скачать книгу бесплатно
Но должна была наступить отрезвляющая развязка, и в главе 6 я расскажу о том, что происходило после 1989 года. Но экспоненциальный рост легко вводит в заблуждение, и в 1999 году, через десять лет после того как Nikkei достиг своего пика, я размышлял об опыте, пережитом Японией, ожидая арендованную машину в аэропорту Сан-Франциско. Кремниевая долина переживала годы пузыря доткомов, и, даже зарезервировав машину заранее, приходилось ждать, пока только что возвращенные автомобили обслужат и снова выпустят в самую гущу забитого Бэйшор-Фривей. Памятуя японский опыт, я думал, что каждый год после 1995-го мог быть последним периодом иррационального изобилия, как назвал его Алан Гринспен, но ни 1996-й, ни 1997-й, ни 1998-й не стали им. А многие экономисты заверяли американских инвесторов – даже с большей готовностью, чем десятью годами ранее, – что этот период экспоненциального роста отличается и что старые правила неприменимы к Новой экономике, в которой бесконечный быстрый рост будет продолжаться беспрепятственно.
В 1990-е Dow Jones Industrial Average – предположительно под влиянием Новой экономики – продемонстрировал самый высокий десятилетний рост в истории и поднялся со значения 2810 в начале января 1990 года до 11 497 в конце декабря 1999 года (FedPrimeRate, 2017). Эти показатели соответствуют годовому экспоненциальному росту в 14 % за десять лет с пиковыми значениями 33 % в 1995-м и 25 % в 1996 году. В продолжение этого роста к 2010 году уровень индекса достиг приблизительно 30 000. Nasdaq Composite Index, отражающий растущую мощь отрасли компьютерных технологий и коммуникаций (во главе с компаниями Кремниевой долины, стремительный рост капитализации которых был обусловлен биржевыми спекуляциями), продемонстрировал в 1990-х еще более высокие результаты: его экспоненциальный рост в среднем составил почти 26 % в год в период между апрелем 1991 года, когда он достиг отметки в 500 пунктов, и 9 марта 2000 года, когда он достиг 5046 пунктов (Nasdaq, 2017).
Даже обычно осторожные в высказываниях обозреватели были поражены. Джереми Сигел из Уортонской школы бизнеса не мог скрыть восхищения: «Это потрясающе. Каждый год мы говорим, что более 20 % роста снова быть не может, – и снова получаем его. Я по-прежнему считаю, что нам нужно привыкать к более низкой, более нормальной прибыли, но кто знает, когда закончится эта полоса?» (Bebar, 1999). А энтузиасты зарабатывали деньги на оптовой продаже невозможного: один спрогнозировал, что Dow Jones достигнет отметки 40 000 (Elias, 2000), другой – что он неизбежно поднимется до 100 000 (Kadlec and Acampora, 1999). Но конец пришел, и опять-таки довольно быстро. К сентябрю 2002 года Dow Jones упал до отметки 9945 пунктов, почти на 40 % по сравнению с пиком 1999 года (FedPrimeRate, 2017), а к маю 2002 года Nasdaq Composite рухнул почти на 77 % по сравнению с пиком в марте 2000 года (Nasdaq, 2017).
Технический прогресс также иногда развивается по экспоненте и, как я покажу в главе 3, в некоторых случаях продолжается десятилетиями. Максимальная мощность паровых турбин является прекрасным примером долгосрочного экспоненциального роста. Чарльз Алджернон Парсонс запатентовал первую модель турбины в 1884 году и почти сразу же создал маленькую установку, которую можно видеть в холле Parsons Building в Trinity College в Дублине, с мощностью всего 7,5 кВт, но первая коммерческая турбина, начавшая вырабатывать электричество в 1890 году, была в 10 раз больше и имела мощность 75 кВт (Parsons, 1936).
В результате последующего быстрого роста к 1899 году появилась первая турбина мощностью 1 МВт, через три года – установка мощностью 2 МВт, в 1907 году – первая модель мощностью 5 МВт, и перед Первой мировой войной максимальная мощность турбины, установленной на станции Фиск-стрит Commonwealth Edison Co. В Чикаго, составила 25 Мвт (Parsons, 1911). Между появлением первой коммерческой модели мощностью 75 кВт в 1890 году и установкой мощностью 25 МВт в 1912 году максимальная мощность паровых турбин Парсонса росла с экспоненциальной скоростью более 26 %, удваиваясь менее чем за три года. Это было значительно быстрее, чем рост мощности первых паровых двигателей в XVIII веке, когда Бенуа Фурнерон начал серийный выпуск первых моделей.
Иногда показатели растут экспоненциально благодаря не постоянному совершенствованию изначальной технологии, а серии инноваций, когда этап следующей инновации начинается там, где старая достигла своего предела: траектории индивидуального роста, несомненно, имеют S-образную форму, но огибающая кривая[5 - Огибающая кривая семейства кривых – линия, которая в каждой своей точке касается хотя бы одной кривой семейства и каждым своим отрезком касается бесконечного множества этих кривых. – Прим. ред.] явно носит экспоненциальный характер. История электронно-лучевых трубок, которая кратко будет изложена в главе 4, является прекрасным примером экспоненциальной огибающей кривой, охватывающей почти век прогресса. В главе 4, посвященной росту артефактов, я подробно рассмотрю самый, пожалуй, известный случай современного экспоненциального роста, продолжавшегося 50 лет: рост числа транзисторов на кремниевой микросхеме, описанный законом Мура, согласно которому оно удваивается каждые два года.
И прежде, чем оставить тему экспоненциального роста, будет уместно упомянуть простое правило расчета периода удвоения значения, идет ли речь о раковых клетках, банковских счетах или вычислительной мощности компьютеров или, наоборот, расчете темпов роста с использованием известного времени удвоения. Точные результаты получаются путем деления натурального логарифма 2 (равного 0,693)[6 - На всякий случай напомним, что натуральный логарифм числа x – это показатель степени, в которую нужно возвести число e (иррациональная константа, равная приблизительно 2,72), чтобы получить x. – Прим. ред.] на преобладающий темп роста (выраженный как доля от единицы, например 0,1 для 10 %), но довольно точный приблизительный результат можно получить, разделив 70 на темп роста, выраженный в процентах. Когда экономика Китая росла на 10 % в год, период удвоения составлял семь лет; и наоборот, удвоение числа компонентов на кремниевой пластине за два года предполагает годовой темп экспоненциального роста около 35 %.
Гиперболический рост
Неограниченный и, следовательно, на Земле только временный экспоненциальный рост не следует путать (как это иногда бывает) с гиперболическим ростом. Для экспоненциального роста характерно увеличение абсолютного темпа роста, однако он остается функцией по времени, приближенному к бесконечности. В отличие от него гиперболический рост достигает своей кульминации в абсурде (сингулярности), когда значение растущей переменной достигает бесконечности за конечный промежуток времени (рис. 1.7). Это конечное событие, конечно, невозможно в любых конечных пределах, и сдерживающая обратная связь в конечном счете окажет тормозящий эффект и прекратит гиперболический рост. Но, начавшись в низком темпе, гиперболические траектории могут развиваться в течение относительно длительных периодов времени, прежде чем их развитие остановится и сменится другой формой роста (или спада).
