Виктор Маркин.

Контроль качества изготовления и технология ремонта композитных конструкций



скачать книгу бесплатно

2.2 Дефекты типа отслоений и их влияние на несущую способность конструкций

Конструкции из композитов очень чувствительны к технологическим дефектам, например, к расслоениям, непроклеям и трещинам, а также ко вновь образовавшимся дефектам (например, к надрезам поверхностных слоев). Дефекты типа расслоений могут появляться также на стадиях транспортировки, хранения и эксплуатации.

Они могут вызываться температурными напряжениями, локальными нагрузками, например, ударами по поверхности конструкции. Для поверхностного отслоения характерно выпучивание тонкого отслоившегося участка, которое может происходить при сжатии, поверхностном нагреве или растяжении из-за эффекта Пуассона, поэтому механика поверхностных отслоений обязательно должна учитывать геометрическую нелинейность хотя бы для отслоившейся области.

Типичные примеры отслоений приведены на рисунке 2.2. Процесс отслоения требует энергетических затрат, при этом потенциальная энергия изгиба накапливается только в отслоении, а работа разрушения складывается из работы, затрачиваемой на разрушение матричной прослойки и идущей на продвижение трещины в отслоении.

Каждому типу отслоений, представленных на рисунке 2.2, соответствуют свои критерии и границы устойчивости, определяемые по Гриффитсу или Эйлеру [14].

Рост отслоений в слоистых композитах при длительно действующих или циклических нагрузках происходит устойчиво, если параметры отслоения принадлежат области устойчивости по Гриффитсу.

Однако при длительном нагружении в матрице и армирующих элементах возникают рассеянные повреждения, которые снижают сопротивление отслоений.

Для расчета роста отслоений в сжатых элементах нужно учитывать энергию изгиба, высвобождающуюся при росте выпученного отслоения. Некоторые качественные особенности роста отслоения, изображенного на рисунке 2.2, в, приведены на рисунке 2.3. Кривые 1–3 соответствуют начальным состояниям. Кривая 1 относится к случаю, когда начальный размер отслоения достаточно велик, но начальное состояние субравновесно. После окончания инкубационной стадии продолжительностью t* размер l начинает расти. Картина роста отслоения качественно сходна с той, которая наблюдается в случае растяжения.


Рисунок 2.2 – Примеры отслоений в композитах:

а – открытое отслоение при растяжении, б – эллипсоидальное при растяжении, в – сжатое в условиях цилиндрического изгиба, г – эллипсоидальное при сжатии, д – кромочное, е – кромочное с вторичной трещиной


Кривая 2 соответствует случаю, когда начальное состояние также субравновесно, поэтому существует некоторая относительно непродолжительная инкубационная стадия. После подрастания отслоения до неустойчивого состояния происходит скачок до нового субравновесного состояния. Новый размер отслоения может быть оценен, исходя из соотношения энергетического баланса. При скачкообразном подрастании отслоения мера повреждения падает практически до нуля, поскольку фронт отслоения переходит в малоповрежденную область матричной прослойки (см.

рисунок 2.3, б, кривая 3). Далее следует вторая инкубационная стадия. После того как будет накоплено достаточное повреждение, фронт отслоения снова стягивается. Дальнейший рост происходит устойчиво.


Рисунок 2.3 – Диаграмма отслоений в композите при сжатии:

а – рост отслоений; б – накопление микроповреждений на фронте


Кривая 3 соответствует значениям отслоения, при которых начальная точка находится в весьма узкой полосе, заключенной между областью, где выпучивания нет, и областью, в которой отрезок устойчивого роста отслоения завершается полным отщеплением наружного слоя.

Значения критической деформации для конструкционных композитов достаточно высоки (порядка 10-3), поэтому типичное поведение сжатых отслоений описывается кривыми 1 на рисунке 2.3, а, б.

Обычно уже в ненагруженном элементе отслоение имеет начальный прогиб, полученный, например, в процессе изготовления.

