу, врождённый тезаурус представляет собой чистые априорные знания, рассмотренные И. Кантом в его «Критике чистого разума». Однако априорные знания нельзя рассматривать как всеобъемлющие. Они отражают лишь ту сторону реальности, знание о которой необходимо для приспособления организмов к окружающей среде. Поэтому когда опытные (апостериорные) знания выходят за границы реальности, в которой существует биологическая жизнь, они могут оказаться в противоречии с теми логическими и пространственно-временными отношениями, которые представлены во врождённом тезаурусе биологических организмов.

Примером такого выхода за пределы априорного знания может служить трансформация пространственно-временных и логических отношений, проявляющаяся в теории относительности и в квантовой механике.

Важнейшим качеством MR-информации является её осознаваемость. При этом характер осознанного восприятия зависит от иерархического уровня структур, связанных с воспринимаемой информацией. На первичном уровне осознаваемость выступает как чувственное восприятие или, в философских терминах, как переживание квалиа. На образном уровне мы имеем дело с эмоциональным восприятием, дающим обобщённую характеристику текущей ситуации. А на вербальном уровне осознание связано с рассудочным мышлением, раскрывающим смыслы окружающей действительности. Но в любом случае осознание порождает запоминаемое знание и делает MR-информацию наблюдаемой и доступной для анализа.

1.3.2. Модельная информация MS-вида

Любая ИС естественного или искусственного происхождения обладает сложной структурой, требующей согласованной работы её относительно самостоятельных частей. Поэтому такая система должна содержать собственную функциональную MS-модель, позволяющую управляющему органу поддерживать работоспособность всего организма.

Естественно, подобная модель не может быть выстроена в процессе восприятия окружающей реальности, а с необходимостью должна быть изначально заложена в систему в процессе её создания, то есть содержаться во врождённом тезаурусе ИС.

Для биологических ИС, претерпевающих изменения в течение всего жизненного цикла, MS-модель также должна соответствующим образом трансформироваться. В случае сложных биологических организмов такая модель является иерархической, отражающей структуру: клетки – органы – организм.

Важно также иметь в виду, что при использовании MS-информации в управлении конкретным организмом функциональная модель ИС должна быть индивидуальной и, следовательно, должна реализовываться на первичном иерархическом уровне, где отсутствуют какие-либо обобщения. Но если это так, то обмен информацией между подсистемами организма также должен происходить на первичном уровне – на уровне сигнальной системы. По-видимому, осознаваемые сигналы боли, удовольствия или позывов являются языком этой сигнальной системы.

Однако структура любого организма, кроме внутренней представленности в MS-модели, представлена в отражённом виде и во внешней реальности. И эта внешняя представленность может быть смоделирована на основе MR-информации. Для человеческого организма такое моделирование происходит уже не только на первичном уровне, но и на образном и на вербальном иерархическом уровне. В результате открывается возможность для рефлексии и самосознания человека.

Более того, любые другие биологические организмы, являясь внешними по отношению к воспринимающему индивиду, могут быть представлены MR-моделями, а их строение и функционирование обобщены до образного и вербального уровня.

Нужно также отметить, что, в отличие от MR-информации, MS-информация не осознаётся, и человек не осведомлён об особенностях своего индивидуального строения, не отражающихся во внешней реальности.

1.3.3. Управляющая информация CR- и CS-видов

Любая ИС состоит из некоторого количества специализированных подсистем или органов, работа которых зависит от согласованного функционирования всех частей ИС. Такое согласование достигается в результате деятельности управляющих центров, которые используют информацию C-типа для донесения функциональных команд к исполнительным органам.

Управляющая информация C-типа, также как и модельная, представлена двумя видами.

При посредничестве информации CR-вида осуществляется поведение организма как целого в окружающей среде. При этом физическое поведение системы реализуется с помощью разнообразных внешних эффекторных органов и устройств. К ним относятся органы, обеспечивающие движение системы, экзокринные железы, выделяющие в окружающую среду химические вещества, такие как жиры, феромоны, слизи или нити, а также органы, производящие акустические сигналы, электрические разряды и свечение.

При посредничестве информации CS-вида осуществляется управление внутренними эффекторами организма, в результате чего решается основная для существования организма задача – поддержание гомеостаза биологической системы.

Управление в ИС основано на передаче последовательностей сигналов от управляющего органа к эффекторам. Такие последовательности, по сути, являются языком управления системой. В биологических организмах этот язык представляет собой импульсы нервной системы или химические вещества, воздействующие на подсистемы, такие как гормоны, вырабатываемые эндокринными железами. Эти две возможности образуют нервный и гуморальный каналы управления, которые работают совместно, дополняя друг друга.

Разделение управляющей информации на R- и S-виды проявляется в организмах уже на физиологическом уровне. Так, CR-вид связан с соматической нервной системой, обеспечивающей передачу от сенсорных органов MR-информации в управляющий центр и с обратной передачей на внешние эффекторы управляющей информации R-вида. А передача информации CS-вида происходит по вегетативной нервной системе, которая используется также для получения информации MS-вида о состоянии внутренних органов.

Простейшей задачей управления в ИС является выполнение эффекторами необходимых функционально завершённых действий. Такие действия совершаются в результате получения органами команд, состоящих из последовательностей управляющих символов – паттернов возбуждения нервной системы.

Если команды являются врождёнными, они реализуют неосознаваемые действия в форме рефлекторных дуг, обеспечивающих стандартную реакцию эффекторов на определённую MR- или MS-информацию. Если команды выстроены в результате обучения или приобретённого опыта, то завершёнными действиями будут навыки, доступные на сознательном уровне. Следует подчеркнуть, что при этом сама C-информация по-прежнему будет оставаться неосознаваемой.

Как правило, CS-вид информации связан с врождёнными командами, а CR-вид – с использованием команд, задающих навыки. Однако внешние эффекторы также способны совершать рефлекторные действия, а при определённых тренировках можно выработать навыки, позволяющие осознанно управлять внутренними органами.

Последовательность завершённых действий и соответствующих им команд в случае внешних эффекторов образует поведенческие паттерны PR, которые также могут быть врождёнными или приобретёнными в результате опыта. Врождённые паттерны поведения определяют инстинкты – те образцы поведения, которые необходимы для осуществления фундаментальных функций биологических организмов, таких как питание, размножение и самосохранение.

Множество {PR} всех доступных поведенческих паттернов определяет пространство поведения конкретного организма, а последовательности PR – фактические формы поведения.

Подобные формы выстраиваются организмом в соответствии с целями, определёнными в ИС. А сами цели, в свою очередь, создаются на основе MR-информации всех доступных иерархических уровней. Первичный уровень, связанный с текущей внешней ситуацией, определяет оперативные цели, реализуемые с помощью отдельных поведенческих паттернов, а образный и вербальный – перспективные цели, осуществление которых требует создания сложных форм поведения и, возможно, новых поведенческих паттернов.

И хотя CR-информация, в отличие от MR-информации, является неосознаваемой и, следовательно, внутренне не наблюдаемой, результат её действия – поведение организма – вполне осознаваем и наблюдаем. Это создаёт возможность формирования новых поведенческих паттернов на основе осознаваемой обратной связи.

Как уже отмечалось, MS-информация, моделирующая конкретную ИС, использует первичный иерархический уровень, языком которого является сигнальная система. И этот язык, на основе которого в ИС осуществляется управление, носит динамический характер, отражая эволюцию окружающей среды и изменения самого организма, происходящие в процессе онтогенеза.

Однако управление системами может осуществляться не только на уровне отдельных организмов, но и на социальном уровне. В этом случае в качестве языка управления могут использоваться также команды, выстроенные на образном или вербальном уровне. И эти команды, в отличие от команд первичного уровня, вполне осознаваемы и, следовательно, могут блокироваться организмами на сознательном уровне, создавая в социумах конфликтные ситуации.

1.3.4. Генетическая информация GR- и GS-видов

Обычно под генетической информацией, или информацией G-типа, понимают наследственную информацию, закодированную в геноме клетки на молекулах ДНК или РНК. При этом текст, записанный четырёхбуквенным кодом нуклеотидов, в процессе активации генов переводится на язык белков, имеющих двадцатибуквенный код аминокислот.

С точки зрения современной молекулярной биологии генетическая информация полностью определяет онтогенез биологических организмов, для которых она является информацией GS-вида.

Однако в более широком плане в качестве генетической можно рассматривать также информацию, задающую строение, технологию изготовления и функционирование любых внешних материальных систем, в том числе и искусственных ИС (ИИС). Относительно биологического организма такая информация выступает как информация GR-вида. И носителем GR-информации является нервная система, организующая инстинктивное или осознанное поведение, приводящее в случае животных к строительству гнёзд, термитников, сот, ловчих сетей и многого другого, а в случае человека – ко всему многообразию искусственных материальных систем, созданных цивилизацией. Однако в человеческом социуме генетическая информация может содержаться не только в умах индивидов, но и на внешних носителях разнообразной природы.

Генетическая информация по отношению к системам, строение которых она задаёт, носит неактивный, потенциальный характер, определяя только генотип – возможность той или иной реализации системы. А для раскрытия этой потенции должна осуществиться процедура имплементации генотипа, в которой нематериальная сущность – последовательность символов – во взаимодействии с внешней средой целенаправленно материализуется в фенотип – индивидуальную структуру организма. При этом необходимым условием имплементации генотипа является существование механизмов считывания и интерпретации информации, а также возможность обладать и манипулировать материальными ресурсами, на основе которых будет выстраиваться система.

На клеточном уровне считывание GS-информации с ДНК-носителя происходит с помощью информационной РНК (

РНК), интерпретация – с помощью рибосом, синтезирующих белки по матрице, представленной

РНК, а манипуляция – при посредстве транспортных РНК (

РНК), доставляющих аминокислоты к рибосомам.

На организменном уровне GR-информация может быть представлена двояко. Или в виде врождённых поведенческих паттернов (инстинктов), обеспечивающих как интерпретацию GR-информации, так и манипуляцию материальными ресурсами посредством внешних эффекторных органов. Или в форме знаний, аккумулированных, предположительно, в нервной системе организма или на внешних носителях. В последнем случае интерпретация и манипуляция осуществляются на сознательном уровне, а внешние эффекторные органы могут дополняться эффекторными устройствами, представляющими собой орудия труда.

Имплементация генетической информации разных видов происходит по-разному. Для информации GS-вида имплементация связана с копированием ДНК, делением клеток и трансформацией зиготы в многоклеточный организм. А для информации GR-вида – со строительством материальных систем на основе использования внешних эффекторных органов.

Но каким бы путём ни происходила имплементация, генетическая информация должна нести в себе также и технологию построения системы. В биологических организмах такая технология определяется регуляцией экспрессии генов, причём регуляция должна происходить как на уровне клеток, так и на уровне органов и организма в целом.

Возможно, для демонстрации всей сложности проблемы регуляции будет уместно воспользоваться музыкальной метафорой. Фактически для реализации онтогенеза геном должен содержать «партитуру» экспрессии генов, позволяющую продуцировать нужные белки в нужных количествах в нужное время и в нужных клетках, а также встроенного дирижёра, управляющего оркестром, в котором инструментами являются геномы каждой клетки.

Итак, если мы надеемся, что геном содержит всю необходимую для онтогенеза информацию, то он должен включать следующие составляющие:

• динамическую модельную информацию MS (t);

• технологию построения организма;

• врождённый тезаурус ИС для M- и С-типов информации;

• генетическую информацию GR-вида, необходимую для построения внешних материальных систем.

Содержится ли эта информация в геноме или нет, можно узнать только на основании его полного прочтения и осмысления. В настоящее время геном человека секвенирован практически полностью. В результате выявлено порядка 3,1 миллиарда нуклеотидных звеньев и всего лишь около 20 000 генов, информативная часть которых занимает не более 1,5 % генома. Таким образом, подавляющая часть генома не кодирует белки или функциональные РНК, а выполняет регуляторные и иные, неизвестные пока, функции.

Конечно, зная содержание генома и умея манипулировать генами, можно выяснить их роль в онтогенезе организма. Однако, несмотря на все успехи, мы по-прежнему далеки от понимания того, каким образом врождённая модельная и управляющая информация закодирована в геноме и закодирована ли она там вообще.

В принципе, при онтогенезе могли бы быть использованы принципы самосборки, реализующиеся в природе на примере кристаллов, вирусов или рибосом. Но и это не решает многочисленных проблем, связанных с морфогенезом и врождённым поведением организмов. И скорее всего, механизм самосборки не работает на многоклеточном уровне, так как он бы вносил неконтролируемое разнообразие в процесс имплементации генома.

Действительно, известно, что развитие организма из зиготы происходит детерминированным и достаточно устойчивым к неблагоприятным воздействиям образом. Это подтверждается, в частности, сходством однояйцевых близнецов, у которых признаки, контролируемые небольшим числом генов, совпадают с вероятностью выше 99 %. Поэтому можно утверждать, что вся необходимая для онтогенеза информация или должна содержаться в геноме зиготы, или использовать другие, неизвестные в настоящее время, носители, существующие, возможно, и вне материальных систем. Мы ещё не раз вернемся к этому предположению, когда будем обсуждать «трудные» проблемы физики, биологии, философии и психологии.

Но трудный вопрос содержится уже и в самой природе генетической информации. Если при рассмотрении происхождения модельной и управляющей информации в биологических организмах можно было сослаться на врождённый тезаурус, предоставленный материнским организмом, то изначальное происхождение генетической информации в рамках физикалистского мышления можно объяснить только как результат эволюции, происходящей по воле случая и под давлением естественного отбора. То есть, по существу, вопрос о происхождении генетической информации сводится к вопросу о происхождении биологической жизни.

Но если посмотреть на эту проблему шире и рассматривать также искусственные ИС, то легко видеть, что G-информация может порождаться не только случаем, но и родительскими ИС, обладающими способностью к целенаправленному созданию новых систем. Такие способности являются главной составляющей творческого разума, присущего человеку.

Конечно, в современных искусственных информационных системах (ИИС), в отличие от естественных ИС, не встроены самовоспроизведение и самоэволюция, требующие сложных схем метаболизма. Но с информационной точки зрения природа ИИС аналогична природе биологических организмов, и в основе ИИС должна лежать GR-информация, созданная человеком и содержащая те же составляющие, что и биологический геном. А именно:

• проектную документацию, моделирующую ИИС;

• технологии изготовления, включающие необходимые материалы, условия и последовательность процессов производства ИИС;

• программное обеспечение, являющееся врождённым тезаурусом ИИС.

И конечно, имплементация ИИС невозможна без механизмов чтения и интерпретации GR-информации, а также без манипулирования материальными ресурсами, то есть без производства, являющегося для ИИС материнским организмом.

Таким образом, в природе существует возможность создавать новые ИС на основе генетической информации, порождённой разумом родительских ИС. И подобная возможность также могла быть использована в случае биологических организмов. Но, безусловно, это не решает, а лишь отодвигает вопрос о происхождении начальной биологической G-информации, так как череда родителей всё равно должна начинаться с разума, который никто не сотворил.

Существует ещё один аспект генетической информации – философский. В настоящее время основной задачей научного познания природы является изучение материальных систем на всех иерархических уровнях – от струн и элементарных частиц до галактик и Вселенной в целом. Знание, которое мы при этом получаем, всегда является относительным, ограниченным нашими познавательными возможностями.

Однако предполагается, что существует некая абсолютная истина – такое знание об изучаемых системах, которое никогда не может быть опровергнуто. Но в науке нет критериев, позволяющих виртуальную реальность наших знаний сравнивать с реальностью природы и определять, насколько близко мы подошли к абсолютной истине.

И в то же время, генетическая информация, лежащая в основе искусственных материальных систем (ИМС), будучи порождена разумом, может рассматриваться как абсолютное знание об этих системах, как знание, которое не может быть пересмотрено. И с этой точки зрения GR-информация будет являться абсолютной истиной для созданной на её основе ИМС.

Возможно также, что генетическая информация, не являясь материальной сущностью, первична по отношению к отображающей её материальной системе. И в этом смысле она совпадает с платоновским понятием идеи как трансцендентного мира истинного бытия, по образцу которого существуют вещи чувственной реальности. Здесь у Платона идея выступает и как сущность вещи (модельная информация об ИМС), и как проект, включающий в себя закономерности перехода от идеи к воплощаемой вещи (технология имплементации ИМС), и как принцип её существования (без генетической информации не существуют и ИМС). Отличие идеи от генетической информации состоит лишь в том, что GR-информация вовсе не трансцендентная сущность, а реальность, которую можно и познавать, и создавать.

И в заключение отметим, что любая классификация информации в настоящий момент носит грубый характер ввиду узости наших знаний о её природе. Углубление этих знаний должно привести не только к более подробной классификации, но и, возможно, к пересмотру принципов, положенных в её основу. Так же, как это произошло с четырьмя античными стихиями – землёй, водой, воздухом и огнём, превратившимися в таблицу элементов Менделеева. Но заметим, что и эта первоначальная классификация материи оказалась не столь уж наивна, так как правильно подмечала четыре агрегатных состояния вещества – твёрдое, жидкое, газообразное и плазменное.

1.4. Информационные системы – чудо природы или основа её существования?

Вопрос о том, что представляют собой информационные системы (ИС), кажется довольно простым и одновременно по-философски сложным. Всё зависит от того, какие критерии используются для идентификации системы как информационной.

В принципе, любая система, имеющая дело с фиксацией, хранением, передачей или обработкой информации, могла бы рассматриваться как ИС. Однако в таких системах, основанных на физических взаимодействиях, не происходит ничего особенного, что выделяло бы их из ряда других физических систем. И в то же время существует класс систем, представленных биологическими организмами, поведение которых невозможно понять лишь на основе каузальных физических законов. В поведении этих систем присутствует телеологическая составляющая, связанная с осуществлением целей, возникающих в информационных процессах, что принципиально отличает такие системы от физических.

В работе [Коштоев, 1991] описаны важнейшие особенности биологических ИС, такие как необходимость присутствия в системах изначальных знаний, способность к целенаправленному поведению и возможность образовывать иерархии, связанные общими целями. Однако без понимания природы информации и её места в наблюдаемой реальности, сформулировать критерии, выполнение которых превращает физическую систему в информационную, по-видимому, невозможно.

Информационная парадигма (ИП), отвергающая атрибутивные подходы в понимании информации и рассматривающая её как самостоятельную реальность, в положении (П2) прямо указывает на неразрывность понятия информации и ИС. Поэтому с точки зрения ИП способность системы оперировать содержательной информацией является тем основным критерием, который позволяет идентифицировать ИС. При этом не важно, на какой основе реализована сама система. В принципе, возможно даже существование ИС, не связанных с физической реальностью.

В физическом мире вне ИС информация, запечатлённая на материальных носителях, является всего лишь последовательностью различений чего-либо и полностью лишена содержания, способного влиять на происходящие процессы. Такая информация носит потенциальный характер. Она может быть многократно реплицирована или уничтожена, а время её жизни определяется только сохранностью физических носителей.

Для того чтобы перейти в активное состояние и приобрести смысл и содержание, потенциальная информация должна быть воспринята системой, обладающей соответствующими кодами и некоторым, необходимым для интерпретации информации, тезаурусом. Такой тезаурус включает систему правил, позволяющих преобразовывать воспринимаемую информацию в нужные формы, а также набор знаний, представленных в виде моделей окружающей реальности. При этом сама воспринимающая система должна обладать механизмом, способным на основе тезауруса осуществлять содержательную интерпретацию информации.

Системы, обладающие таким минимально необходимым набором информационных качеств, хотя ещё и не способны воздействовать на процессы в физическом мире, уже являются информационными. Подобные системы принципиально отличаются от физических систем, так как в них существует множество состояний, переход в которые не может быть предсказан только на основе физических законов. Другими словами, в этих системах кроме физических присутствуют дополнительные информационные (или ментальные) степени свободы.