Рис. 1.7. Кривая гиперболического роста в сравнении с экспоненциальным ростом
Первым так называемую суперэкспансию – то есть ускоряющийся рост мирового населения благодаря ускоренной эволюции цивилизаций – отметил Анрэ Кайо: «…вполне естественно связывать суперэкспансию человечества с присутствием Духа?»[7 - В статье Кайо противопоставляет устойчивый рост популяций животных почти гиперболическому росту человеческой популяции – и если характеристики темпов роста популяций животных объяснимы рациональными причинами, то для объяснения феномена суперэкспансии Кайо понадобилось ввести иррациональный фактор – Дух. – Прим. ред.] (Cailleux, 1951, 70). Этот процесс соответствует квазигиперболическому уравнению: P = a/(D – t)M, где a, D и M являются константами. Мейер и Валли (Meyer and Vallee, 1975, 290) пришли к выводу, что рост населения «далек от “естественной” склонности к состоянию равновесия… демонстрирует уникальное свойство самоускорения».
Но такое возможно лишь на ограниченном временном промежутке, иначе число людей в конце концов достигло бы бесконечности. Фон Фёрстер и др. (von Foerster et al., 1960, 1291) рассчитали, что «пятница, 13 ноября 2026 года» станет Судным днем, когда «население приблизится к бесконечности, если будет расти, как росло за последние два тысячелетия». Очевидно, что это никогда не случится, и всего через несколько лет после того, как Фёрстер и его соавторы опубликовали свою работу, годовой рост мирового населения достиг пика, и начался переход к новой траектории.
Правда, Хёрн (Hern, 1999) доказывал, что рост мирового населения демонстрируют поразительные параллели с ростом раковой опухоли, так как некоторые виды рака также демонстрируют сокращение периода удвоения клеток во время самой агрессивной фазы. Начав отсчет 3 млн лет назад, он рассчитал, что к 1998 году население удваивалось 32,5 раза, а 33-й (когда оно достигнет 8,59 млрд) закончится в начале XXI века[8 - На 2020 год население Земли достигло 7,753 млрд человек. – Прим. ред.]. Если к антропомассе добавить биомассу домашних животных, то 33-е удвоение уже завершилось. Некоторые злокачественные опухоли вызывают смерть организма-хозяина после 37–40 удвоений, и (если предположить, что тенденция продолжится) 37-е удвоение населения будет достигнуто через несколько веков.
Анализ роста мирового населения Нильсена (Nielsen, 2015) показывает, что за последние 12 000 лет наблюдалось приблизительно три периода гиперболического роста: первый – между 10 000 и 500 годами до н. э., второй – между 500 и 1200 годами н. э. и третий – между 1400 и 1950 годами. На эти три периода пришлось около 89 % всего роста за последние 12 тысяч лет. Во время первых двух переходных периодов (с 500 года до н. э. по 500 год н. э. и 1200–1400) происходило значительное замедление роста народонаселения, и кривая этого роста далеко уходила от гиперболической траектории. Траектория же сегодняшнего переходного периода еще неизвестна: увидим ли мы сравнительно быстрое выравнивание и последующее длительное плато или пик, за которым последует значительный спад? О траекториях роста населения будет сказано больше в главах 5 и 6.
Существует еще один класс примечательных примеров антропогенного гиперболического роста, который отмечают многие авторы, изучающие ускоренное развитие. У этих работ длинная история: впервые они появились во второй половине XIX века (Lubbock, 1870; Michelet, 1872), а в XX веке их дополнили работы Генри Адамса, французских историков 1940-х годов и (начиная с 1950-х) многих американских историков, физиков, специалистов в области техники и информатики. Адамс писал о законе ускорения (Adams, 1919) и «законе фазы применительно к истории», согласно которым человеческое мышление предельно и интеллект в конце концов должен достичь предела своих возможностей (Adams, 1920)[9 - Адамс воспринимал историю через собственную интерпретацию второго закона термодинамики и закона энтропии применимо к общественным процессам. Он полагал, что в процессе развития общество стремиться к «равновесию» как к предельному состоянию, в котором развитие останавливается, достигнув наивысшей точки. – Прим. ред.]. Мейер (Meyer, 1947) и Галеви (Halеvy, 1948) писали об ускорении эволюции и об ускорении истории. Основной вклад в американскую волну с разных точек зрения внесли Фейнман (Feynman, 1959), Мур (Moore, 1965), Пил (Piel, 1972), Моравец (Moravec, 1988), Корен (Coren, 1998) и Курцвейл (Kurzweil, 2005).
Многие из работ этих авторов или подразумевают, или явно говорят о наступлении сингулярности, когда развитие искусственного суперинтеллекта достигнет такого уровня, что превратится в беспрецедентный неконтролируемый процесс. Подразумевается, что искусственный интеллект не только превзойдет человеческие возможности (вообразимые), но также приблизится по скорости обработки информации к мгновенной скорости физических изменений. Очевидно, что подобные достижения кардинальным образом изменят нашу цивилизацию. Адамс предсказывал (как он понимал ее, то есть исключая вычислительные измерения) наступление сингулярности в период между 1921 и 2025 годами (Adams, 1920). Корен (Coren, 1998) откладывал ее до 2140 года, а последние прогнозы Курцвейла, касающиеся момента, когда машины, работающие с помощью искусственного интеллекта, возьмут верх над людьми, относятся к 2045 году (Galleon and Reedy, 2017). Пока мы (как утверждают многие из этих авторов) неумолимо движемся к этой фантастической ситуации, сторонники ускоренного, то есть гиперболического, роста приводят другие его примеры, разворачивающиеся на наших глазах. Среди них чаще всего называют способность человечества обеспечивать продовольствием растущее население, использовать еще более мощные способы преобразования энергии или путешествовать на еще более высоких скоростях. Это отображается в виде последовательности логистических кривых, феномена, хорошо описанного Дереком Джоном де Соллой Прайсом (Derek J. de Solla Price, 1963, 21):
Каждое новое осознанное ограничение вызывает восстановительную реакцию… Если реакция успешна, ее ценность обычно настолько трансформирует измеряемое явление, что оно обретает вторую жизнь и поднимается с новой силой, пока наконец не встретит свою гибель. Поэтому встречаются два варианта традиционной логистической кривой, более частые, чем простая S-образная интегральная кривая распределения. В обоих случаях вариант возникает во время перегиба, предположительно в тот момент, когда лишения, связанные с потерей экспоненциального роста, становятся невыносимыми. Если небольшое изменение определения измеряемого явления позволяет считать это явление новым наравне со старым, то новая логистическая кривая, как феникс, возрождается из пепла старой…
Мейер и Валли (Meyer and Vallee, 1975) доказывали, что феномен логистического расширения или ускоренного роста недооценивается и что скорее гиперболический, чем экспоненциальный, рост довольно распространен, если рассматривать технический прогресс в долгосрочном плане. Их примеры гиперболического роста включают как число людей, которые могут прокормиться с участка земли, так и рост максимальной мощности первичных двигателей, скорости путешествий и максимальной эффективности методов преобразования энергии. Историческая траектория роста отдельных явлений описывается S-образными кривыми (логистическими или другими, с характерными для них асимптотами[10 - Асимптота – прямая, расстояние до которой от точки описанной возле нее кривой стремится к нулю при удалении точки вдоль ветви в бесконечность. Классический пример асимптот – координатные оси (оси абсцисс и ординат) для гиперболической кривой. Асимптотический минимум – значение, максимально близкое к предельно низкому (нулю); асимптотический максимум – значение, максимально приближенное к наивысшему. – Прим. ред.]), но огибающая кривая последовательных приростов делает всю последовательность роста временно гиперболической. Как и Прайс, Мейер и Валли (Meyer and Vallee, 1975, 295) рассматривали этот процесс передачи эстафеты как автоматическую последовательность: «как только машина достигает потолка производительности, другая, с качественно отличающейся технологией, подхватывает эстафету у предыдущей и превосходит ее предельный результат, в результате чего создается эффект поддержания ускорения количественной переменной».
Однако при более пристальном взгляде становится понятно, что реальность несколько сложнее.
Пищи, добытой первыми собирателями и охотниками, хватало всего на 0,0001 человека с гектара земли. В более благоприятных условиях это число достигало 0,002 человека/га. Переход к производящему сельскому хозяйству поднял плотность на два порядка, до 0,2–0,5 человека с гектара. Первые государства, где практиковалось интенсивное земледелие (Месопотамия, Египет, Китай), подняли этот показатель до 1 человека с гектара. Лучшие традиционные методы агрокультуры XIX века в таких интенсивно возделываемых регионах, как южный Китай, позволяли прокормить более 10 человек с гектара, обеспечивая в среднем гораздо лучшее питание, чем ранее (Smil, 2017a).
Но эта последовательность не описывает строго распределенное во времени универсальное эволюционное движение, так как во многих регионах собирательство тысячелетиями сосуществовало с оседлым земледелием (и существует по сегодняшний день: вспомним сбор трюфелей и охоту на кабанов в Тоскане). Переложное земледелие[11 - Переложное земледелие – экстенсивный вид сельского хозяйства, при котором поле возделывается до тех пор, пока оно сохраняет плодородие. После этого оно забрасывается и распахивается следующий участок. Один из древнейших видов такого земледелия – подсечное-огневое. – Прим. ред.] практиковалось даже в некоторых частях Европы (Скандинавия, Россия) еще в XX веке и по-прежнему кормит миллионы семей в Латинской Америке, Африке и Азии, а такие гибридные методы, как агропасторализм[12 - Агропасторализм – сочетание растениеводства и животноводства, практикуемое среди оседлых, кочевых и полукочевых сообществ. – Прим. ред.], по-прежнему распространены там, где они помогают сократить риск чрезмерной зависимости от растениеводства.
И, очевидно, что даже если сажаются лучшие семена, а растения получают оптимальное питание, влагу и защиту от сорняков и вредителей, максимальный урожай по-прежнему ограничен интенсивностью освещения, продолжительностью вегетационного периода, морозостойкостью и уязвимостью перед множеством природных катаклизмов. Как я продемонстрирую в главе 2 (в разделе, посвященном росту сельскохозяйственных культур), во многих регионах, где прежде наблюдался рост производительности, теперь она сократилась, несмотря на активное применение удобрений и усиленную ирригацию, а динамика урожайности отражает минимальный прирост или откровенный застой. Ясно, что универсального, суперэкспоненциального роста урожайности не существует. Человеческий гений добился множества впечатляющих результатов, когда ему не нужно было считаться со сложностями организмов, чей жизненный цикл определяется разнообразными ограничениями среды. Технический прогресс демонстрирует лучшие примеры самоускоряющегося развития, за которым следуют траектории гиперболического роста, и максимальная удельная мощность первичных двигателей и скоростей передвижения являются точно задокументированными иллюстрациями.
Максимальная удельная мощность современных первичных двигателей (первичных источников механической энергии) в начале XVII века составляла 1000 Вт у паровых двигателей. Им на смену пришли водяные турбины (между 1850 и 1900 годами), а затем показатели мощности поднялись до рекордных более 1 ГВт у паровых турбин (рис. 1.8).
Рис. 1.8. Эстафетный рост мощности самых крупных стационарных первичных двигателей (Smil, 2017b). Пересекающийся логистический рост номинальных мощностей паровых двигателей, водяных турбин и паровых турбин дает временный гиперболический рост на семь порядков за 300 лет
Картину можно расширить, включив в нее ракетные двигатели, использовавшиеся только в течение коротких периодов времени: мощность ракеты Saturn C 5, осуществлявшей полет «Аполлона» на Луну, составляла около 2,6 ГВт (Tate, 2012). Аналогично максимальная скорость передвижения возросла со скорости человеческого бега (10–12 км/ч – скорость гонцов) и скорости всадников (средняя скорость 13–16 км/ч) до скорости парусных судов (клиперы середины XIX века в среднем развивали скорость около 20 км/ч, а максимальная достигала 30 км/ч), поездов (максимум около 100 км/ч до 1900 года) и пассажирских самолетов на поршневых двигателях (чья скорость возросла с 160 км/ч в 1919 году до 550 км/ч в 1945 году) и, наконец, реактивных самолетов (более 900 км/ч с конца 1950-х годов).
В обоих случаях ускоряющийся рост был достигнут за счет феномена эстафеты, когда накладывающиеся друг на друга логистические (самоограничивающие) кривые дают впечатляющую восходящую огибающую кривую. Очевидно, что эстафета не может продолжаться бесконечно, так как в конце концов приведет к невозможно высоким темпам роста, будь то удельная мощность или скорость… Как и в случае с мировым населением, временная гиперболическая огибающая кривая в конце концов трансформируется в логистическую траекторию. Можно сказать, что это уже произошло, если рассматривать технический прогресс с практической, реалистичной точки зрения, а не как последовательность максимальных показателей.
Очевидно, что построение огибающей кривой максимальной скорости с помощью накладывающихся друг на друга логистических кривых скорости лошадей, парусников, поездов, автомобилей, самолетов и ракет демонстрирует прогресс видов транспорта, которые не являются последовательно заменяемыми. Массовый городской транспорт эволюционировал от конных экипажей до моторизированных дорожных транспортных средств и подземных поездов, но мы не будем передвигаться по городу на реактивных самолетах. Верно как раз обратное, поскольку средняя скорость городского движения с 1960-х годов сократилась почти во всех крупных городах, и ее удвоение невозможно, даже если каждое транспортное средство будет частью синхронизированной, автоматизированной городской системы (если только не убрать в городах все перекрестки, что невозможно с точки зрения инфраструктуры существующих городов). Средняя скорость скоростных поездов возросла лишь незначительно с момента первого запуска в 1964 году и, опять-таки, вероятнее всего, миллиарды людей, пользующихся поездами, не будут путешествовать на сверхзвуковых скоростях.
Типичная скорость крупных контейнерных судов (30–40 км/ч) ненамного превышает типичную скорость клиперов XIX века. Конечно, их грузоподъемность на несколько порядков выше, но скорость морских перевозок не испытала гиперболического роста, и не существует реалистичных перспектив, что этот основополагающий вид транспорта, сделавший возможным современную экономическую глобализацию, войдет в новый век с радикально повысившейся скоростью. Эксплуатационная скорость последнего самолета Boeing 787 (913 км/ч) почти на 7 % ниже, чем у первого гражданского реактивного самолета Boeing 707, выпущенного в 1958 году (977 км/ч). И перспектива миллиардных авиапассажирских перевозок на сверхзвуковых скоростях также отсутствует. Кажущаяся гиперболической огибающая кривая максимальных показателей на деле мало что говорит нам о реальных траекториях скоростей, создавших современную экономику путем передвижения миллиардов людей и миллиардов тонн сырья, продуктов питания и потребительских товаров.
То же самое неизбежно верно для других огибающих кривых растущих технических возможностей. Самые большие ракеты могут производить гигаватты энергии за очень короткий период старта, но это не имеет отношения к мощности великого множества машин, работающих на благо современной цивилизации. Большинство электродвигателей в нашей технике имеет мощность меньше, чем может обеспечить хорошо взнузданная лошадь: стиральным машинам нужно 500 Вт, а откормленная лошадь легко дает 800 Вт. Типичная или условная мощность паровых турбин в крупных электростанциях остается стабильной с 1960-х годов: на новых угольных или газовых электростанциях преобладают установки мощностью 200–600 МВт, а турбогенераторы мощностью 1 Гвт используются в основном на более крупных атомных электростанциях. И мощность типичных автомобилей немного выросла лишь потому, что они стали тяжелее, а не потому, что им нужно больше мощности, чтобы доехать от одного светофора до другого или поддерживать разрешенную скорость на автостраде – для равномерной езды со скоростью 100 км·ч по ровной дороге достаточно силы тяги приблизительно в 11 кВт/ч на тонну массы автомобиля (Besselink et al., 2011). И снова синтетическая восходящая траектория состоит из несопоставимых прогрессий, не подразумевающих единообразной тенденции к постоянному росту замещающих феноменов.
В истории существует достаточно примеров технических достижений, не демонстрирующих автоматического, строго последовательного ускорения показателей. Сталевары пользовались мартеновскими печами почти век после того, как довели их применение до совершенства, а проводной дисковый телефон мало изменился со времен своего появления в 1920-х годах и внедрения кнопочных моделей в 1963 году (Smil, 2005; 2006b). И перспективы долгосрочной траектории любого гиперболического роста на Земле не вызывают сомнений: он должен либо прекратиться, либо перейти в ограниченную прогрессию, которая может стать частью гомеостатического сосуществования человека и биосферы, включая конечный верхний предел содержания информации во внешней памяти (Dolgonosov, 2010).
Модели ограниченного роста
В первую очередь это траектории жизни: биосферная масса перерабатываемых питательных веществ допускает невероятное разнообразие видовых генетических выражений и мутаций, но ставит фундаментальное ограничение на производительность первичной продукции (фотосинтеза) и, следовательно, на накопление вторичной продукции (гетеротрофного метаболизма разнообразных организмов от микробов до самых крупных млекопитающих). Эти ограничения проявляются в процессе внутри- и межвидовой конкуренции микроорганизмов, растений и животных за ресурсы путем хищничества и вирусной, бактериальной и грибковой инфекции, и все многоклеточные организмы имеют внутренние пределы роста, обусловленные апоптозом – запрограммированной гибелью клеток (Green, 2011).
Ни одно дерево не растет до небес, как и ни один артефакт, структура или процесс; и модели ограниченного роста характеризуют развитие машин и технических возможностей так же, как описывают рост населения и расширение империй. Все процессы распространения и внедрения неизбежно должны соответствовать этой модели: не важно, быстрый или медленный рост демонстрирует траектория на начальном этапе – в конце концов за ним последует значительное замедление темпов роста по мере того, как процесс асимптотически приближается к насыщению и часто достигает его (иногда после многих десятилетий распространения) всего за несколько процентов, даже за доли процентов до максимума. В 1880 году ни в одном доме не было электричества, но сколько зданий в городах Запада не подключено к электричеству сегодня?
Учитывая распространенность феноменов, демонстрирующих ограниченный рост, неудивительно, что многие исследователи стремились вписать их в разнообразные математические функции. Два основных класса траекторий ограниченного роста включают S-образный (сигмоидальный) и ограниченный экспоненциальный рост. В десятках работ даны описания оригинальных производных и последующих модификаций этих кривых. Они рассмотрены в обширных обзорах (Banks, 1994; Tsoularis, 2001), а лучший обзор, пожалуй, приведен в таблице S1 у Мирвольда (Myhrvold, 2013), где систематически сравниваются уравнения и ограничивающие условия для более 70 нелинейных функций роста.
S-образный рост
S-образные функции описывают множество естественных процессов роста, а также внедрение и распространение инноваций, будь то новые промышленные методы или потребительские товары. Изначально медленный рост ускоряется в точке нижнего изгиба, за которым следует быстрый подъем, темп которого в конце концов замедляется, формируя второй изгиб, за которым следует замедленный подъем, так как рост становится минимальным и значения приближаются к максимальной границе конкретного параметра или к полному насыщению рынка. Наиболее известная и распространенная функция с S-образной траекторией описывает логистический рост.
В отличие от экспоненциального (неограниченного) роста, увеличение темпа которого пропорционально текущему значению, относительное приращение логистического (ограниченного) роста уменьшается по мере приближения растущего значения к максимально возможному уровню, который в экологических исследованиях обычно называют предельной нагрузкой. Подобный рост интуитивно кажется нормальным:
Обычно население медленно растет с асимптотического минимума, затем быстро множится и медленно движется к нечетко определенному асимптотическому максимуму. Два конца кривой роста населения в целом определяют всю кривую между ними: чтобы так начаться и так закончиться, кривая должна пройти через точку перегиба, это должна быть S-образная кривая (Thompson, 1942, 145).
Формальное определение логистической функции восходит к 1835 году, когда Адольф Кетле (1796–1874; рис. 1.9), бельгийский астроном и в то время ведущий статистик Европы, опубликовал революционную работу под названием Sur l’homme et le dеveloppement de ses facultеs, ou Essai de physique sociale («О человеке и развитии его способностей, или Эссе по социальной физике»), где отметил невозможность продолжительного экспоненциального роста любого населения (Quetelet, 1835).
Кетле предположил, что силы, противоположные неограниченному развитию и росту населения, возрастают пропорционально квадрату скорости, с которой оно возрастает, и попросил своего ученика, математика Пьера Франсуа Ферхюльста (1804–1849; рис. 1.9), дать формальное решение и затем применить его к лучшим доступным статистическим данным. Ферхюльст согласился и сформулировал первое уравнение, выражающее ограниченный рост населения в короткой публикации в альманахе Correspondance Mathеmatique et Physique («Работы по математике и физике») (Verhulst, 1838; перевод на английский язык опубликован Vogels et al., 1975). Логистическая модель описана с помощью дифференциального уравнения
где r – скорость максимального роста, а K – максимально достижимая величина, известная в исследованиях экологии и населения как предельная нагрузка.
