banner banner banner
Все науки. №5, 2023. Международный научный журнал
Все науки. №5, 2023. Международный научный журнал
Оценить:
Рейтинг: 0

Полная версия:

Все науки. №5, 2023. Международный научный журнал

скачать книгу бесплатно


5. Егоров, А. П. Кроветворение и ионизирующая радиация: моногр. / А. П. Егоров, В. В. Бочкарев. – М.: Государственное издательство медицинской литературы, 2012. – 256 c.

6. Ли, Д. Е. Действие радиации на живые клетки / Д. Е. Ли. – М.: Государственное издательство литературы по атомной науке и технике Государственного комитета Совета Министров СССР по использованию атомной энергии, 2014. – 288 c.

7. Ливанов, М. Н. Некоторые проблемы действия ионизирующей радиации на нервную систему: моногр. / М. Н. Ливанов. – М.: Государственное издательство медицинской литературы, 2013. – 196 c.

8. Надарейшвили, К. Ш. Вопросы влияния ионизирующей радиации на сердечно-сосудистую систему / К. Ш. Надарейшвили. – М.: Мецниереба, 2011. – 300 c.

9. Николай, Дайнеко und Сергей Тимофеев Радиация и лекарственные растения / Николай Дайнеко und Сергей Тимофеев. – М.: LAP Lambert Academic Publishing, 2014. – 156 c.

10. Побединский, М. Н. Методика обследования функции половых желез у женщин, работающих с источниками ионизирующей радиации / М. Н. Побединский. – М.: Государственное издательство медицинской литературы, 2014. – 28 c.

11. Смирнова, О. А. Радиация и организм млекопитающих. Модельный подход: моногр. / О. А. Смирнова. – М.: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2010. – 224 c.

12. Тельдеши, Ю. Радиация – угроза или надежда / Ю. Тельдеши, М. Кенда. – М.: Мир, 2011. – 415 c.

13. Холл, Дж. Радиация и жизнь / Дж. Холл. – Л.: Медицина, 2014. – 256 c.

14. Шляхов, В. Исследование баланса длинноволновой радиации в тропосфере: моногр. / В. Шляхов. – М.: Гидрометеорологическое издательство, 2014. – 82 c.

15. Шубик, В. М. Жизнь с радиацией. Книга 1. Мирный атом: польза – вред: моногр. / В. М. Шубик. – М.: СИНТЕГ, 2011. – 212 c.

ТЕХНИЧЕСКИЕ НАУКИ

ДАТЧИК АВАРИЙНОЙ СИГНАЛИЗАЦИИ ДЛЯ ОБЪЕКТОВ ГЕОТЕРМАЛЬНОЙ ЭНЕРГЕТИКИ

УДК 620.97

Кулдашов Оббозжон Хокимович

Доктор физико-математических наук, профессор Научно-исследовательского института «Физики полупроводников и микроэлектроники» при Национальном Университете Узбекистана

Научно-исследовательский институт «Физики полупроводников и микроэлектроники» при Национальном Университете Узбекистана

Комилов Абдуллажон Одилжонович

Ассистент Ферганского филиала Ташкентского Университета Информационных Технологий

Ферганский филиал Ташкентского Университета Информационных Технологий

Жумаев Жавохир Абдурасулович

Студент 2 курса напряления 13.03.02 «Электроэнергетика и электротехника» Ташкентского филиала Московского Энергетического Института

Ташкентский филиал Московского Энергетического Института

Аннотация. За последние десятилетия в мире возрос интерес к альтернативным источникам возобновляемой в природе энергии: солнечной, геотермальной, ветровой и др. Надо отметить, что этот интерес вызван не только из-за ежегодного роста цен на традиционные виды топлива (нефть, уголь, газ) и прогнозных данных по истощению в обозримом будущем их запасов. Он вызван также необходимостью решения вопросов защиты окружающей среды от загрязнения и возможных техногенных катастроф. По этим причинам во многих странах мира ориентируются на рациональное сочетание традиционных источников энергии с возобновляемыми. При этом среди возобновляемых источников энергии глубинное тепло Земли занимает не последнее место. Достаточно назвать такие страны, как Исландия, Филиппины, Новая Зеландия, Индонезия, США, Италия и др., где имеются колоссальные тепловые ресурсы, залегающие в сравнительно неглубоких пластах земной коры.

Ключевые слова: датчики, аварийная сигнализация, геотермальная энергетика, альтернативные источники возобновляемой и природной энергии.

Annotation. Over the past decades, there has been an increased interest in alternative sources of renewable energy in nature: solar, geothermal, wind, etc. It should be noted that this interest is caused not only because of the annual increase in prices for traditional fuels (oil, coal, gas) and forecast data on the depletion of their reserves in the foreseeable future. It is also caused by the need to address issues of environmental protection from pollution and possible man-made disasters. For these reasons, many countries around the world are focused on a rational combination of traditional energy sources with renewable ones. At the same time, among renewable energy sources, the deep heat of the Earth occupies not the last place. It is enough to name countries such as Iceland, the Philippines, New Zealand, Indonesia, the USA, Italy, etc., where there are enormous thermal resources lying in relatively shallow layers of the earth’s crust.

Keywords: sensors, alarm system, geothermal energy, alternative sources of renewable and natural energy.

На сегодняшний день в Узбекистане активно развивается геотермальная энергетика. На территории Узбекистана прогнозные геотермальные ресурсы на доступных глубинах (до 5—6 км) в 4—6 раз превышают ресурсы углеводородов. Главными потребителями геотермальные ресурсы на ближайшую и отдаленную перспективу в Узбекистане, несомненно, будут теплоснабжение и, в значительно меньшей мере, выработка электроэнергии.

Однако геотермальная энергия не лишена недостатков, как известно на геотермальных скважинах выделяются опасные газы, в связи с этим контроль этих газов, актуален для освоения и поиска новых источников геотермальных вод. При использовании этих вод в оборудовании геотермальных систем наблюдаются отложения, в основном, малорастворимой соли СаСО3, в связи с этим контроль газового состава, актуален для их освоения и поиска новых источников геотермальных вод [6—7].

В зависимости от условий формирования, а также химического и газового состава геотермальные воды разделяют на углекислые, сероводородные, азотные, сероводородно-углекислые, азотно-углекислые, метановые и азотно-метановые. Геотермальные воды Ферганской долины относят к метановым.

Наличие на территории Узбекистана большого потенциала ресурсов гидротермальных месторождений с газовым фактором требует разработки новых технических и технологических решений для их эффективного использования.

Воздействие геотермальных газов, главным образом, метана, может происходить на рабочих местах во время аварийных выбросов геотермальной жидкости и работ по техническому обслуживанию в замкнутом пространстве, например, внутри трубопроводов, турбин и конденсаторов. Серьёзность риска воздействия метана может варьироваться в зависимости от местоположения объекта и свойств разрабатываемого пласта.

Если существует возможность того, что работники подвергнутся воздействию метана в опасной концентрации, следует установка систем контроля концентрации метана и аварийной сигнализации на объектах геотермальной энергетики.

В газовом составе геотермальных вод преобладает метан СН

, СО

, N

и Н

S. Расчет коэффициентов поглощения газов, попадающих в область ИК- излучения, проводился на основе спектроскопической информации базы HITRAN—2008, длина волны при максимальном поглощении инфракрасного излучения метаном составляла 3.4 мкм [10—11].

Принцип действия датчика аварийной сигнализации для объектов геотермальной энергетики заключается в следующим: газовую камеру облучают с помощью двух инфракрасных светодиодов, излучающих две разные длины волн, одна из которых соответствует максимальному поглощению метана (F

= 3,4 мкм), а другая слабой (F

= 3,2 мкм).

Газовую камеру облучают двумя потоками излучения F

и F

на опорной и измерительной ?

длинах волн соответственно. Прошедшие через газовую камеру потоки излучения будут равны соответственно:

где: F

 и F

– падающие на газовую камеру потоки излучения на длинах волн и соответственно.

где: F

 и F

 – потоки излучения после прохождения через газовую камеру на длинах волн и соответственно: с

 – концентрация смеси газообразных веществ; L – длина оптического пути, т.е. длина газовой камеры; c

 – концентрация определяемого газообразного вещества;

K

 – коэффициент рассеяния смеси газообразных веществ;

K

– коэффициент поглощения определяемого газообразного вещества.

Поток излучения изменяется по времени (t) по экспоненциальному закону:

где: A– постоянный коэффициент, соответствующий начальному значению амплитуды экспоненциального импульса, N – число импульсов от начала экспоненты до момента перемены фотоэлектрического сигнала.

В момент равенства потоков излучения и получаем, что

откуда следует, что:

где: ?

– постоянная времени экспоненты.

В датчике аварийной сигнализации для объектов геотермальной энергетики использованы, светодиоды со спектрами излучения 3.2 мкм (опорный) и светодиоды со спектрами излучения 3.4 мкм (рабочий).

На рис. 1 изображена блок-схема датчика аварийной сигнализации для объектов геотермальной энергетики, которые состоят из блока питания – 1, генератора – 2, делителя частоты – 3, одновибратора – 4, модулятора экспоненциальной функции – 5, эмиттерного повторителя – 6, электронных ключей 7 и 8, светоизлучающих диодов (9 и 10), газовой камеры – 11, фотодиода – 12, первого дифференцирующего устройства – 13, порогового устройства – 14, схемы совпадения – 15, второго дифференцирующего устройства – 16, счетчика – 17.

Датчик аварийной сигнализации для объектов геотермальной энергетики работает следующим образом:

Генератор прямоугольных импульсов – 2 вырабатывает импульсы с необходимой частотой повторения. Эти импульсы с противофазных выходов поступают на вход делителя – 3 частоты и на управляющие входы ключей – 7 и 8. Прямоугольные импульсы с выхода делителя – 3 частоты поступают на вход одновибратора – 4. Прямоугольные импульсы с необходимой длительностью с выхода одновибратора – 4 поступают на вход модулятора – 5 экспоненты, выход которого соединен через эмиттерный повторитель – 6 с входом электронного ключа – 8, где формируется дискретный экспоненциальный импульс тока, который протекает через излучающий диод 9, вызывая поток излучения по такому же закону. Противофазно заполняющим экспоненту импульсам переключается электронный ключ – 7.

На рис. 3 представлено передаточная функция датчика аварийной сигнализации для объектов геотермальной энергетики.

Протекающий через светоизлучающий диод 10 импульс тока вызывает световой поток, амплитуда которого постоянна. Прошедшие через газовую камеру – 11 потоки излучения светодиодов принимаются фотодиодом – 12. Этот сигнал подается на вход первого дифференцирующего устройства – 13, с выхода которого продифференцированный фотоэлектрический сигнал поступает на вход порогового устройства – 14.

Далее сигнал с выхода порогового устройства – 14 подается на один из входов схемы совпадения – 15. На другой вход схемы совпадений – 15 подается сигнал с выхода второго дифференцирующего устройства – 16. С момента сравнения на выходе схемы совпадений – 15 появляется ряд импульсов, которые поступают на счетный вход счетчика – 17. В начале следующей экспоненты на вход «Установка нуля» счетчик – 17 поступают прямоугольные импульсы с выхода одновибратора – 4 и счетчика – 17 подготавливается к следующему циклу.

Сравнение амплитуд опорного и измерительного потоков излучения с применением порогового устройства обеспечивает точность измерения устройства контроля геотермальных газов на основе полупроводниковых излучателей.

Литература

1. Ахмедов Г. Я. Защита геотермальных систем от карбонатных отложений. М.: Научный мир, 2012.

2. Kiseleva S. V., Kolomiets Y. G., and O. S. Popel’, «Assessment of solar energy resources in Central Asia,» Appl. Sol. Energy (English Transl. Geliotekhnika), 2015, doi: 10.3103/S0003701X15030056.

ФОТОВОЛЬТАИЧЕСКИЙ ЭФФЕКТ В a- КВАРЦЕ

УДК 548.1.024.5

Каримов Боходир Хошимович

Кандидат физико-математических наук, доцент кафедры «Технологического образования» физико-технического факультета Ферганского государственного университета

Ферганский Государственный университет, Фергана, Узбекистан

Аннотация. Аномальный фотовольтаический эффект, наблюдавшийся ранее для сегнетоэлектриков Li bO3:Fe SbSJ, является частным случаем более общего ФЭ существующего в кристаллах без центра симметрии и описываемого тензорам третьего a

.

Ключевые слова: фотовольтаический эффект, сегнетоэлектрики, тензор, компоненты тензора.

Annotation. The anomalous photovoltaic effect observed earlier for LibO 3:Fes ferroelectrics is a special case of a more general FE existing in crystals without a center of symmetry and described by the third ai j k tensors.

Keywords: photovoltaic effect, ferroelectrics, tensor, tensor components.

Компоненты тензора a

отличны от нуля для 20 ацентричных точечных групп симметрии. При равномерном освещении линейно поляризованным светом однородного кристалла пьезо и сегнетоэлектриков в нем возникает фотовольтаический ток. Знак и величина фотовольтаического тока зависит от ориентации вектора поляризации света с компонентами Е

и E

*, направлением его распространения и симметрией кристалла.

В соответствии (I) и симетрией точечной группы можно написать выражение для фотовольтаического тока. Сравнение экспериментальной уголовной зависимости с (?) позволяет определять фотовольтаического тензораa

или фотовольтаических коэффициентов

(a*– коэффициент поглощения света).

Если электроды кристалла разомкнуть, фотовольтаический ток генерирует фотонапряжение 10

—10

 B. величинакоторое может на несколько порядок превышать ширину запрещенной зоны пьезо или сегнетоэлектриков. В центросимметричных кристаллах ФЭ отсутствует.

Нами иследовались a-кварц одно из более распространенных кристаллических форм кремнезема (SiO

). При темпратурах до 573

существует так называемый «низкотемпратурный» a-кварц. Кристаллы a-кварц принадлежат к тригонально трапецоэдрическому классу тригональной системы (точечная группа симметрии 32) и встречаются однаково часто в двух знантиоморфных формах: правые и левые кристалли. При нормальном давлении и темпратуре 573

С a – кварц превращается в гексагонально —трапецоэдрический класс гексагональной системы (точечкая группа симметрии 622).

Ось третьего порядка в – кварце являетя оптической осью кристалла. Одна из осей второго порядка являетя электрической осью и нормаль к обоим указаным осям являетя механической осью.

Симметрия структуры кварца определяет и симметрию свойств этого кристалла.