Расслоения могут происходить в слоистых композиционных материалах при механической обработке конструкции или детали, определенной технологическим процессом изготовления. Механическая обработка композиционных материалов имеет ряд особенностей, отличающих их от аналогичной обработки металлов. Наличие слоистой структуры композита способствует тому, что при износе режущих инструментов происходит расслоение материала. Кроме того, при перерезании армирующих волокон, особенно при перекрестном армировании, наблюдается разлохмачивание перерезанных волокон, что приводит к ухудшению качества поверхностного слоя, способствующему возрастанию влагопоглощения и снижению несущей способности конструкции.

2.3 Структурные дефекты в пространственно-армированных композитах и их влияние на свойства материалов

Оптимальные для конкретных условий эксплуатации физико-механические и теплозащитные свойства композиционных материалов практически полностью достигаются формированием заданной пространственной структуры и зависят от степени соответствия реальной структуры расчетным параметрам, поэтому наличие структурных нарушений (дефектов) в композите может стать решающим фактором, определяющим работоспособность современных изделий.

Характерной особенностью структурных дефектов пространственно-армированных композиционных материалов является то, что наряду с дефектами, присущими традиционным материалам (трещины, раковины, поры, рыхлоты, посторонние включения и т. д.), могут образовываться дефекты, характерные только для данного вида композитов, связанные с особенностями структуры армирующего каркаса и метода формирования матрицы. Причем характер дефектов, возникающих на различных этапах изготовления материала, существенно отличается друг от друга.

На стадии изготовления каркасов возникают дефекты, связанные с отклонениями от следующих расчетных параметров структуры: направление укладки армирующих жгутов, периодичность расположения структурных элементов, расстояние между жгутами и пакетами жгутов, объемное содержание жгутов в каждом направлении армирования.

Дефекты, которые образуются на этапе формирования матрицы, связаны, в основном, с отклонениями от расчетного распределения плотности конечного материала, хотя и не исключены нарушения структуры армирующего каркаса, возникающие на различные рода подготовительных операциях. На этом же этапе возможно образование, вследствие нарушения технологических режимов насыщения таких дефектов, как раковины, рыхлости и трещины.

Дефекты типа «посторонние включения», обычно металлического характера, могут образовываться на каждом этапе изготовления изделий из композиционных материалов.

Проведенные исследования позволили определить характер влияния различных видов структурных дефектов на физико-механические и теплозащитные свойства композитов.

Наличие различного шага укладки жгутов вдоль координатных осей может быть одной из причин отличия расчетных значений упругих констант от реальных характеристик материалов.

Наличие искривленных волокон в ортогонально-армированном композиционном материале существенно снижает его жесткость при растяжении и сжатии. Создание предварительного натяжения арматуры при изготовлении каркасов способствует некоторому увеличению модулей упругости и прочности в направлении натяжения за счет исключения случайных искривлений жгутов, однако чрезмерное натяжение в одном направлении может вызвать нарушение ортогональности в других. Исследования показали, что отклонения армирующих жгутов от заданного направления армирования даже на 3° может приводить к снижению прочности композита до 20%.

Уменьшение числа армирующих жгутов в каком-либо направлении обычно является следствием их припусков или обрывов и приводит к снижению прочности композиционного материала при растяжении. Так, при уменьшении числа жгутов в рабочем сечении образцов материала КИМФ, подвергнутых механическим испытаниям, с 9 до 6 прочность при растяжении снижается на 30%.

Повышенная пористость оказывает заметное влияние на модуль упругости в трансверсальном направлении, где содержание волокон мало, а влияние матрицы на формирование жесткости указанного направления весьма значительно. Кроме того, дефекты при изготовлении деталей и узлов из композиционных материалов могут возникать в процессе механической обработки. Наиболее типичными из них являются отслоение, водопоглощение, структурные дефекты, разрушение армирующих волокон.

Возникновение деструктированного диспергированного слоя, значительно ухудшает эксплуатационные характеристики изделий из композитов.

При контактном взаимодействии полимера с металлом (инструментом) возбуждается механический процесс, повышается кинетическая активность системы. Этот процесс протекает с массовым образованием свободных радикалов за счет разрыва ковалентных связей у макромолекул. Для образования свободных микрорадикалов при механическом воздействии на полимер требуется энергия порядка 210–240 кДж/моль.

Поскольку в процессе резания контактируют ювенильные поверхности металла и полимера, то это приводит, с одной стороны, к пластифицированию металлической поверхности, а с другой – к углублению процесса деструктирования макромолекул, вызываемого каталитическим действием металла.

Как известно, наличие кислорода резко изменяет механизм и скорость деструкционных процессов. Экспериментально подтверждены интенсивные окислительные процессы, происходящие в зоне резания, что в свою очередь указывает на углубление процессов деструкции полимера.

В результате деструкции в зоне резания находятся продукты деструкции – метиленовые, гидроксильные, карбонильные и альдегидные группы, углеродо-водородные комбинации, являющиеся поверхностно активными веществами, которые вызывают специфический вид износа инструмента. Кроме того, в результате деструкции полимера обильно выделяются летучие вещества, в том числе и токсичные. Степень деструкции можно оценить сравнительно, т. е. по числу стабильных микрорадикалов в весовой единице поверхностного слоя.

С точки зрения эксплуатационных характеристик поверхностного слоя в результате деструкции представляет несомненный интерес определение глубины деструкции. На размер и интенсивность деструктивных процессов влияет главным образом теплота, выделяемая в зоне резания, и механическое воздействие, приводящее к разрыву цепей полимера. Толщина дефектного поверхностного слоя материала после механической обработки составляет 350–420 мкм.

Таким образом, всегда при механической обработке композитов под действием больших локальных механических напряжений, высокой температуры, превышающей теплостойкость органических составляющих материала, и интенсивных окислительных процессов происходит деструкция полимера, приводящая к ухудшению эксплуатационных свойств поверхностного слоя материала.

Глава 3
Общая характеристика применяемых методов контроля

В комплексе действий, направленных на обеспечение надежности и долговечности аэрокосмической техники, дефектоскопия имеет решающее значение, поскольку малейшая ошибка в определении характера дефекта или его пропуск могут привести к серьезным последствиям. В связи с этим проведение дефектоскопии возможно при соблюдении следующих условий:

– высокая квалификация специалистов, проводящих контроль;

– необходимое качество используемой при контроле аппаратуры;

– соответствующая техническая документация;

– высокое совершенство метода, обеспечивающее необходимый уровень качества контроля.

При этом следует отметить особенности дефектоскопии изделий аэрокосмической техники: разнообразие материалов контролируемых деталей как по своей природе, так и по свойствам; сложность контролируемых деталей по форме и разнообразие по массе; во многих случаях – недостаточно технологичные доступы, что может вызвать дополнительные демонтажно-монтажные работы; наличие контроля многослойных конструкций деталей, установленных в конструкциях, покрытых защитными пленками и имеющих загрязненную поверхность; своевременное обнаружение дефектов, возникающих в процессе эксплуатации по различным причинам – производственным, конструктивным и др.

Дефектоскопия, т. е. поиск дефектов с помощью неразрушающих методов контроля, позволяет обеспечивать заданный уровень надежности, добиваться увеличения долговечности с высокой эффективностью и производительностью. Средства неразрушающего контроля предназначены для выявления дефектов типа несплошности материала, контроля геометрических параметров изделий, оценки физико-механических свойств материала изделий. С помощью дефектоскопов получают информацию в виде электрических, световых, звуковых и других сигналов о качестве контролируемых объектов.

В промышленности существует пять видов контроля: операционный, сплошной, выборочный, входной и приемочный. Операционный контроль – контроль изделий в процессе выполнения или после завершения производственной операции. При этом контроль может быть сплошным или выборочным, т. е. проверяется либо каждое изделие, либо пробное из партии. Приемочный контроль – контроль готовой продукции. Входной контроль обеспечивает контроль сырья, полуфабрикатов или изделий другого производства [27].

При всех видах контроля широко применяется дефектоскопия, использующая различные физические и физико-химические явления, процессы и взаимодействия.

3.1 Методы, использующие акустические волны

Акустический неразрушающий контроль основан на регистрации параметров распространяющихся в объекте акустических волн.

Акустические колебания в зависимости от частоты подразделяют на инфразвуковые (частота до 20 Гц), гиперзвуковые (частота от 2 ? 1010 до 2 ? 1013 Гц) и ультразвуковые (частота от 1,6 ? 104 до 109 Гц). Для акустического контроля применяют колебания ультразвукового и звукового диапазонов частотой от 50 Гц до 50 МГц. Интенсивность колебаний обычно невелика, не превышает 1 кВт/см. Такие колебания происходят в области упругих деформаций среды, где напряжения и деформации связаны пропорциональной зависимостью (область линейной акустики). Акустические волны вызывают в упругой среде колебания ее частичек относительно своих положений равновесия. Упругие колебания распространяются от частицы к частице с определенной скоростью, зависящей от свойств озвучиваемого материала и вида акустических волн. В зависимости от направления колебаний частиц по отношению к направлению распространения волны различают продольные, поперечные (сдвиговые), поверхностные и нормальные волны. Волна называется продольной, если ее направление совпадает с направлением упругих колебаний частиц. Такие волны возбуждаются в твердых, жидких и газообразных телах.

Кроме упругости объема в твердом теле существует упругость формы, поэтому в нем могут распространяться поперечные (сдвиговые) волны. Волна называется сдвиговой, если ее направление перпендикулярно направлению колебаний частиц. В ограниченных твердых телах могут быть волны других типов. Вдоль свободной поверхности твердого тела могут распространяться поверхностные волны, или волны Релея. Они затухают на глубине, равной длине волны [11].

В различных средах упругие колебания возбуждаются с помощью магнитострикционных, пьезоэлектрических, электромагнитно-акустических и других преобразователей. Магнитострикционные преобразователи, действие которых основано на преобразовании электромагнитной энергии в механическую, изготавливают из магнитострикционных (магнитомягких) материалов: никеля, пермаллоя, пермендюра. Магнитострикция – изменение размеров и формы кристаллического тела при намагничивании, вызываемое изменением энергетического состояния кристаллической решетки в магнитном поле.

Наибольшее распространение получили пьезоэлектрические преобразователи. Их изготавливают из монокристалла кварца и пьезокерамических материалов: титаната бария, цирконата-титаната свинца и др. Пьезоэлектрический преобразователь представляет собой пластину с нанесенными на поверхность тонкими слоями серебра, служащими электродами. Для приобретения пластинами пьезоэлектрических свойств их электризуют в постоянном электрическом поле. При приложении к такой пластине переменного электрического напряжения в ней возникают вынужденные механические колебания, частота которых соответствует частоте электрического напряжения. Этот вид пьезоэффекта называется обратным. Если же к пластине прикладывать колебательные механические нагрузки, то в ней возникает переменное электрическое напряжение соответствующей частоты. Этот вид пьезоэффекта называется прямым. Наибольшая амплитуда колебаний пьезопластины возникает при резонансе, т. е. при совпадении собственной частоты и частоты переменного напряжения. Если пьезопластину приложить к поверхности контролируемого объекта, то в его материале будут возбуждаться и распространяться упругие волны. После прекращения действия переменного напряжения пьезопластина продолжает совершать затухающие механические колебания. Ускорения затухания добиваются, используя демпфирующие материалы: асбест, эпоксидную смолу с наполнителем и др. Для ввода упругих колебаний в контролируемую деталь, приема отраженных эхосигналов пьезопластину помещают в специальное устройство, называемое искательной головкой.

Акустические методы контроля могут быть разделены на две группы:

– основанные на излучении и приеме акустических волн;

– основанные на регистрации акустических волн, возникающих в материалах и изделиях.

В первой группе различают методы контроля с использованием бегущих и стоячих волн или резонансных колебаний контролируемого объекта. На использовании бегущих волн основаны следующие методы.

Теневой метод. Иногда его называют методом сквозного прозвучивания. В этом случае излучатель и приемник разделены, а дефект на пути ультразвуковых волн ослабляет принимаемый сигнал или задерживает его приход, поскольку при огибании дефекта удлиняется путь упругой волны (рисунок 3.1).

Зеркально-теневой метод. Это разновидность теневого метода.

В данном случае оба датчика устанавливаются с одной стороны контролируемого изделия. Интенсивность упругих колебаний регистрируется после их отражения от противоположной поверхности.


Рисунок 3.1 – Возникновение акустической тени при сквозном прозвучивании:

а – объект исследования не имеет дефекта; б – объект имеет малый дефект, искажающий уровень регистрируемого сигнала; в – образование акустической тени при крупном дефекте. 1 – излучатель ультразвуковых волн; 2 – приемник ультразвуковых волн; 3 – исследуемый образец; 4 – дефекты в образце


Эхоимпульсный метод. При этом методе упругие колебания вводят с помощью совмещенной искательной головки, которая посылает импульс и регистрирует его после прохождения по контролируемой детали (как и на Рисунок 3.2). На экране осциллографа при прохождении лучей через деталь, не имеющую дефекта, появятся только два импульса: начальный (отражение от границы «головка – деталь») и конечный, или донный (деталь – воздушная среда). Если на пути излучения появится дефект, возникает еще один импульс, свидетельствующий о наличии препятствия. При полном перекрытии дефектом пути излучения на экране появятся начальный импульс и импульс, свидетельствующий о наличии какой-либо несплошности.

При этом методе используются поверхностные нормальные и сдвиговые волны, которые посылаются в исследуемый материал импульсами, следующими один за другим через определенные интервалы времени.

Импендансный метод. Основан на зависимости полного механического сопротивления (импенданса) упругим колебаниям изделия от качества соединения отдельных его элементов между собой. Этим методом контролируют изделия, имеющие несколько слоев (рисунок 3.2).

Стержень датчика совершает продольные колебания и контактирует с участком поверхности трехслойного материала. Если участок склеенного материала без дефекта будет сопротивляться колебаниям, создавая реакцию Fp, то над участком с дефектом непроклея, реакция уменьшится до Fрд, так как жесткость поверхностного слоя на участке дефекта будет меньше, чем в предыдущем случае. Усилие реакции фиксируется индикатором.


Рисунок 3.2 – Импендансный метод акустической дефектоскопии:

1 – стержень датчика; 2 – поверхностный слой трехслойной конструкции; 3 – клеевая прослойка; 4 – основной слой материала конструкции; 5 – дефект непроклея


Резонансный метод дефектоскопии и толщинометрии (рисунок 3.3).

При контроле этим методом определяют частоты, на которых возбуждаются резонансы колебаний в исследуемом участке изделия (например, по толщине стенки трубы или листа). По резонансным частотам определяют толщину изделия. На наличие дефекта указывает уменьшение толщины, ослабление или исчезновение резонансов.


Рисунок 3.3 – Резонансный метод дефектоскопии и толщинометрии


Последнее происходит в случае, когда дефект расположен не параллельно поверхности изделия или наблюдается повышенное затухание ультразвука.

Метод свободных колебаний или спектральный (рисунок 3.4). Основан на анализе спектра частот собственных колебаний изделия, вибрирующего после удара по нему. Раньше эту операцию контролеры выполняли только на слух (например, проверка стеклянной посуды по звону), но в настоящее время разработана аппаратура, позволяющая выделять и количественно анализировать наиболее характерные части спектра.


Рисунок 3.4 – Реализация спектрального метода неразрушающего контроля


Ко второй группе относится следующие методы регистрации акустических волн, возникающих в материалах и изделиях.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16