Рис. 1.9. Адольф Кетле и Пьер Франсуа Ферхюльст. Гравюра на стали из коллекции изображений XIX века, принадлежащей автору
Чтобы проверить возможность применения уравнения роста, Ферхюльст сравнил ожидаемые результаты с относительно короткими периодами данных переписей населения во Франции (1817–1831), Бельгии (1815–1833), графстве Эссекс (1811–1831) и России (1796–1827), и хотя он обнаружил «очень точное» совпадение с данными по Франции, он сделал верный вывод (учитывая малый объем данных), что «только будущее откроет нам истинный образ действий сдерживающей силы…» (Verhulst, 1838, 116). Семь лет спустя в более объемной работе он решил «назвать кривую логистической» (Verhulst, 1845, 9). Он никогда не объяснял, почему назвал ее именно так, но в период его жизни термин использовался во Франции для обозначения искусства вычислений в целом; возможно, также он использовал слово «логистический» в военном значении (управление резервами), подразумевая арифметическую стратегию (Pastijn, 2006).
В своей второй работе Ферхюльст иллюстрировал логистическую кривую, сравнивая ее с экспоненциальным (логарифмическим) ростом (рис. 1.10). В первой части логистической кривой нормальное население растет экспоненциально, только когда возделываются плодородные земли, а затем наступает замедление роста. Относительный темп роста сокращается с ростом населения, точка перегиба (в которой темп роста достигает своего максимума) всегда находится на полпути от верхнего предела, и в конце концов избыточное население достигает своего максимума. Моментальный темп роста логистической функции (ее производной относительно времени) распределяется нормально, достигая пикового значения в точке перегиба кривой (рис. 1.11). Более высокие темпы роста дадут более крутые кривые роста, достигающие максимального значения быстрее (кривая будет ограничена горизонтально), в то время как более низкие темпы роста дадут кривые, вытянутые по горизонтали.
В своей работе 1845 года Ферхюльст утверждал, что увеличение дальнейшего роста населения будет пропорционально размеру избыточного населения (population surabondante), и когда он использовал функцию роста для определения пределов размера населения Бельгии и Франции, то установил отметки на уровне 6,6 млн и 40 млн соответственно, которые будут достигнуты до конца XX века. Но в своей последней работе на тему роста населения он пришел к выводу, что препятствия к росту населения пропорциональны отношению между избыточным населением и общим населением (Verhulst, 1847). Это изменение дало более высокое значение конечного населения, или, как позже стали называть его асимптотическое значение, более высокий показатель предельной нагрузки (Schtickzelle, 1981).
Рис. 1.10. Сравнение логистической и логарифмической (экспоненциальной) кривых Ферхюльста (1845)
Рис. 1.11. Качественные характеристики логистического роста
По сути, уравнение Ферхюльста отражает смену доминирования (или, математически говоря – мажорирования) между двумя циклами обратной связи: цикл позитивной обратной связи (FBL) инициирует рост, который в конце концов замедляется и уравновешивается негативной обратной связью, отражающей пределы роста, преобладающие в ограниченном мире. Как выразился Кунш (Kunsch, 2006, 35), логистический рост «описывается как сочетание экспоненциального роста, выраженного в (+) FBL, и целенаправленного роста, выраженного в (—) FBL». В этом смысле функцию Ферхюльста с двумя циклами обратной связи, конкурирующими за доминирование, можно рассматривать как основу динамики систем, базирующихся на обратной связи, разработанную Джеем Форрестером из Массачусетского технологического института в 1950-е и 1960-е годы (Forrester, 1971) и примененную в исследовании под названием «Пределы роста», поддержанном Римским клубом (Meadows et al., 1972).
Эта ключевая систематическая концепция ограниченного роста (высокая плотность организмов является непосредственным сдерживающим фактором, а доступность ресурсов – сложной причинной движущей силой) полезна при концептуализации многих природных, социальных и экономических достижений, включая серии обратной связи, но ее механическое применение может вызывать серьезные ошибки. Оригинальные прогнозы роста населения, сделанные Ферхюльстом, представляют собой первые примеры таких ошибок, так как максимальные значения населения не предопределяются какой-либо конкретной функцией роста, а зависят от изменения производственного потенциала страны и в конечном счете всей планеты с помощью научного, технического и экономического прогресса. Сколько можно поддерживать эти максимальные значения на высоком, развивающемся уровне – другой вопрос. Ферхюльст в конце концов увеличил прогнозируемый размер населения Бельгии к 2000 году с 6,6 млн до 9,5 млн человек, но к концу XX века население Бельгии и Франции составляло 10,25 млн и 60,91 млн человек соответственно, то есть для Бельгии было приблизительно на 8 % выше скорректированного Ферхюльстом максимума, а для Франции ошибка составляла 52 %.
Во второй половине XIX века наблюдался всплеск демографических и экономических исследований, однако работу Ферхюльста игнорировали, и она была обнаружена только в 1920-е годы, а влияние приобрела в 1960-х годах (Cramer, 2003; Kint et al., 2006; Baca?r, 2011). Это не единственной пример подобного забвения: фундаментальные эксперименты Грегора Менделя в области генетики растений, проводившиеся в 1860-х годах, также игнорировались в течение почти полувека (Henig, 2001). Можно ли объяснить пренебрежение работами Ферхюльста сомнениями Кетле в ценности вклада его учеников, высказанными в надгробной речи, посвященной преждевременной смерти Ферхюльста в 1849 году? Удни Юл предлагает более правдоподобное объяснение: «Вероятно, в силу того, что Ферхюльст значительно опередил свое время и что существовавшие тогда данные не подходили для того, чтобы эффективно проверить его взгляды, они были преданы забвению, но остаются классикой в этой области» (Yule, 1925a, 4).
Следующее появление логистической функции (без использования этого названия) было связано с количественным выражением прогресса аутокаталитических реакций в химии. Если катализ обозначает повышающуюся скорость химической реакции, что вызвано присутствием дополнительного элемента (в частности, какого-либо тяжелого металла) или сложного вещества (часто в ничтожных количествах), то аутокатализ означает реакцию, ускоряющуюся за счет собственных результатов. Аутокаталитические процессы – реакции, демонстрирующие ускорение темпов роста как функцию от времени, за которым следует насыщение, – необходимы для роста и поддержания живых систем, и без них абиотические химические факторы не смогли бы привести к репродукции, обмену веществ и эволюции (Plasson et al., 2011; Virgo et al., 2014).
После того как Вильгельм Оствальд (1853–1932, ведущий химик времен до Первой мировой войны) представил данную концепцию в 1890 году (Ostwald, 1890), стало быстро понятно, что процесс развивается в соответствии с логистической функцией: концентрация одного реагента повышается по сравнению с начальным уровнем, сначала медленно, потом быстрее, но затем, с учетом ограниченного количества другого реагента, процесс замедляется, а концентрация второго реагента постепенно уменьшается до нуля. В 1908 году Брейлсфорд Робертсон (1884–1930), австралийский физиолог из Калифорнийского университета, отметил, что, если сравнить кривую мономолекулярной аутокаталитической реакции с кривой роста массы тела самцов белых крыс, «схожесть между кривой роста и кривой аутокаталитической реакции сразу становится очевидной» (рис. 1.12) – но сравнение кривой аутокаталитической мономолекулярной реакции с кривой роста массы тела мужчины показало, что вторая из этих траекторий имеет две совмещенные кривые (Robertson, 1908, 586).
Рис 1.12. Сравнение Робертсоном (Robertson, 1908) прогресса аутокаталитической реакции и увеличения массы тела самцов белой крысы
Обе кривые являются сигмоидальными, но Робертсон не упомянул Ферхюльста. Три года спустя Маккендрик и Кесава Паи (McKendrick and Kesava Pai, 1911) использовали эту функцию, снова не называя имени Ферхюльста, для изображения роста микроорганизмов, а в 1919 году Рид и Холланд (Reed and Holland, 1919) сослались на Робертсона (Robertson, 1908), но не использовали термин «логистическая» в своей кривой роста подсолнечника. Этот пример роста растений позже стал широко цитироваться в биологической литературе, посвященной теме роста.
Наблюдаемый рост в высоту подсолнечника (Helianthus) в период между посадкой и 84-м днем очень близко соответствует логистической функции с четырьмя параметрами, где точка перегиба приходится на 37-й день (рис. 1.13).
В 1920 году логистическая функция снова появилась в демографии, когда Реймонд Перл и Лоуэлл Рид, профессора Университета Джонса Хопкинса, опубликовали работу, посвященную росту населения США (Pearl and Reed, 1920), но только два года спустя они кратко признали первенство Ферхюльста (Pearl and Reed, 1922). Во многом как и Ферхюльст в середине 1840-х годов, Перл и Рид использовали логистическую функцию, чтобы вычислить максимальный размер населения США, который сможет прокормить сельское хозяйство страны (Pearl and Reed, 1920, 285):
Верхняя асимптота… имеет значение приблизительно 197 274 000. Это означает, что… максимальное население, которое будут иметь континентальные США при текущем ограничении площади, будет приблизительно вдвое выше нынешнего. Мы боимся, что некоторые осудят всю теорию, потому что это число недостаточно внушительно. Рассчитать население с помощью геометрической прогрессии (и большинство авторов работ на тему населения склоняются к этому) или с помощью параболы или другой чисто эмпирической кривой и прийти к таким изумляющим цифрам настолько легко, что спокойно осмыслить реальную вероятность этого будет крайне сложно.
Рис. 1.13. Логистический рост (точка перегиба на 37,1-й день, асимптота на уровне 292,9 см) растения подсолнечника, изображенный Ридом и Холландом (Reed and Holland, 1919)
Как в случае с максимальными цифрами населения Ферхюльста для Бельгии и Франции, Перл и Рид также недооценили приемлемый максимум населения США. К 2018 году оно превысило 325 млн, что почти на 65 % больше их расчетов максимальной предельной нагрузки (рис. 1.14) – даже с учетом того, что 40 % урожая кукурузы, крупнейшей сельскохозяйственной культуры США, перерабатывают в этиловый спирт и страна является крупнейшим в мире экспортером продуктов питания. Но Перл не сомневался в прогностической силе своего уравнения: в 1924 году он «скромно» сравнил кривую с законом движения планет Кеплера и законом о газах Бойля (Pearl, 1924, 585).
Рис. 1.14. Прогноз роста населения США на основе логистической кривой (точка перегиба в 1919 году, асимптота на уровне 197,3 млн), согласованный с переписью населения, проводившейся раз в десять лет в период между 1790 и 1910 годами (Pearl and Reed, 1920)
Применение функции логистического роста начало распространяться. Робертсон использовал информацию о росте молочных коров, домашней птицы, лягушек, однолетних растений и фруктовых деревьев в своем объемном исследовании под названием The Chemical Basis of Growth and Senescence («Химические основы роста и старения») (Robertson, 1923). Год спустя Спиллман и Ланг (Spillman and Lang, 1924) подробно изложили Закон убывающего плодородия, приведя множество количественных описаний ограниченных темпов роста. Рид и Берксон (Reed and Berkson, 1929) применили логистическую функцию к нескольким бимолекулярным реакциям и протеолизу гелеобразования с помощью панкреатина, а Блисс (Bliss, 1935) использовал ее для расчета кривой зависимости смертности вредителей от дозировки пестицидов. И в течение двадцати лет до Второй мировой войны Перл и его коллеги применяли логистическую кривую «к популяциям почти всех живых существ от плодовых мушек до населения французских колоний в Северной Африке, а также росту дынь канталуп» (Cramer, 2003, 6).
В 1945 году Харт опубликовал всестороннее исследование логистических социальных тенденций со множеством примеров, поделенных на серии, отражающие рост конкретных социальных единиц (населения, городов, урожая, производства и потребления промышленных продуктов, выдачи патентов на изобретения, длины железных дорог), распространение конкретных культурных явлений (охват детей школьным образованием, владение автомобилями, социальные и гражданские движения) и так называемые индексы социальной эффективности, включая продолжительность жизни, рекорды скорости и доход на душу населения (Hart, 1945). В течение двадцати лет после окончания Второй мировой войны наблюдался быстрый рост населения и экономический рост, вызванный расширением технических возможностей. В тот период преобладали многочисленные примеры экспоненциального роста, но с ростом экологического сознания в конце 1960-х и 1970-х логистическая функция снова получила популярность. Неудивительно, что существует множество публикаций о том, как описать данные с помощью логистической кривой (Cavallini, 1993; Meyer et al., 1999; Arnold, 2002; Kahm et al., 2010; Conder, 2016).
Существует еще одна довольно распространенная модель роста – кривая Гомпертца, выведенная еще раньше функции Ферхюльста. Изначально модель была предложена в 1825 году Бенджамином Гомпертцем (1779–1865), британским математиком, для оценки смертности людей (Gompertz, 1825). В ней, как и в логистической функции, имеются три константы, асимптота и фиксированная степень асимметрии, но, как уже отмечалось, логистическая функция имеет точку перегиба точно посередине между двумя асимптотами, и ее кривая радиально симметрична по отношению к этой точке перегиба. В отличие от нее функция Гомпертца дает асимметричную кривую с точкой перегиба на уровне 36,78 (е–1) асимптотического максимума и, следовательно, асимметрична (Tj?rve and Tj?rve, 2017). Эта кривая подходит лучше, чем логистическая, для моделирования процессов сигмоидального роста, которые замедляются после достижения приблизительно трети от своего максимального значения (Vieira and Hoffmann, 1977).
Более века спустя Винзор (Winsor, 1932, 1) отмечал, что «кривая Гомпертца долго интересовала только статистиков страховых учреждений. Однако в последнее время она используется различными авторами как кривая роста для оценки как биологических, так и экономических феноменов». Но он называл только три области применения: рост веса скота (но только после того как животные достигли около 70 % своей зрелой массы), рост размера раковины двустворчатого моллюска и рост гигантского Тихоокеанского моллюска, – делая вывод, что в силу практически аналогичных свойств ни логистическая кривая, ни кривая Гомпертца не имеют «значительного преимущества друг перед другом в отношении количества явлений, рост которых можно было бы описать с их помощью» (Winsor, 1932, 7).
Но это было до того, как во многих исследованиях было обнаружено, что более старая функция во многих случаях является предпочтительной. К природным явлениям, которые лучше всего описывает функция Гомпертца, относятся такие фундаментальные биохимические процессы, как рост нормальных и злокачественных клеток, кинетика ферментативных реакций и интенсивность фотосинтеза как функция концентрации CO
в атмосфере (Waliszewski and Konarski, 2005). Когда логистическое уравнение стало чаще использоваться для изучения роста организмов, многие исследователи отмечали ограничения функции при воспроизведении наблюдаемого роста животных и растений и ее недостаточную надежность при прогнозировании прироста на основе прошлых показателей. Нгуимке (Nguimkeu, 2014) предлагает простой дифференциальный тест для выбора между моделями Гомпертца и логистического роста.
Основным недостатком кривой логистического роста является ее симметрия: она напоминает колебания маятника, набирающего максимальную скорость в середине траектории. Точка перегиба логистической кривой приходится на 50 % максимального значения, в результате чего схема роста дает симметричную колоколообразную кривую (кривую Гаусса), которая будет рассмотрена в следующем разделе. Многие организмы демонстрируют более быстрые темпы роста на начальных стадиях, и кривые их роста достигают точки перегиба гораздо раньше, чем асимптотического максимума. Аналогично многие процессы распространения (будь то внедрение новых промышленных методов или распространение владения бытовой техникой) следуют асимметричной S-образной траектории.
И поскольку степень асимметрии также зафиксирована в асимметрической функции Гомпертца, многие попытки избавиться от этих недостатков ведут к формулированию нескольких дополнительных моделей роста логистического типа. Цуларис (Tsoularis, 2001) рассмотрел эти производные модели – главные из которых были представлены Берталанффи (von Bertalanffy, 1938), Ричардсом (Richards, 1959), Блумбергом (Blumberg, 1968), Тернером и др. (Turner et al., 1976) и Берчем (Birch, 1999), – а также предложил собственную обобщенную логистическую функцию, из которой можно получить все эти модификации. Они не систематизированы в зависимости от практической ценности: все эти функции принадлежат к одной семье (являясь вариациями на тему S-образного роста), и ни одна из них не превосходит другие сигмоидальные кривые с тремя постоянными по степени пригодности.
Фон Берталанффи (von Bertalanffy, 1938) построил уравнение роста на аллометрическом (неравномерном) соотношении между скоростью обмена веществ и массой тела животного, где масса меняется в связи с разницей анаболических и катаболических процессов. Максимальный темп роста функции (точка перегиба) находится на уровне около 30 % (8/27) асимптотического значения и применяется при изучении роста и продукции лесного хозяйства, но особенно в гидробиологии, для коммерческих видов рыбы, таких как треска (Shackell et al., 1997), тунец (Hampton, 1991), а также акул (Cailliet et al., 2006) и даже белых медведей (Kingsley, 1979). Однако Рофф (Roff, 1980, 127) доказывал, что данная функция «в лучшем случае пригодна для отдельных случаев, а в худшем – лишена смысла» и от нее следует отказаться, так как она исчерпала себя в исследованиях рыболовного промысла. Дей и Тейлор (Day and Taylor, 1997) также пришли к выводу, что уравнение фон Берталанффи не следует использовать для моделирования возраста и размера организмов в период зрелости.
Ричардс (Richards, 1959) модифицировал уравнение фон Берталанффи, чтобы оно соответствовало эмпирическим данным о росте растений. Функция, также известная как модель роста Чапмана – Ричардса, имеет на один параметр больше, чем логистическая кривая (необходимый для асимметрии), и широко используется в исследованиях лесного хозяйства, а также для моделирования роста млекопитающих и птиц и для сравнения влияния ухода на рост растений, но имеются и возражения против ее использования (Birch, 1999). Ее точка перегиба колеблется на уровне от менее 40 % до почти 50 % асимптотического значения. Тернер и др. (Turner et al., 1976) называл модифицированное ими уравнение Ферхюльста универсальной функцией роста. Гиперлогистическая функция Блумберга (Blumberg, 1968) также является модификацией уравнения Ферхюльста, предназначенной для моделирования роста размеров органов, а также динамики населения.
И распределение Вейбулла, изначально разработанное для изучения вероятности отказа вследствие изменения свойств материала (Weibull, 1951) и используемое в тестах на надежность в инжиниринге, легко модифицируется для получения гибкой функции роста, которая может дать самые разнообразные сигмоидальные функции роста. Оно используется в лесном хозяйстве для моделирования высоты и объемного прироста отдельных видов деревьев, а также объема и возраста полиморфических лесных насаждений (Yang et al., 1978; Buan and Wang, 1995; Gоmez-Garc?a et al., 2013). Двумя последними пополнениями по-прежнему растущего семейства сигмоидальных кривых являются новое уравнение роста, разработанное Берчем (Birch, 1999), и уже упоминавшаяся обобщенная логистическая функция Цулариса (Tsoularis, 2001). Берч модифицировал уравнение Ричардса, чтобы оно лучше подходило для универсальных имитационных моделей, особенно для представления роста различных видов растений с отличающимися вегетационными периодами, тогда как Цуларис (Tsoularis, 2001) предложил уравнение обобщенного логистического роста, включающее все прежде использовавшиеся функции в качестве особых случаев.
Логистические кривые в прогнозировании
Логистические кривые являются любимым инструментом специалистов по прогнозам благодаря их способности отражать, часто очень точно, траектории роста как живых организмов, так и антропогенных артефактов и процессов. Конечно, с их помощью можно сделать ценные открытия, но в то же время я должен предостеречь от излишнего энтузиазма при использовании логистических кривых в качестве инструментов прогнозирования отказоустойчивости. В своем вердикте Ноэль Бонней (Noel Bonneuil, 2005, 267) вспоминал «золотой век логистической кривой, когда Перл с энтузиазмом применял одну и ту же функцию к любому случаю роста, от длины хвостов крыс до данных переписи населения США» и развенчал заявления об удивительно точном применении этой модели к историческим данным, назвав их «сомнительным триумфом: большинство процессов ограниченного роста действительно напоминают логистические, но это мало способствует пониманию исторических процессов… Подбор кривых слишком часто вводит в заблуждение по двум направлениям: его не только не следует использовать в качестве эмпирического доказательства, но он может скрывать важные детали».
Очевидно, что применение этих кривых для долгосрочного прогнозирования не гарантирует успеха. Их использование может давать новые идеи и обеспечивать представление о пределах, и в этой книге я представлю примеры из прошлого, когда прогнозы оказывались очень точными и могли служить надежным признаком ближнесрочного роста. Но в других случаях даже высокоточное логистическое соответствие прошлых траекторий приводило к обманчивым выводам о предстоящем росте, а ошибки прогнозов превосходили ожидаемые и приемлемые ±10–25 % отклонений за период в 10–20 лет.
В один из первых обзоров логистических трендов, опубликованных в конце Второй мировой войны, Харт (Hart, 1945) включил данные о скорости самолетов в период между 1903 и 1938 годами: эта траектория очень близко соответствовала логистической кривой с точкой перегиба в 1932 году и максимальной скоростью около 350 км/ч, но за десять лет после этого технический прогресс дважды опроверг его вычисления. Во-первых, рост мощности поршневых двигателей (на которых работали самолеты в военное время) достиг практических пределов, и вскоре их стали применять в пассажирских авиаперевозках. Самолет Lockheed L–1049 Super Constellation, впервые поднявшийся в воздух в 1951 году, имел крейсерскую скорость 489 км/ч и максимальную скорость 531 км/ч, что примерно на 50 % выше предсказанной логистическим потолком Харта.
Рис. 1.15. Самолет, поднявший потолок логистического роста крейсерской скорости: Boeing 707. Изображение из wikimedia
Super Constellation стал самым быстрым трансатлантическим авиалайнером, но его господство было недолгим. Злополучный британский самолет de Havilland Comet совершил свой первый полет в январе 1951 года и был снят с производства в 1954 году, а первый рейс реактивного Boeing 707, принадлежавшего американской компании Pan Am, состоялся в октябре 1958 года (Smil, 2010b; рис. 1.15). Турбореактивные двигатели, первые газотурбинные двигатели, увеличили крейсерскую скорость пассажирских самолетов (начавших летать в 1919 году) более чем вдвое по сравнению с периодом до Второй мировой войны и создали новую логистическую кривую с точкой перегиба в 1945 году и асимптотой в районе 900 км/ч (рис. 1.16). Более мощные и эффективные турбореактивные двухконтурные двигатели впервые были представлены в 1960-х годах и позволили увеличить размер самолетов и снизить потребление топлива, но их максимальная крейсерская скорость практически не изменилась (Smil, 2010b).
Рис. 1.16. Логистическая кривая, отражающая рост крейсерской скорости пассажирских авиалайнеров в период с 1919 по 2039 год (точка перегиба в 1945 году, асимптотическая крейсерская скорость 930,8 км/ч). Построена на основе данных о скоростях конкретных самолетов, начиная с de Havilland DH–16 компании KLM в 1919 году и заканчивая Boeing 787 в 2009 году
В 1970-е годы казалось, что траектория скорости самолетов может еще вырасти за счет сверхзвуковых самолетов, но Concorde (крейсерская скорость которого составила 2150 км/ч, что в 2,4 раза больше, чем у широкофюзеляжных лайнеров) оставался дорогостоящим исключением, пока в 2003 году от его производства не отказались (Glancey, 2016). К 2018 году несколько компаний (Spark Aerospace и Aerion Corporation для Airbus, Lockheed Martin и Boom Technology в Колорадо) работали над проектами сверхзвуковых самолетов, и, хотя любые прогнозы относительно их массового коммерческого использования крайне преждевременны, не исключено, что в XXI веке произойдет еще одно удвоение (по крайней мере некоторых) крейсерских скоростей.
Одной из наиболее богатых иллюстраций излишнего логистического энтузиазма является книга на тему прогнозов, подзаголовок которой – «Характерные свойства общества раскрывают прошлое и предсказывают будущее» – указывает на веру автора в прогностическую силу логистической функции. Модис (Modis, 1992) использовал логистические кривые для прогнозирования траекторий развития многих современных технологий (от доли автомобилей с каталитическими конвертерами до мощности реактивных двигателей) и разнообразных экономических и социальных феноменов (от роста нефте- и газопроводов до объема пассажирских авиаперевозок). Одно из выделенных им совпадений данных и кривой касалось роста мировых авиаперевозок: согласно его прогнозу, к концу 1990-х годов он должен был достичь 90 % от предполагаемого потолка. В реальности же к 2017 году воздушные перевозки были на 80 % выше, чем в 2000 году, а количество пассажиров, перевозимых в год, более чем удвоилось (World Bank, 2018).
Кроме того, Модис представил длинную таблицу прогнозируемых уровней насыщения, взятых у Грублера (Gr?bler, 1990). Не прошло и 30 лет, как выяснилось, что некоторые из этих прогнозов оказались впечатляюще ошибочными. Примечательным примером такой ошибки является прогноз мирового числа автомобилей: их количество должно было достичь 90 % уровня насыщения к 1988 году.
В то время насчитывалось около 425 млн зарегистрированных автомобилей, а предполагаемый уровень насыщения составлял около 475 млн, но к 2017 году был зарегистрирован 1 млрд автомобилей, более чем вдвое больше предполагаемого максимума, и их количество в мире продолжает расти (Davis et al., 2018).
Маркетти (Marchetti, 1985; 1986b) провозгласил диктат логистического роста «одним из самых защищаемых оплотов человеческого эго, оплотом свободы, и особенно свободы творчества», сделав вывод, что «каждый из нас обладает внутренней программой, регулирующей его производительность до самой смерти… и люди умирают, исчерпав 90–95 % своего потенциала» (Marchetti, 1986b, рис. 42). Проанализировав совокупное наследие Моцарта, он пришел к выводу, что к моменту своей смерти в возрасте 35 лет «он уже сказал все, что должен был сказать» (Marchetti, 1985, 4). Модис (Modis, 1992) с энтузиазмом воспринял эту мысль и развил ее.
Изобразив все произведения Моцарта на S-образной кривой, Модис (Modis, 1992, 75–76) заявил не только, что «Моцарт сочинял с момента рождения, но его первые восемнадцать произведений не были записаны, так как он еще не умел ни писать, ни достаточно хорошо говорить, чтобы продиктовать их своему отцу». Он утверждал, что с точностью порядка 1 % его логистическая кривая также указывает, что общий потенциал Моцарта составлял 644 произведения, и поскольку к моменту смерти его творческие возможности были исчерпаны на 91 %, то, повторяя мысль Маркетти, «Моцарту мало что осталось сделать. Его работа в этом мире была практически завершена».
Интересно, что бы ответил на это Бонней! Я построил собственную кривую, используя сохранившийся каталог Кехеля, включающий 626 произведений за период с 1761 по 1791 год (Giegling et al., 1964). Нанеся на график значения за пятилетние интервалы, я получил симметричную логистическую кривую с точкой перегиба в 1780 году (R
= 0,995): уровень насыщения составил 784 произведения, и к 1806 году, когда Моцарту исполнилось бы 50 лет, он написал бы 759 из них (рис. 1.17а). Введя число произведений для каждого продуктивного года жизни Моцарта, я обнаружил, что лучше всего им соответствует ассиметричная (с пятью параметрами) сигмоидальная кривая (R
= 0,9982), прогнозирующая 955 произведений к 1806 году (рис. 1.17b).
Рис. 1.17. Произведения Моцарта, вписанные в кривые роста, симметричную (а) и асимметричную (b) логистическую функцию, квадратическую регрессию (c) и регрессию четвертого порядка (d), все из которых имеют высокую степень соответствия (R
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера: