banner banner banner
Земные ландшафты
Земные ландшафты
Оценить:
Рейтинг: 0

Полная версия:

Земные ландшафты

скачать книгу бесплатно


Для изучения распределения физико-географических процессов по поверхности Земли и с точки зрения геосистемной дифференциации не принципиально важна истинная фигура планеты. Для ландшафтных исследований достаточно знать о том, что Земля пусть и не представляет собой идеальный шар, но, во всяком случае, она шарообразна.

Можно долго размышлять над тем, что произошло бы с планетой, если бы она приобрела кубическую форму, пирамидальную, коническую, цилиндрическую, параллелепипедную… Но это, конечно, всё фантасмагорические теории, не имеющие под собой ничего, кроме способности человека к абстрактному мышлению и фантазированию.

Размеры Земли. Невелики относительно размеров Юпитера, Сатурна и тем более Солнца. Земля по отношению к Солнцу настолько же мала, насколько мало маковое зернышко в сравнении с апельсином. Иными словами, наша планета имеет оптимальные размеры – достаточные для того, чтобы на ней могло существовать человеческое общество и недостаточные для того, чтобы быть еще одним громадным безжизненным шаром, «безнадежно» блуждающим вокруг Солнца.

Перейдем от размышлений к конкретике. Земля имеет следующие параметры. Экваториальный радиус – 6378, 2 километров, полярный – 6356, 9 километров. Полярное сжатие, как говорилось, объясняется вращением Земли вокруг своей оси. Разница в 21 километр практически не сказывается на развитии географической оболочки. Длина экватора – 40 074 км, длина меридиана 40 008 км. И вся площадь земной поверхности равна, следовательно, 510 млн. кв. км.

Подводя итоги вышесказанного, хотелось бы в очередной раз подчеркнуть, что все геофизические, геодезические и астрономические характеристики, которыми обладает Земля, подобраны таким образом, чтобы на ней могла существовать атмосфера, гидросфера, а значит и жизнь.

Строение Земли

Земля, как и другие планеты Вселенной, состоит из концентрических оболочек, называемых геосферами. Слоистое строение имеют практически все природные образования. И на самой Земле в мире живой и неживой природы почти любой природный объект обладает слоистой структурой – будь то обычный камень или дерево. Видимо, слоистость – это всеобщая особенность строения почти всех естественных материальных объектов.

Вещество Земли находится в четырех состояниях: твердом, жидком, газообразном, плазменном. В процессе изучения физико-географических закономерностей ландшафтной оболочки Земли последнее состояние – плазменное – редуцируется. И поэтому мы говорим, что Земля состоит из твердой части, жидкой части и газообразной. Твердая Земля занимает наибольшую часть объема и массы и ограничивается поверхностью земной коры (на суше и под океаном).

«Твердая» Земля

Эта часть нашей планеты состоит из трех геосфер: земной коры, мантии, ядра. Земная кора, объединяемая с верхней частью верхней мантии (до астеносферы), называется литосферой. Но часто под литосферой неправильно понимается только земная кора – без верхней части верхней мантии. Такое определение литосферы неполноценно, поскольку земная кора функционально объединяется с этой частью мантии, составляя с ней одно целое в тектоническом (динамическом) отношении. Именно верхняя мантия содержит в себе энергетические источники для азональных процессов в земной коре и на ее поверхности. А это очень важно.

Строение земной коры. Земная кора делится на четыре типа: 1 – материковая (континентальная) кора;2 – океаническая; 3 – кора переходного (промежуточного, геосинклинального) типа;4 – рифтогенная. Материковая кора составляет тело континентов (включая подводные окраины материков) и прилежащих к ним материковых островов. Океаническая кора образует ложе Мирового океана. Промежуточный (геосинклинальный) тип земной коры свойственен переходным зонам. Этот тип коры специалисты обычно делят на два подтипа: субокеаническая, субматериковая. Рифтогенная слагает срединно-океанические хребты.

Материковая земная кора. Материковая земная кора толще океанической из-за того, что последняя отличается отсутствием «гранитного» слоя. Наибольшей толщины континентальная кора достигает под горными системами, которые имеют мощные «корни» и сами по себе высоко поднимаются над уровнем Океана. «Корни» гор зеркально повторяют неровности внешнего рельефа.

Материковая земная кора состоит из трех слоев: осадочного, «гранитного», «базальтового».

Поверхность осадочного слоя (стратисферы) вместе с почвой образует дневную поверхность. На щитах древних платформ данный слой почти отсутствует (представлен незначительным покровом четвертичных пород в несколько сантиметров). То есть щиты – это места выхода на поверхность «гранитного» слоя, сильно метаморфизированного и состоящего из смятых в мелкие сложные складки горных пород докембрия.

Осадочный слой состоит из пластов осадочных горных пород различного возраста, кроме докембрийского. Все они «выпали» осадком на поверхность в водной или воздушной среде, а также накопились в результате химических реакций и отложения биогенного материала.

«Гранитный» слой состоит не только из гранита, но и из гнейсов, кристаллических сланцев и пр. То есть его составляют метаморфические и магматические породы.

При изучении «базальтового» слоя ученые испытывают большие трудности. Самая глубокая скважина пока не достигла и глубины 13 км. Этого абсолютно недостаточно не то что для детального изучения «базальтового» слоя, но и даже для «гранитного».

Электромагнитные исследования говорят о том, что «базальтовый» слой состоит из пород, которые близки к базальтам. Они являются магматическими по генезису, но намного сильнее метаморфизированы, чем породы вышележащего слоя.

Граница Мохо отделяет базальтовый слой от мантии. Здесь наблюдается резкое возрастание скорости сейсмических волн.

Континентальная земная кора имеет среднюю толщину 50 км. На равнинах – от 30 до 40, в горах – до 70 километров. Для сравнения: океаническая земная кора – от 5 до 10 километров.

Мощность осадочного слоя материковой земной коры колеблется от 0 до 25 километров. Остальную толщину земной коры этого типа занимают «гранитный» и «базальтовый» слои.

Мантия. Еще более труднодоступна для человека мантия. Она занимает приблизительно 83% от объема всей Земли (земная кора – 1%). Мантия граничит с ядром на глубине около 3000 км. Вся мантия делится на верхнюю, среднюю и нижнюю. О последних двух частях сказать что-либо существенное и полезное практически невозможно. Существует предположение, что они находятся в кристаллическом состоянии. Часть верхней мантии – астеносфера – разжиженная, вязкая оболочка, по которой «скользят» блоки литосферы (т. н. литосферные плиты) вместе со своими континентами.

Ядро. Это внутренняя оболочка «твердой» Земли. Занимает 16% от объема всей планеты. Оно состоит из двух частей – внешней и внутренней. Внутреннее ядро (субъядро) – твердое, внешнее ядро – вязкое. Теоретически ядро состоит из никелистого железа. Примерно такой же состав имеют железные метеориты. Но существует и другой взгляд, согласно которому ядро имеет в целом такой же состав, как и мантия, но вещество ядра находится из-за высокой плотности в ином состоянии – металлизированном. Температура ядра выше, чем температура верхних слоев Солнца – 10 000 К. В диаметре ядро достигает 7 тыс. км (внутреннее ядро – 4400 км).

Мы видим, что состояние вещества «твердой» Земли меняется от твердого к «жидкому» и обратно: литосфера – твердая, астеносфера – «вязкая», нижняя мантия – твердая, внешнее ядро – расплавленное, внутреннее ядро – твердое. В связи с этим рассматриваемую часть Земли можно дифференцировать на пять ступеней, чередующихся по фазовому состоянию вещества.

Основные модели развития земной коры

На сегодняшний день совершенно ясно, что континентально-океанический рисунок земной поверхности (распределение суши и моря) в том виде, в котором он предстает перед нами на космических снимках и на различных картах, – это результат длительного развития литосферы. Попробуем разобраться в моделях эволюции литосферы, которые предлагает нам современный комплекс наук о Земле.

Модель направленного геосинклинального развития земной коры. В доархейские времена вся поверхность земной коры находилась ниже уровня Мирового океана. Проще говоря, суши в те времена не было. Под толщей океанских вод скрывалась кора типично океанического типа (что наблюдается и в наше время).

Но земная кора никогда не была статичным образованием, тем более в доархейскую и архейскую эпоху. В то далекое время внутри Земли происходили определенные целенаправленные закономерные геологические процессы, которые в перспективе должны были неизбежно привести к появлению первой суши. Так и произошло. Континентально-океанический рисунок, изучаемый нами сегодня, – это результат многомиллионолетнего процесса развития литосферы.

Земная кора развивается непрерывно. Процесс ее геологического изменения наблюдается, конечно, и в наше время. Судя по тому, как развивалась литосфера в течение всех геологических эр, мы можем утвердительно сказать, что эволюция земной коры – это процесс, направленный на увеличение площади суши.

В будущем, скорее всего, эволюция литосферы пойдет вспять, и новые геологические эры будут ознаменованы процессами масштабной деградации материковой земной коры. Первые «сигналы» разрушения континентальных платформ фиксируются уже сегодня, и современные континентальные рифты, в которых происходит растяжение земной коры, – яркое тому подтверждение: в будущем на месте данных рифтов должна сформироваться кора океанического типа.

Итак, процесс развития земной коры, направленный на увеличение площади суши, делится на два цикла: геосинклинальный цикл, платформенный режим.

Геосинклинальный цикл развития. Формирование материковой коры. В архее (или раньше) по неизвестным до сих пор причинам в глубинах Земли произошли серьезные изменения, которые привели к тому, что на дне Океана образовался обширный прогиб земной коры. Появилась первая в геологической истории Земли геосинклиналь (подвижная область). Скорее всего, это была не одна геосинклиналь, а целая цепочка геосинклиналей – то есть докембрийский геосинклинальный пояс.

Прогибание морского дна – это первая стадия развития подвижного пояса. Далее уже на второй стадии развития геосинклиналь, продолжая опускаться, заполняла свой прогиб океаническими осадками. Накопив должную толщу осадков, геосинклиналь вступила в третью стадию развития – начала резко и усиленно подниматься сквозь толщу морской воды. При этом слои горных пород, которые накопились в прогибе, сминались в складки; породы слоев постепенно гранитизировались и метаморфизировались за счет внедрения магмы. Развитие геосинклинали привело к появлению архипелага вулканических островов, которые продолжали подниматься, постепенно вытесняя морские воды.

В итоге крупный участок земной коры поднялся выше уровня Океана – в виде огромного вала, уже частично расчлененного и раздробленного. Появился первый массив континентальной земной коры с гранитным слоем, который, как мы видим, сформировался на третьей стадии развития геосинклинали, когда слои сминались в складки и гранитизировались.

После этого начался размыв вала текущими водами (с последующим образованием горных долин и горных хребтов). Поскольку образовавшийся вал продолжал расти с большой скоростью, всё выше и выше поднимаясь над уровнем Океана, текущая вода прорезала в грунте глубокие ущелья, формируя типичный горный ландшафт – чередование высоких узковершинных водоразделов (хребтов) и понижений между ними (ущелий).

Из этого можно сделать вывод, что горный ландшафт формируется только на тех территориях, которые поднимаются с большой скоростью. Это связано с тем, что скорость поднятия территории в геосинклинальных областях, грубо говоря, выше скорости денудации: сами возвышения (хребты) разрушаются очень медленно; и продукты их разрушения просто не успевают заполнять понижения рельефа и тем самым выравнивать местность. Зато водотоки успевают быстро прорезать глубокие долины, поскольку линейно текущая вода обладает большой и быстрой разрушительной силой. Можно сказать иначе: в геосинклинальных частях материков скорость линейной водной эрозии в целом совпадает со скоростью поднятия территории, а скорость общей денудации, которая стремится сгладить все неровности, значительно отстает. И как только горы перестают расти с большой скоростью, местность начинает относительно быстро выравниваться.

Прямо противоположную картину мы наблюдаем на платформах. Поэтому в данных частях Земли нет такого контрастного рельефа, как в подвижных областях планеты (современных и относительно недавно закончивших развитие).

Так с течением времени появилась классическая горная страна, которая некоторое время всё еще продолжала подниматься, всё больше и глубже размываясь стекающими в Мировой океан водами. В это время горная страна сохраняла высокую магматическую и сейсмическую активность. Такой этап развития земной коры называется эпигеосинклинальным (постгеосинклинальным): горная страна уже была сформирована, появились долины и хребты, но она некоторое время сохраняла большую подвижность.

Следовательно, в конце любой складчатой стадии (и современной тоже) выделяется эпигеосинклинальный этап (по сути, переходный от геосинклинального цикла к платформенному). Он начинается с образования горной страны и заканчивается угасанием высокой подвижности внутренних геологических процессов (некоторые авторы включают в эпигеосинклинальный этап всю стадию складчатости; исходя из этого положения, весь Средиземноморский геосинклинальный пояс сегодня находится на эпигеосинклинальном этапе развития).

Временной промежуток от начала поднятия геосинклинали до тектонического, магматического и сейсмического «успокоения» возникшей горной страны называется складчатостью, или складчатой стадией. В истории геологического развития Земли было несколько эпох складчатости.

Итак, весь геосинклинальный цикл делится на три стадии: образование прогиба, накопление осадков в прогибе, поднятие земной коры (складчатость).

Повторимся: в конце третьей стадии геосинклинального цикла выделяется эпигеосинклинальный этап, который оканчивается полной остановкой (замиранием) геосинклинальных тектонических процессов. Третья стадия геосинклинального цикла, как было сказано, называется складчатостью.

Платформенный цикл развития (платформенный режим). После «успокоения» сформировавшаяся горная страна вошла в платформенный цикл развития. Но для того, чтобы вступить в стадию «полноценной» (полностью сформировавшейся) платформы, ей нужно было пройти еще две платформенные стадии.

На первой стадии шел процесс разрушения горных хребтов экзогенными агентами. Понижения рельефа (долины и прогибы) заполнялись продуктами денудации. Это длилось миллионы лет. После разрушения гор (пенепленизации) территория превратилась в пенеплен (первичную равнину, плоскую или слабохолмистую) и вступила во вторую стадию развития с последующим накоплением рыхлых континентальных осадков в медленно опускающихся участках образовавшейся платформы. Опускание прибрежных участков платформы привело к затоплению их морем. В этих местах накопились древние мелководные морские осадки. Иногда трансгрессии и регрессии происходили не один раз за всю геологическую историю платформы и могли охватывать всю ее площадь. Таким образом платформа наращивала осадочный чехол.

Надо заметить в скобках, что и в наше время все платформы характеризуются так называемым тектоническим «дыханием» – одни участки медленно поднимаются, другие – медленно опускаются. Соответственно, прибрежные опускающиеся участки уходят под морскую воду – происходит трансгрессия, а прибрежные поднимающиеся участки постепенно освобождаются от морской воды – происходит регрессия.

Но вернемся к «первой» платформе Земли. После того, как ее осадочный чехол был сформирован, территория вступила в последнюю третью стадию, которая называется режимом полностью сформировавшейся платформы. Например, Восточно-Европейская платформа сейчас находится на этой стадии развития.

Так образовалась первая докембрийская платформа Земли. Конечно же, представленная выше схема появления такой древней платформы является обобщенной. Само собой разумеется, что в архейские и протерозойские времена возникла не одна платформа, а несколько. Одни сформировались раньше, другие – немного позже. Это было связано с тем, что в пределах любого геосинклинального пояса (и современного тоже) различные его части заканчивают геосинклинальный цикл развития в разное время. Какая-то одна часть (или же группа территориально разрозненных частей) геосинклинального пояса, закончившая развитие, становится областью складчатости (или областями складчатости – если речь идет о разрозненных частях пояса, сформировавшихся в одно время).

И здесь необходимо сделать акцент на одной важной детали: не имеет значения, какой геоструктурой в наше время представлена та или иная складчатая область – превратилась ли она в «настоящую» платформу с мощным осадочным чехлом или долгое время находится в первой стадии платформенного развития (разрушение горной страны). Потому как вся поверхность спокойных участков суши – это совокупность складчатых областей того или иного возраста (начиная с докембрийских и заканчивая мезозойскими).

Вновь образовавшаяся складчатая область (то есть территория, вступившая в платформенный цикл развития) может некоторое время сохранять слабую тектоническую активность (землетрясений и извержений вулканов не наблюдается, но горы продолжают очень медленно расти). Такая активность, по существу, уже не относится к категории геосинклинальной подвижности.

Древние платформы (области докембрийской складчатости). Фундамент древних платформ сформировался в середине-конце протерозоя.

Все древние платформы – это области докембрийской складчатости. Но почему именно докембрийской?..

Докембрий – огромный временной промежуток, охватывающий две начальные эры – архейскую и протерозойскую. Как известно, фундамент древних платформ образовался во время третьей (складчатой) стадии геосинклинального цикла, который закончился в докембрийской эпохе. Именно по времени завершения образования фундамента и дается временная привязка складчатости (в данном случае – докембрийская складчатость).

В докембрии выделяют в основном пять эпох складчатости: саамская (конец раннего архея), кеноранская (конец архея), карельская (конец раннего протерозоя), готская (конец раннего рифея), гренвильская (конец среднего рифея).

Докембрийский структурный этаж (это и есть платформенный фундамент, цоколь) отражает третью (складчатую) стадию развития древней геосинклинали, когда в процессе ее поднятия сквозь толщу океанской воды происходило формирование гранитного слоя и образование земной коры материкового типа. Отсюда проистекает еще одна существенная деталь: фундамент древней платформы – это часть гранитного слоя земной коры.

Крупные древние платформы, образующие структурные ядра современных материков, располагаются на Земле двумя рядами. Северный ряд: Восточно-Европейская (Русская), Сибирская, Китайская, Северо-Американская. Южный ряд: Африкано-Аравийская, Индостанская, Австралийская, Южно-Американская, Антарктическая. Последняя платформа в некоторых случаях рассматривается отдельно от остальных.

Горы древних платформ. Древние платформы – это области, где первоначальный горный рельеф, сформированный в древних эпигеосинклиналях, был полностью уничтожен. Несмотря на это, на таких платформах в определенных местах мы можем видеть самые настоящие горы. Данный тип рельефа встречается здесь довольно редко и обусловлен он более поздними геологическими процессами (внешними и внутренними), происходившими уже после докембрия. Так в областях докембрийской складчатости наблюдаются низкие глыбовые горы (на щитах), которые возникли там, где какой-либо участок платформы в древности претерпел процессы эпиплатформенного орогенеза. Надо сказать, что до сих пор сохранились еще активные области на древних платформах (например, в Африке), где глыбовые горы продолжают расти. Следовательно, можно различать глыбовые горы: активных эпиплатформенных областей (поясов) и неактивных эпиплатформенных областей.

Помимо этого, на докембрийских платформах встречаются:

1. Эрозионно-тектонические (или просто эрозионные) горы. Это расчлененные водной эрозией различные поднятия. Среди них ярко выделяются: а) столовые горы (плато и различные платообразные поверхности, которые подверглись сильной глубокой эрозии – при общем тектоническом поднятии территории); б) сводовые горы (сильно и глубоко расчлененные водными потоками сводовые поднятия на щитах и антеклизах).

2. Останцы (древние одиночные остаточные горы; чаще всего – столовые останцы).

3. Структурно-денудационные горы. Это отпрепарированные денудацией (т. н. «обнаженные») магматические образования. Возникают в результате сноса денудационными агентами рыхлого осадочного материала – при общем тектоническом поднятии территории.

4. Древние вулканы (потухшие; в меньшем количестве – действующие).

Молодые платформы (области байкальской, каледонской, герцинской и мезозойской складчатости). Как можно заметить, все три стадии развития геосинклинали – от прогибания морского дна до полного затухания активности возникшей горной страны – объединяются в один тектонический геосинклинальный цикл.

Завершившийся в конце докембрия геосинклинальный цикл, в результате которого на Земле появились первые платформы, не был единственным циклом в геологической истории планеты. Каждая геологическая эра была ознаменована завершением хотя бы одного цикла; в палеозое таких событий было несколько (важно: в данном случае речь идет не о продолжительности цикла, которая могла охватывать несколько эр, а о времени завершения цикла).

В архее и протерозое закончился докембрийский (древнейший) геосинклинальный цикл (который уже был рассмотрен). В палеозое – байкальский (кембрийский), каледонский (раннепалеозойский), герцинский (позднепалеозойский) циклы. В мезозое – мезозойский цикл. В кайнозое наблюдается альпийский цикл, который еще не завершился.

Естественно, что в каждом тектоническом цикле была и своя стадия складчатости (третья стадия развития геосинклинали). На Земле, следовательно, было несколько эпох складчатости (название складчатых эпох совпадает с названиями геосинклинальных циклов): докембрийская складчатость, о которой говорилось выше), байкальская, каледонская, герцинская (варисская), мезозойская, альпийская, или кайнозойская.

Области байкальской складчатости: Прибайкальский регион, горная система Восточный Саян, Аравийский полуостров и др. Области каледонской складчатости: северо-запад Скандинавии, Шотландия, Гренландия, Забайкальский регион, запад Центрального Казахстана и др. Области герцинской (варисской) складчатости: Западная Европа, Урал, отчасти Тянь-Шань, Алтай, Саяны, Куньлунь и др. Области мезозойской (тихоокеанской) складчатости:

– киммерийская фаза складчатости (конец юрского периода – начало мелового): северо-восток России (Верхояно-Чукотский регион), Крым, частично Кордильеры Северной Америки и др.;

– ларамийская фаза складчатости (конец мелового – начало палеогенового периода): Скалистые горы Северной Америки, отчасти горы Южной Америки и др.

Складчатые области палеозоя занимают около 20% площади материков; мезозойские и альпийские (кайнозойские) области – 23% площади.

Складчатые области байкальского, каледонского и герцинского возраста сейчас мы называем молодыми платформами, так как их фундамент, в отличие от древних платформ, сформировался не в архее и протерозое, а в палеозое и мезозое. Молодые платформы постепенно присоединялись к древним, и таким образом происходило увеличение площади суши.

Области складчатости мезозойского возраста в наше время, в принципе, являются самыми молодыми платформами. По крайней мере, в тектоническом отношении они давно деактивированы. Но по традиции эти территории называют не платформами, а просто областями мезозойской складчатости, поскольку не все специалисты согласны с тем, что эти части Земли являются платформами.

Итак, все молодые платформы можно разделить на: эпибайкальские (некоторые специалисты не относят эти платформы к молодым), эпикаледонские, эпигерцинские, эпимезозойские. Приставка «эпи» в данном случае означает «после» (то есть платформа образовалась после завершения той или иной эпохи складчатости)

Горы молодых платформ. Каждая складчатая стадия оставляла после себя складчатые горы, которые высоко поднимались над уровнем Океана.

В областях байкальской, каледонской, герцинской складчатостей первозданные складчатые горы к «середине» кайнозоя были полностью разрушены денудацией. Остатков тех первоначальных гор в данных частях Земли практически нет. Но в «середине» кайнозойской эры определенные части этих областей были вовлечены в процесс эпиплатформенного горообразования, в результате чего на байкалидах возникли глыбовые горы (схожие с горами древних платформ), а на каледонидах и герцинидах – складчато-глыбовые горы.

С более молодыми, мезозойскими, областями складчатости дело обстоит несколько иначе. Изначальные складчатые горы мезозойских областей складчатости хоть и были существенно обработаны внешними силами природы, но всё же к началу и даже к «середине» кайнозоя сохранились в виде низкогорных территорий, некоторые из которых позже в эпоху разрастания эпиплатформенного орогенеза были приподняты на различную высоту и образовали достаточно высокие глыбово-складчатые (омоложенные) горы. Таким образом мезозойские низкогорья омолодились за счет новых поднятий.

Эпоха кайнозойского эпиплатформенного орогенеза до сих пор не завершилась, и поэтому глыбовые, складчато-глыбовые и глыбово-складчатые горы (то есть возрожденные) встречаются не только в тех местах, где активизация платформ давно закончилась (Аппалачи, Урал и др.), но и в тех местах, где она еще продолжается (Тянь-Шань, Куньлунь и др.). Таким образом, мы различаем возрожденные горы: активных эпиплатформенных областей, неактивных эпиплатформенных областей.

Итак, на молодых платформах встречаются следующие генетические типы гор, которые были созданы эпиплатформенным горообразованием: на байкальских структурах – глыбовые горы; на каледонских и герцинских – складчато-глыбовые горы; на мезозойских – глыбово-складчатые.

Конечно, не все древние и молодые складчатые области подверглись тектоническому оживлению в «середине» кайнозоя. Платформы (или участки платформ), которые не были задеты эпиплатформенным орогенезом, с течением времени нарастили мощный осадочный чехол, и в настоящее время эти территории характеризуются равнинным рельефом.

Эпохи эпиплатформенного орогенеза. Когда мы говорим о горах молодых платформ, то имеем в виду те горы, которые сформировались в пределах эпиплатформенных поясов, возникших в неоген-четвертичное время. Начало данной эпохи эпиплатформенного горообразования совпало с началом эпохи альпийской (новейшей) складчатости. На некоторых частях этих эпиплатформенных поясов процессы горообразования уже завершились, и сегодня эти части представляют собой горные территории, расположенные в пределах молодых и относительно молодых платформ. Другие части данных эпиплатформенных поясов в достаточной мере подвижны и в наше время.

Но, надо отметить, что неоген-четвертичная эпоха эпиплатформенного горообразования, вероятнее всего, не является единственной в истории развития земного шара. Начало каждой новой эпохи складчатости (байкальской, каледонской, герцинской, мезозойской и альпийской) было ознаменовано оживлением (активизацией) и соседних платформенных участков разного возраста. Этот вопрос, конечно, содержит в себе много спорных моментов и противоречий, но совершенно очевидно, что начало каждой новой складчатости не могло не отразиться на спокойных платформенных участках, примыкавших к тем геосинклинальным областям, которые вступали в складчатую стадию развития.

Следовательно, теоретически мы можем выделить эпохи эпиплатформенного орогенеза, которые соответствуют геосинклинальным эпохам складчатости: альпийская эпоха (которая еще не завершилась), мезозойская эпоха эпиплатформенного горообразования, герцинская, каледонская, байкальская.

Каждый раз одновременно с появлением на Земле новых складчатых гор (на месте геосинклинальных областей) на Земле появлялись и новые горы на платформах.

И, само собой, одни и те же участки могли не один раз подвергнуться эпиплатформенному горообразованию в течение всей геологической истории. Но в любом случае те горы, которые возникли во время прошлых (древних) эпох тектонической активизации (включая мезозойскую эпоху), до нашего времени почти не сохранились – точно так же, как не сохранились и складчатые горы, образовавшиеся на месте геосинклинальных областей в соответствующие эпохи складчатости. То есть складчато-глыбовые и глыбово-складчатые горы, которые мы видим сегодня на молодых платформах, являются продуктом последнего (неоген-четвертичного) эпиплатформенного орогенеза.

В принципе, то же самое можно сказать и о горах древних платформ (включая байкальские платформы), но с теми или иными поправками.

Геосинклинальные пояса. Сформировавшиеся в архее и протерозое докембрийские платформы были отделены друг от друга океаническими пространствами. В конце докембрия (или, по другим предположениям, в начале палеозоя) между древними платформами на месте обширных морских (океанических) бассейнов возникли пять геосинклинальных поясов: Урало-Охотский, Арктический, Северо-Атлантический, Средиземноморский, Тихоокеанский.

Целенаправленная эволюция этих поясов способствовала постепенному закрытию океанических пространств, которые отделяли древние платформы друг от друга. То есть развитие данных поясов привело к появлению новой (относительно молодой) суши между докембрийскими платформами.

Первые три пояса, как мы поняли, завершили свое развитие преимущественно в палеозое (и в начале мезозоя), и в настоящее время их складчатые области представлены молодыми платформами. Последние два пояса продолжают развитие и в наше время.

Но говоря, что три геосинклинальных пояса прекратили развитие, нельзя утверждать, что их уже нет. Они существуют, но в принципиально другом качестве – в виде различных сформировавшихся складчатых областей (байкальских, каледонских, герцинских, раннемезозойских). Сформировавшиеся складчатые области (от байкальских до мезозойских включительно) существуют и в пределах Тихоокеанского и Средиземноморского поясов, поскольку некоторые их части уже вступили в платформенный цикл развития.

В конечном итоге, когда все разрозненные участки древней суши (т. е. древние платформы, которые обособились после раскола древнейшего материка Протопангеи в конце докембрия) были вновь соединены между собой участками молодой суши, образовался единый континентальный массив – новая Пангея, который в начале палеозоя (в триасовом периоде) начал распадаться на суперконтиненты Лавразию и Гондвану. Последние блоки суши раскололись на материки, которые мы знаем сегодня. Так сформировались очертания и взаиморасположение современных материков и океанов.

О современных геосинклинальных поясах. На Земле в границах материковой суши существуют такие территории, которые в настоящее время находятся на эпигеосинклинальном этапе развития. Они называются поясами новейшей (альпийской) складчатости. В пределах материков существуют два эпигеосинклинальных пояса: Альпийско-Гималайский пояс; Пояс Анд и береговых хребтов Кордильер Северной Америки. Первый является частью Средиземноморского геосинклинального пояса. Второй – часть Тихоокеанского геосинклинального пояса.

Некоторые части этих геосинклинальных поясов, как было сказано, уже завершили развитие и в настоящее время представлены палеозойскими и мезозойскими складчатыми областями (начиная с областей байкальского возраста).

Горы современных эпигеосинклинальных поясов. В пределах двух эпигеосинклинальных поясов альпийской складчатости находятся предельно высокие и самые молодые горы Земли, которые не только не успели разрушиться, но и продолжают подниматься всё выше и выше (процесс роста этих гор сопровождается извержениями вулканов и землетрясениями). Здесь можно наблюдать уже полноценную смену высотных ландшафтных поясов.

Эры, периоды и складчатости

ЭРА (продолжительность)

Архейская (более 1000 млн. лет)

AR

Протерозойская (2000 млн. лет)

PR

Палеозойская (330 млн. лет)

PZ