скачать книгу бесплатно
Фотографические эксперименты. Нетривиальные техники фотографии
Станислав Геннадьевич Ржевский
Данная книга адресована фотолюбителям, интересующимся нестандартными способами съемки, обработки и печати фотографий. В ней представлено множество методик, от старинных до современных, позволяющих получать нетривиальные снимки, как цифровыми, так и аналоговыми методами. Предпочтение отдано относительно простым техникам, доступным широкому кругу любителей для реализации в домашних условиях.
Фотографические эксперименты
Нетривиальные техники фотографии
Станислав Геннадьевич Ржевский
© Станислав Геннадьевич Ржевский, 2024
ISBN 978-5-0064-5107-0
Создано в интеллектуальной издательской системе Ridero
Предисловие
Пожалуй, всем любителям фотографии рано или поздно хочется разнообразить практику оригинальными снимками. В последние годы появилось множество цифровых средств, позволяющих выполнять творческую обработку фотографий, превращая тривиальные кадры в нечто более интересное. К таковым относятся инструменты обработки, встроенные в мобильную технику, программы-фоторедакторы и фильтры для изображений в социальных сетях. Наиболее широкие возможности предоставляет использование нейросетеых сервисов. Они позволяют практически моментально ретушировать фотографии, изменять их композицию, стилизовать под определенное направление в искусстве и даже превращать в некое подобие рисунка. Но сколь привлекательными ни казались бы эти возможности, они все же предоставляют ограниченное пространство для творчества.
Применение стандартных цифровых фильтров, несмотря на их гибкость и интеллектуальность, приводит к появлению большого количества снимков, обработанных по сходным шаблонам, что сводит на нет их оригинальность. И даже разнообразие нейросетевого арта, заполонившего Интернет, начинает приедаться зрителям – делегируя творчество компьютерным алгоритмам, их пользователи зачастую проявляют минимум собственной креативности.
Тем же, кто интересуется по-настоящему неординарными способами фотографии, стоит искать глубже, уходя от применения стандартных нейросетей, плагинов и фильтров. Со времен появления фотографии разработано множество методик, позволяющих выполнять специализированные виды съемок и буквально делать видимым то, что недоступно человеческому глазу. Эксперименты с различными объективами, светофильтрами и осветительными устройствами позволяют получить оригинальные снимки и способствуют развитию умения работы с фототехникой.
Особым направлением искусства является обращение к альтернативным химическим фотопроцессам. В наш век существенную популярность приобрели старинные методы фотопечати, отсылающие к самым ранним этапам развития фотографии. Проявив усердие в овладении приемами химической печати, можно получить интереснейший в художественном плане результат, впечатляющий куда более, нежели его цифровая имитация.
В данной книге приведен обзор основных нестандартных способов фотосъемки и альтернативной фотопечати. Многие рассматриваемые в ней методы (в частности, макро- и микрофотография) являются отдельными и обширными областями фотографии, заслуживающими детального изучения. Однако здесь данные приемы рассматриваются только на вводном, ознакомительном уровне.
Разумеется, эта книга является далеко не единственной в своем роде. Еще в 1916 г. в Петрограде было издано пособие «Фотографическiя забавы» Е. Б. Евдокимова, в котором собраны доступные на тот момент способы создания спецэффектов в фотографии, причем некоторые из них не теряют актуальности и по сей день. В Советском Союзе в 1976 г. вышла аналогичная книга Б. Ф. Плужникова «Особые приемы фотографии», рассчитанная на распространенные в те годы аналоговые технологии. Также стоит отметить переводное издание Д. Дэйи «Спецэффекты. Руководство по новым и необычным фотопроцессам и фотоприемам», опубликованное на русском языке в 1998 г.
Но время идет, и фотолюбителям становятся доступны новые возможности, поэтому нелишним будет еще одно расширенное описание нетривиальных методов фотографии в применении к современной фототехнике.
Цель книги – составить общие представления о специализированных видах фотографии, описать подходы к их реализации. Фотолюбители могут найти здесь советы о том, как реализовать на практике заинтересовавшие их виды съемки, какой техникой и оптикой для них необходимо обзавестись. При этом ставится задача добиться максимальной доступности, дешевизны и простоты используемых методов, в том числе путем замены фабричных деталей и устройств самодельными аналогами. Хотя в некоторых случаях достижение высокого качества снимков все же требует существенных затрат труда и вложения средств.
Таким образом, данное пособие адресовано увлеченным фотолюбителям, которых не устраивают массово распространенные направления фотографии. В нем приведены методы, взятые из открытых литературных источников, апробированные и доработанные автором. В качестве иллюстраций повсеместно приведены авторские снимки.
В завершение предисловия хочется напомнить, что некоторые из описанных в книге техник (в особенности это касается альтернативной химической печати) требуют соблюдения мер предосторожности, от которых фотографы в цифровую эпоху успели несколько отвыкнуть.
Автор данной книги, Ржевский Станислав Геннадьевич – уроженец Воронежа, является выпускником фотошколы Владимира Александровича Голуба, участником фотоклуба «Фотум». Специализируется на нестандартных техниках фотосъемки и альтернативных методах фотопечати.
Каждый из описанных в данном пособии методов имеет потенциал для видоизменения и развития, поэтому всячески приветствуются предложения читателей по поводу их доработки. С вопросами и комментариями обращайтесь на электронную почту автора: slavaosin@yandex.ru.
Светофильтры и спектрозональная съемка
1. Снимок через синий фильтр от «Спектрозона»
Цветные светофильтры – постеризация – цветоделение – изменение контраста снимков – серые и градиентные фильтры.
Фотографическая практика для большинства любителей ограничивается снимками, сделанными в видимом световом диапазоне, без каких-либо модификаций. Но если захочется разнообразить свой опыт, одним из простейших направлений фотоэкспериментов является съемка через цветные светофильтры.
Если перед объективом фотоаппарата поместить красное стекло, такой фильтр будет пропускать длинноволновую часть видимого спектра. Синее стекло, напротив, оставит доступным для запечатления наиболее коротковолновый диапазон. Пример такого снимка представлен на фото 1: он получен с применением синего светофильтра, входившего в комплект аппарата «Спектрозон», во времена пленочной фотографии использовавшегося для калибровки цветной фотопечати.
Казалось бы, зачем возиться с цветными стеклами, если любой цифровой снимок можно в мгновение ока «перекрасить» в фоторедакторе? Редакторы вроде Adobe Photoshop позволяет разложить цветное изображение на составляющие каналы (например: красный, зеленый и синий в цветовой схеме RGB) и обработать их по отдельности. По сути, таким образом имитируется применение оптических фильтров. Однако, поэкспериментировав с настоящей оптикой, можно убедиться, что она открывает куда больший простор для творчества, нежели виртуальная обработка цифровых фотографий. В особенности интересны светофильтры, имеющие неравномерную полосу пропускания – они избирательно гасят определенные цвета, что приводит к их выпадению из общей гаммы, создавая на снимке эффект «постеризации» (при этом вместо непрерывной гаммы оттенков картинка состоит из дискретных областей тонов, что делает ее похожей на изображение на постере или плакате).
На применении цветных светофильтров основан метод спектрозональной фотографии, подразумевающий съемку в нескольких ограниченных частях светового диапазона. На заре цветной фотографии съемка через цветные светофильтры использовалась для цветоделения и последующего синтеза полноцветного изображения. Один из старинных методов цветной фотографии включал получение монохромных снимков в разных участках спектра с последующим их сложением. Делалось три монохромных снимка одного объекта через разные светофильтры (по классической схеме – синий, зеленый и красный), затем они объединялись в одно изображение с помощью проектора с такими же фильтрами – в результате получалась полноцветная фотография. Таким методом были созданы знаменитые цветные фотографии Сергея Михайловича Прокудина-Горского, запечатлевшие последние десятилетия Российской Империи.
В дальнейшем цветные светофильтры широко применялись в монохромной пленочной фотографии для придания контраста определенным объектам. Они позволяют осветлить предметы соответствующих им цветов и затемняют противоположные цвета. Использованием таковых фильтров для создания черно-белых пейзажей в середине ХХ в. прославился американский фотограф Ансель Адамс.
Рассмотрим действие цветных фильтров на практике. Так, на фото 2 изображены цветы одуванчиков и сирени, снятые через синий светофильтр от вышеупомянутого прибора (далее снимок был обесцвечен в фоторедакторе). Синее стекло гасит излучение красного и желтого спектра, поэтому желтые цветки на этом снимке выглядят черными, зато сирень получилась светлой.
2. Черные одуванчики и белая сирень: монохроматизированый снимок через синий фильтр от «Спектрозона»
Соответственно, желтый светофильтр при съемке пейзажа позволит притемнить яркое голубое небо, сделав облака на его фоне более контрастными. Одно из применений цветных фильтров состоит в том, что они позволяют убрать воздушную дымку. Серый фильтр будет притемнять яркое небо и белые облака, решая проблему ограниченности динамического диапазона камеры (при съемке пейзажа зачастую невозможно добиться одновременной проработки неба и земли). В данном случае, напротив, решается задача уменьшения контраста фотографии. Так как при съемке пейзажей необходимо притемнять именно верхнюю часть снимка, специально для этих целей выпускаются градиентные фильтры, имеющие изменяющуюся от одного края к другому плотность.
Откуда брать светофильтры для опытов? Они в большом количестве продаются в интернет-магазинах, в их числе – старые фильтры от пленочной техники, которые стоят относительно недорого. Для фотоэкспериментов можно приспособить и любое окрашенное стекло или даже пластик (но последний будет давать мутную, размытую картинку).
Цветные светофильтры, как правило, создавались для применения в черно-белой фотосъемке, но ничего не мешает использовать их для иных целей, превращая скучную фотографию в нечто фантасмагорическое без помощи цифровых средств для обработки изображения.
Можно экспериментировать с любыми окрашенными стеклами, в том числе с бутылочным стеклом – при этом к цветовым эффектам добавятся еще геометрические искажения и размытие.
Если под руками нет подходящего цветного стекла, а «пластиковые» снимки не впечатляют, остается возможность прибегнуть к старинному способу создания жидкостных светофильтров. Для этого следует в более-менее плоский сосуд (например, пузырек из-под одеколона) налить прозрачную жидкость с красителем. Для окрашивания подойдет тушь, чернила, акварельные краски, цветные соли вроде медного купороса или перманганата калия и так далее.
Вышепредставленные опыты с цветными стеклами и жидкостями можно считать лишь «легкой разминкой». Спектрозональная фотография – широкое понятие, включающее в том числе фотосъемку в инфракрасном и ультрафиолетовом спектрах излучения, лежащих за пределами видимого диапазона. Эти специфические фототехники будут рассмотрены в следующих главах.
Литература
1. Евтифеев Д. Контрастные (цветные) светофильтры B+W в «цифровую» эпоху. 2019 (https://evtifeev.com/66945-kontrastnye-cvetnye-svetofiltry-b-w-v-cifrovuju-jepohu.html#kniga-anselya-adamsa).
2. Гаранина С. П. Сергей Михайлович Прокудин-Горский. Биография (http://www.prokudin-gorsky.ru/download/Prokudin-Gorsky%20Biography.pdf).
Инфракрасная фотография
1. Инфракрасный пейзаж: компактная цифровая камера, стеклянный светофильтр
Свойства инфракрасных лучей – эффект Вуда – термография – визуализация в терагерцовом диапазоне – фильтры для инфракрасной съемки – искусственные источники инфракрасного освещения.
Человеческое зрение воспринимает ограниченный спектр световых излучений, однако технические средства позволяют сделать видимыми и сфотографировать то, что выходит за его пределы. Среди невидимых областей излучений наиболее доступной для любительских опытов является инфракрасная.
Способность светочувствительных смесей к запечатлению инфракрасных (ИК) лучей была обнаружена еще в XIX веке: для этого требовался особый химический состав, сенсибилизирующий фотоматериалы к длинноволновому излучению. Хотя изначально фотопластинки не запечатлевали даже видимый красный свет, не говоря о более длинноволновых областях спектра. В начале XX столетия инфракрасные фотографии успешно получал американский физик-экспериментатор Роберт Вуд.
В дальнейшем этот метод стал широко использоваться в науке, был оценен и его художественный потенциал. Инфракрасная съемка применялась в кинематографе для создания спецэффектов (так была снята сюрреалистическая сцена в фильме Сергея Параджанова «Тени забытых предков»). Советские фотолюбители могли экспериментировать с инфракрасной съемкой, используя выпускаемую промышленностью специальную фотопленку. В наши дни благодаря распространению цифровой фототехники появились гораздо более широкие возможности для развития любительской ИК-фотографии.
Инфракрасное излучение занимает диапазон длины волн от 0,74 мкм до 2 мм, в низкочастотной части граничит с ультракороткими радиоволнами. Его также называют тепловым излучением, так как оно исходит от горячих предметов и обладает способностью нагревать поглощающие его поверхности, поэтому воспринимается человеком как ощущение тепла. Длины волн, излучаемых физическим телом, зависят от температуры его нагрева: чем она выше, тем короче длина волны и больше интенсивность излучения. Поэтому раскаленный металл начинает светиться красноватым светом – по мере нагревания осуществляется переход от инфракрасного излучения к видимому.
Отличия картинки, наблюдаемой в ИК-лучах, от наблюдаемой невооруженный глазом обусловлены особенностями взаимодействия окружающих тел с излучением этого диапазона. Для многих веществ отличаются показатели отражения и пропускания ИК-лучей по сравнению с другими частями спектра.
Наибольший интерес представляет съемка инфракрасных пейзажей. Небо на таких фотографиях выглядит более темным, нежели мы привыкли его видеть, облака кажутся контрастными. Вода и водяной пар в значительной степени поглощают ИК-излучение, поэтому наблюдаемые в данном диапазоне водоемы выглядят практически черными. На ночном небе в ИК-спектре проявляются звезды, не видимые невооруженным глазом, зато пропадают либо тускнеют многие из привычных светил, чей спектр смещен в синюю и фиолетовую область. При дневной съемке листва деревьев становятся светлой, так как хлорофилл хорошо отражает ИК-лучи. Пестрые венчики цветов теряют окраску. В результате возникает художественный эффект «зимнего пейзажа» (в англоязычной литературе также называемый Wood effect (то есть «Эффект Вуда») по имени Роберта Вуда – белесые луга и деревья со светлой листвой кажутся заснеженными (фото 1—3).
2. Инфракрасный пейзаж: компактная цифровая камера, стеклянный светофильтр
На ИК-снимках хорошо различимы искусственные источники излучения, в особенности лампы накаливания, значительную часть энергии испускающие не в видимом, а в тепловом диапазоне. Этого нельзя сказать о современных галогеновых и светодиодных лампах – они производят «холодный свет» с минимумом теплового рассеивания, в этом и состоит суть их энергосбережения.
Фотографирование в ИК-лучах ближней части диапазона можно осуществлять как на фотопленку, так и при помощи камер с электронными матрицами. Для этих целей вполне подходят обычные фотоаппараты и мобильные устройства с фотокамерами. Однако более широкий охват инфракрасного диапазона требует использования специальных аппаратов с электронными инверторами – термографических камер (тепловизоров). Они позволяют фиксировать излучение в дальнем инфракрасном диапазоне и создают изображения, наглядно демонстрирующие температуру тел. На термографической картинке нагретые предметы отображаются светлыми, холодные – темными тонами. Для большей наглядности такие картинки раскрашиваются программными средствами, причем низким температурам в соответствие обычно ставятся синие, а высоким – красные цвета (фото 3). Подобные технологии используются в некоторых приборах ночного видения, с помощью тепловизоров определяют показатели теплопотерь зданий.
Интересно выглядят «тепловые портреты» живых существ. На таких снимках отчетливо прослеживается разность температур между телами холоднокровных и теплокровных животных, а также между различными частями человеческого тела. При этом можно заметить, что глаза интенсивно излучают инфракрасный свет, отчего на тепловизионных снимках от них исходит яркое свечение.
3. Термограмма, полученная тепловизором
Несомненно, термография является интересной областью для экспериментов, однако в настоящее время она мало доступна фотолюбителям. Профессиональные электронные тепловизоры, дающие качественную картинку, в продаже имеются, но стоят весьма дорого. Есть возможность приобрести в интернет-магазинах более дешевое устройство – тепловизионный модуль, подключающийся к смартфону, однако не стоит рассчитывать, что он позволит получить изображение хорошего качества.
Стоит упомянуть еще одну технологию, относящуюся к инфракрасной съемке. Речь идет о визуализации в терагерцовом диапазоне, занимающем относительно узкий интервал на границе инфракрасного излучения и радиоволн. Эти лучи легко проходят сквозь большинство диэлектриков, но существенно поглощаются электропроводящими материалами. Например, дерево, пластик и керамика для них прозрачны, а металл и вода – непроницаемы. В связи с этими особенностями, фотография в терагерцовом диапазоне позволяет получать полупрозрачные изображения предметов, не пропускающих видимый свет.
Так, с их помощью можно обнаруживать скрытые под одеждой предметы из металла, керамики, пластика – в системах безопасности терагерцовое излучение используется для сканирования багажа и одежды. В отличие от рентгеновских, эти лучи не являются ионизирующими и не наносят существенный вред организму. Для регистрации терагерцового излучения используются электронные преобразователи (в таких устройствах применяются диоды Ганна). Приходится заключить, что для съемки в данном диапазоне (так же, как и для термографии) необходимо сложное оборудование, пока недоступное любителям. Поэтому мы перейдем к рассмотрению легко реализуемых технологий.
Широкое распространение получила любительская фотосъемка в инфракрасных лучах ближнего диапазона, не требующая применения специальной аппаратуры – для этого можно использовать обычную цифровую камеру. Разумеется, большая часть фототехники адаптирована под видимый спектр (480—750 нм), однако вместе с ним матрицы захватывают некоторую часть инфракрасного и ультрафиолетового диапазонов. В обычной фотографии влияние невидимых лучей нежелательно, для его предотвращения используются антиинфракрасные и антиультрафиолетовые фильтры (первые обычно встраиваются в конструкцию фотоаппарата, располагаясь поверх матрицы, вторые – навинчиваются на объектив).
Большинство матриц современных цифровых камер чувствительны к инфракрасным лучам, в чем можно убедиться, посмотрев на горящий ИК-светодиод через дисплей камеры в режиме Live view (такие диоды часто находятся в пультах дистанционного управления бытовой техникой, выпущенной до 2020-х годов).
Для экспериментов наиболее пригодны камеры мобильных устройств и компактных фотоаппаратов, чьи матрицы не защищены антиинфракрасным фильтром. Практически любой цифровой фотоаппарат можно подвергнуть переделке, удалив из него соответствующий фильтр, однако это приведет к значительному возрастанию уровня цифрового шума, не говоря уже об угрозе поломки камеры после вмешательства.
Осваивая инфракрасную фотографию, лучше начать с простых мобильных устройств (причем современные смартфоны мало подходят для этих целей), а не спешить разбирать зеркальный фотоаппарат. Можно приобрети подержанную цифровую фотокамеру образца 2010-х годов, только стоит убедиться, что он дает хорошую картинку с ИК-фильтрами. Неплохие результаты на практике предоставлял бюджетный Panasonic Lumix DMC-F3, если не считать слабой резкости и высокого уровня шумов, свойственных данной модели. В инфракрасной фотосъемке зачастую работает парадоксальный принцип: чем хуже, тем лучше. Примитивные камеры вроде DMC-F3 оснащены слабой защитой от ИК-излучения, что позволяет использовать их без технической переделки. Представленные в данной главе фотографии 1 и 2 сделаны экшен-камерой, компактным цифровым фотоаппаратом, 5 – камерой мобильного телефона с разрешением 1,2 Мп. Разумеется, от такой техники не стоит ждать снимков, подходящих для печати в большом формате.
Если матрица достаточно хорошо фиксирует интересующий нас диапазон, для съемки остается только закрыть объектив фильтром, непроницаемым для видимого света, но пропускающим ИК. Рассмотрим несколько вариантов его получения:
1. Приобретение готового фильтра. В продаже имеются ИК-фильтры фабричного изготовления из темного стекла или пластика (последние значительно дешевле, но, естественно, уступают в качестве). Использование такого фильтра, навинчивающегося на объектив (или прикладывающегося к нему), весьма удобно, однако достаточно высокие цены заставляют искать альтернативные решения.
2. Простейший фильтр можно изготовить из засвеченной и проявленной цветной фотопленки (обычно такие «темные» кадры имеются в начале пленки). Если используется слайдовая позитивная пленка, пригодными будут, напротив, незасвеченные кадры. Для усиления эффекта можно сложить пленку в два слоя. Однако, как показывает практика, этот способ интересен только в экспериментальном плане – с помощью такого импровизированного фильтра вряд ли удастся получить достаточно качественные снимки.
3. Вполне приемлемых результатов можно достичь, используя пластмассу от компакт-дисков черного цвета, сняв с них отражающее покрытие (посмотрев на просвет, можно убедиться, что она имеет красноватый оттенок). Пожалуй, это самый простой и эффективный способ для начального знакомства с методом ИК-фотографии. Его недостатком является некоторая потеря резкости и контрастности при прохождении света через слой пластика.
4. Наиболее сложный способ – совмещение двух поляризующих фильтров. При их взаимной ориентации под определенным углом возникает затемнение, так как плоскости поляризации становятся друг другу перпендикулярны (см. главу «Перекрестная поляризация»). Такой фильтр позволяет проводить съемку в комбинированном диапазоне – он пропускает некоторую часть инфракрасного и ультрафиолетового спектров. По классической схеме рекомендует использовать циркулярно-поляризующий (CPL) фильтр в сочетании с линейно-поляризующим (LP) либо два линейно-поляризующих. Если собранная пара не дает должного эффекта, следует перевернуть стекло в одном из них – взаимная ориентация оптических элементов играет здесь решающую роль. Данный метод интересен в плане реализации эффекта перекрестной поляризации, но его нельзя порекомендовать как самый подходящий для инфракрасной съемки. Стоят поляризующие фильтры недешево, а использование их комбинации конструкции чревато возникновением оптических артефактов в виде кольцевой засветки, образующееся затемнение поля зрения является неравномерным.
5. В различных источниках также можно найти рекомендации по использованию пленки магнитных дискет в качестве светофильтра для инфракрасной съемки. Однако проведенные автором опыты с дискетами TDC 3? начала 2000-х годов дали негативный результат. Возможно, различаются оптические свойства дискет, выпущенных в разное время разными производителями, так что не стоит однозначно отказываться от поисков в данном направлении.
4. Инфракрасный снимок в облачную погоду: компактная цифровая камера, стеклянный светофильтр
Как мы видим, в экспериментах с инфракрасной фотографией для начала можно обойтись и без дорогостоящих приобретений. Самым простым способом, подходящим для новичков, является самостоятельное изготовление фильтра из темного пластика.
Наиболее интересные инфракрасные пейзажи получаются в ясную, солнечную погоду, когда ярче всего проявляется специфика метода. Съемки в облачную погоду, а также в тени при слабом освещении, в принципе, не исключены, однако требуют длительных выдержек. Стоит учесть, что в инфракрасной фотографии от уровня освещенности зависит цветовая гамма полученных снимков. Настоящее ИК-изображение лишено каких-либо привычных цветов и оттенков. Для него более применимо понятие тона – такое изображение состоит из темных и светлых тонов – соответственно частоте и интенсивности отраженного или испускаемого излучения. Однако электроника камер работает таким образом, что снимки получаются окрашенными в условные цвета. Фотографии 5 и 6 позволяют сравнить гамму условных цветов при съемке на ярком солнце и в тени. Характерно, что использованная для их получения камера мобильного телефона в сочетании с фильтром из пластика от компакт-диска окрашивала ярко освещенное небо на снимках в зеленый цвет, однако этот эффект воспроизводится далеко не на всех устройствах.
5. Инфракрасное небо в условных цветах: камера мобильного телефона, пластиковый светофильтр
Не стоит рассчитывать, что, начав экспериментировать с инфракрасной фотографией, сразу удастся получить снимки выставочного уровня качества. Эта техника сопряжена с большим количеством трудностей. Фильтры из пластика и других подручных материалов отнюдь не способствуют получению резкой картинки. Но даже если вы обзаведетесь профессиональным стеклянным светофильтром, это еще не значит, что все проблемы решены.
Помимо необходимости длинных выдержек и высокого уровня шума, трудностей добавляют оптические артефакты, возникающие при использовании фильтров. Во-первых, это блики, появляющиеся из-за переотражения света от поверхностей оптических элементов, во-вторых, со многими объективами наблюдается специфическое для ИК- фотографии явление, именуемое «горячим пятном» (hot spot), которое представляет собой засветку круговой формы в центре снимка.
6. Инфракрасный снимок в тени: камера мобильного телефона, пластиковый светофильтр
Контрастность полученных ИК-изображений, как правило, оставляет желать лучшего. Такие снимки требуют серьезной цифровой обработки – повышения яркости и контраста, а также шумоподавления. При выборе камеры для данного вида фотосъемки приходится искать баланс между разрешением матрицы и способностью устройства воспринимать ИК-лучи. Остается только посоветовать больше экспериментировать, подбирать проходящее устройство на практике.
Инфракрасную съемку можно проводить и с искусственными источниками освещения – для этого годятся ИК-светодиоды и обычные лампы накаливания, значительную часть своей мощности переводящие не в видимое, а в тепловое излучение. Обзаведясь достаточно яркой (200—500 Вт) лампой, можно проводить опыты с инфракрасной съемкой в помещении. В продаже также имеются мощные инфракрасные лампы, пригодные для фотосъемки в студийных условиях. Однако стоит помнить, что интенсивное излучение инфракрасного диапазона вызывает нагрев облучаемых поверхностей, так что с подобной лампой следует обращаться осторожно – она вполне способна поджечь расположенный близко предмет.
Чем может быть интересна студийная инфракрасная фотосъемка? Можно попробовать сделать портреты с помощью данного метода, однако их результат будет весьма специфичным. Как правило, на ИК-фотоснимках человеческая кожа выглядит белесой, что создает эффект «мраморной скульптуры», при этом может контрастно прорисовываться сосудистый рисунок вен. Пожалуй, более интересный результат можно получить, проводя съемку моделей общим планом на пленэре, в контексте живописных пейзажей.
Вышеприведенный обзор любительских методов можно считать лишь введением в инфракрасную фотографию. При наличии должного энтузиазма и терпения можно достичь хорошего качества инфракрасных снимков, но, даже если не ставить перед собой глобальных целей, простые методы ИК-фотографии способны послужить забавным трюком, позволяющим разнообразить фотографический опыт.
Литература
1. Левитин И. Б. Техника инфракрасных излучений. М.: Госэнергоиздат, 1959, 80 с.
2. Sienkiewicz J. How to Shoot Mind-Bending Infrared Digital Photos with a Modified Camera. 2019 (https://www.shutterbug.com/content/how-shoot-mind-bending-infrared-digital-photos-modified-dslr).
3. Войтехович А. Инфракрасная фотография, съемка и обработка, 2007 (http://funphoto.ua/rus/infrared-photography.php).
4. Катков Д. Инфракрасная фотосъемка без инфракрасного светофильтра, 2005 (http://photo-element.ru/book/pseudo_ir/RVP.html).
5. Сибрук В. Роберт Вильямс Вуд. Современный чародей физической лаборатории. Под ред. С. И. Вавилова. Гос. изд. технико-теоретической литературы, М., Л., 1946, 312 с.
6. Соловьев С. М. Фотографирование в инфракрасных лучах. М., 1957.
7. Williams A. Floppy Photog: Making An IR Filter From A 3.5? Disk, 2023 (Floppy Photog: Making An IR Filter From A 3.5? Disk | Hackaday).
Ультрафиолетовая фотография
1. Ультрафиолетовый городской пейзаж: съемка компактной камерой через фильтр из темного стекла
Свойства ультрафиолетовых лучей – объективы и фильтры для ультрафиолетовой фотографии – искусственные источники ультрафиолета – флюоресценция.
Наряду с инфракрасной фотографией значительный интерес для любителей представляет съемка в ультрафиолетовом (УФ) диапазоне, которому соответствуют волны длиной 10—400 нм. Данное излучение проявляет высокую химическую активность, оно ионизирует воздух с образованием озона и оказывает существенное влияние на живые организмы. Солнечный ультрафиолет в значительной мере задерживается озоновым слоем в атмосфере, однако наиболее длинноволновое УФ-излучение (называемое ближним) достигает земли и участвует в природных фотохимических процессах. Фиксация лучей данного спектра может осуществляться при помощи химических фотоматериалов и цифровых матриц, и в идеале такая съемка требует особой оптики. Но даже с помощью обычной фототехники можно получить снимки в ближнем УФ-диапазоне.
Чем меньше длина волны электромагнитного излучения, тем более интенсивное воздействие оно оказывает на материю, что отражается и во влиянии на живые организмы. Ближний ультрафиолет вызывает естественный загар кожи, в умеренных количествах он необходим для синтеза витамина D в организме. Дальний («жесткий») ультрафиолет обладает сильными дезинфицирующими средствами, при этом он весьма вреден для кожи и глаз: вызывает ожоги кожи, фотоконъюнктивит и фотокератит, также может провоцировать хронические заболевания вплоть до рака кожи. Поэтому не стоит лишний раз облучаться под кварцевыми лампами и лабораторными УФ-трансиллюминаторами. Еще одним мощным источником опасного ультрафиолета является дуговой разряд, вспыхивающий в электросварке, поэтому при работе с ней требуется защита глаз. Что же касается рентгеновского и гамма-излучения, их воздействие на живые ткани еще интенсивнее и вредоноснее, поэтому они не входят в сферу любительских опытов.
2. Лес в ультрафиолетовом диапазоне: съемка компактной камерой через фильтр из темного стекла
Однако в фотографии высокая фотохимическая активность ультрафиолета сыграла ключевую роль. Наиболее ранние фотопроцессы (дагеротипия, цианотипия, солевая фотография, пигментная печать на основе хромированных коллоидов и так далее) отличались низкой светочувствительностью и действовали за счет экспозиции на ярком солнечном свете, включающем существенную доля ближнего УФ-излучения. Более того, чувствительность солей серебра к невидимому глазом УФ-излучению была открыта в XIX в., еще до полноценной разработки фотографических техник. Как было отмечено в предыдущей главе, на заре фотографии приходилось сталкиваться с тем, что на снимках хорошо прорабатывались предметы синих и зеленых цветов, но практически не запечатлевались оттенки красного, которым соответствует менее энергетичная часть спектра. Для создания полноценной цветной фотографии понадобилась разработка способов сенсибилизации фотоматериалов ко всем частям видимого диапазона.
Того количества ультрафиолета, что освещает земную поверхность в безоблачную погоду, вполне достаточно для съемки в данном диапазоне при естественном освещении. При этом наблюдаются интересные эффекты – на венчиках некоторых цветов проявляются пятна, невидимые невооруженным глазом. Считается, что они служат «опознавательными знаками» (сигнатурами) для насекомых, которые обладают зрением в ультрафиолетовом диапазоне.
Изображения людей в УФ-спектре также весьма своеобразны: кожа выглядит темной, на ней проявляются невидимые в обычном свете пигментные пятна.
Кроме того, в ультрафиолетовых лучах флюоресцируют (вторично испускают собственное свечение) некоторые минералы, растения и гусеницы насекомых, что также можно использовать для создания интересных фотографий (см. главу «Светографика и люминесценция в фотографии»). Данный эффект используется в криминалистике для поисков следов, незаметных при обычном освещении, а также в медицине и в банковском деле.
Основная проблема фотосъемки в ультрафиолетовом диапазоне заключается в том, что большая часть данного спектра задерживается стеклянной оптикой. Для фотографии в широком УФ-спектре необходимы кварцевые линзы, выпускаемые для специального научного оборудования. В настоящее время такая оптика представлена в некоторых интернет-магазинах – из нее можно сделать простейший объектив-монокль, но рассчитывать на хорошее качество воспроизводимой им картинки не стоит (см. главу «Объектив монокль»).
Однако практика показывает, что даже с помощью обычной оптики можно производить съемку в ближнем ультрафиолетовом диапазоне (ориентировочно – до 320 нм, значения разнятся для различных сортов стекла). При этом диапазон пропускаемого атмосферой ультрафиолета в местности с небольшой высотой начинается как раз примерно с 300 нм, в горах он будет шире, а интенсивность излучения – выше, поэтому так важно защищать глаза и кожу в горных походах.
Стоит также помнить еще об одном методе: создании фотографии без объектива (см. главу «Пинхол»). Хотя в случае использования пинхол-камеры возникает другая проблема: точечное отверстие пропускает слабый поток излучения, для фотографии в УФ-диапазоне, обособленном от видимого спектра, понадобятся очень длинные выдержки либо высокая чувствительность матрицы (или химического фотоматериала).
В целом принцип технической реализации ультрафиолетовой фотографии таков же, как и для инфракрасной – объектив необходимо закрыть фильтром, непроницаемым для видимого света и более низкочастотной части спектра (в данном случае он будет представлять собой малопрозрачное темно-синее или черное стекло). К сожалению, найти фильтр для УФ-фотографии – дело непростое, не в пример ИК-фильтрам, легко изготавливаемым из подручного материала. Рассмотрим доступные способы: