banner banner banner
Биотенсегрити. Как работают Анатомические поезда, остеопатия и кинезиология и что может сделать эти техники максимально эффективными
Биотенсегрити. Как работают Анатомические поезда, остеопатия и кинезиология и что может сделать эти техники максимально эффективными
Оценить:
Рейтинг: 0

Полная версия:

Биотенсегрити. Как работают Анатомические поезда, остеопатия и кинезиология и что может сделать эти техники максимально эффективными

скачать книгу бесплатно


Чтобы сохранить дееспособность системы, необходим какой-то контроллер, какой-то регулирующий набор правил, который бы поддерживал порядок во всем этом множестве процессов и нивелировал эти неизбежные ошибки.

При строительстве здания таким руководящим алгоритмом является сила тяжести, и инженеры следят за тем, чтобы каждая составляющая конструкции могла безопасно соответствовать ее законам. Обычно мы об этом не задумываемся, но именно внешний фактор, которым является сила тяжести, диктует нам, что может или что не может быть включено в конструкцию здания. Поскольку G – это внешняя сила по отношению к строительной конструкции, то ошибок необходимо избегать уже на предварительных этапах – в дизайне, в проектировании и, собственно, в строительстве, поскольку рукотворные неживые конструкции не способны сами себя исправлять и обновлять. Поэтому, чтобы предусмотреть возможные разрушения и дефекты материалов, в проект любой конструкции закладывается некоторая избыточность, и всегда есть команда специалистов, которые следят за правильностью проектирования, сборки и последующей эксплуатации. Со временем в нашей цивилизации вокруг таких конструкций и процессов возникла огромная индустрия и обслуживающая ее, все усложняющаяся инженерно-математическая наука, занимающаяся расчетами правильности конструкций и механизмов.

В живых системах совсем другая ситуация!

Во-первых, алгоритм, управляющий самосборкой организмов, внутренний, над ним нет смотрящих инженеров, прорабов и архитекторов. Во-вторых, организмы не изготавливаются по точному и предварительному проекту. Они представляют собой постоянно развивающиеся гетерархические процессы, которые непрерывно и повсеместно порождают структуры, адаптирующиеся к изменяющимся условиям окружающей среды, и способны самообновляться, саморемонтироваться и самовосстанавливаться, когда что-то идет не так.

Стремясь выжить во внешней среде, живые организмы управляют всей этой деятельностью изнутри с максимальной эффективностью и элегантным минимализмом.

Когда я готовился стать хирургом-ортопедом, это существенное различие между зданиями и биологическими организмами еще не было широко признанным. Меня учили лечить механические функции тела, используя регулирующий принцип действия силы тяжести на вес частей тела в качестве основы для любого постурального анализа, функциональной анатомии, любого действия или упражнения, которые я прописывал пациентам. Осознавал я это или нет, но алгоритм влияния силы тяжести в пропорции к весу части тела управлял всем, что я делал в своей ортопедической и реабилитационной практике.

Я стал хирургом-ортопедом в конце 1950-х годов, когда современная инженерно-расчетная биомеханика еще только формировалась и не успела стать догмой. К 1970 годам мой особый интерес вызывали вымершие гигантские животные – как справлялись с силой тяжести они? Как удавалось динозаврам держать их гигантский, многометровый, весящий сотни килограммов хвост в воздухе? Мой хороший друг, который в то время был председателем Американского палеонтологического общества и одним из ведущих мировых экспертов по динозаврам, любил повторять: «Знаешь, Стив, в песках времени осталось множество отпечатков лап динозавров, но почему-то отсутствуют отпечатки их хвостов!»

Поэтому в какой-то момент мой личный клинический опыт, любовь к физике и здравый смысл заставили меня предположить, что перенос на живые организмы модели строительства небоскреба, зависящей от действия силы тяжести, пропорциональной весу конструкции, – это ошибочный подход. Мы не можем просто так импортировать расчеты углов, сил и векторов из строительных конструкций и машин в анализ механики живых систем, как это делается в функциональной анатомии и биомеханике со времен Борелли! Живые организмы качественно сложнее! Изучив шею диплодока, анатомию бабочек, птиц, обезьян-брахиаторов, лапы динозавров и гигантских ленивцев, организацию живых микроструктур и пропустив через свою клиническую практику несколько тысяч людей, я понял, что сила тяжести частей тела не является руководящим конструктивным принципом в биологии. Я был уверен, что в биологии должен быть совсем иной пространственно-организующий алгоритм. Я стал искать общий организационный принцип, который бы для живых организмов выполнял ту же руководящую структурную роль, что и действие силы тяжести на стабилизацию здания.

И мне пришло в голову, что в качестве своей внутренней опоры тело должно использовать независимый от внешней силы тяжести внутренний трехмерный динамически адаптивный пространственный каркас.

Пространственный каркас – это инженерная структура, в которой рамы спроектированы таким образом, чтобы вести себя как единое самозамкнутое целое и максимально равномерно распределять внутри себя нагрузки через взаимосвязанные треугольники. Поскольку тетраэдр/треугольник – это наиболее жесткая пространственная структура, наименее подверженная локальной деформации, а значит, равномерней и эффективней всего распределяющая внешнюю нагрузку во внутреннюю. Внутри каркаса любые внешние деформирующие сложные нагрузки должны передаваться по всей длине каждой распорки, создавая самозамкнутый пространственный каркас и трансформируясь в «ветвящиеся» комбинации элементарных натяжений и сжатий, уходящих вглубь микроструктур, подобно тому, как это происходит в строительстве мостов.

Исходя из этих первопринципов, я начал поиски универсального биологического пространственного каркаса.

Такой каркас должен быть способен функционировать и в море, и в воздухе, и на земле, и в космосе, будь он расположен правой стороной вверх или вовсе вверх дном, и не зависеть от внешних сил с точки зрения сохранения своей внутренней структурной целостности.

Сначала мое представление было чисто абстрактным, я не мог себе наглядно представить, как именно такой пространственный каркас будет выглядеть. Я понимал, каким условиям биологический внутренний пространственный каркас должен отвечать, но тогда еще не знал, как он будет выглядеть в «ощущении».

И только несколько лет спустя, когда я увидел Игольчатую тенсегрити-башню Снельсона в Музее Хиршхорна в Вашингтоне, округ Колумбия, в 1974 году, то понял, что эта необычная и инновационная конструкция – тот самый пространственный каркас, который отвечает всем этим требованиям. По своему динамическому поведению тенсегрити башня соответствовала всему вышеперечисленному в моем списке желаний! В тот момент мне искренне захотелось воскликнуть: «Эврика!»

С самого первого момента, модель тенсегрити для биологии – биотенсегрити (универсального биологического пространственного каркаса) – задумывалась не как конкретная материальная частная структура, а как наиболее общая динамическая модель вектора сил, своего рода диаграмма невидимых внутренних сил, которая могла бы послужить алгоритмом для самосборки любого биологического организма, от вируса до позвоночного, со всеми присущими им системами и подсистемами.

В своей основополагающей книге «Синергетика» Фуллер представил свое векториальное равновесие, воплощенное в тенсегрити икосаэдра (базовой структуры Игольчатой башни) в качестве векториальной диаграммы этих запертых внутренних сил. Я начал размышлять о внутренних силах тенсегрити как о механизме, который создает живые организмы. И чем больше я строил тенсегрити-моделей, изучал их динамическое поведение и удивительную способность к поглощению и внутреннему распределению внешней нагрузки, тем больше объяснительного потенциала для биологии я в них находил.

Именно поэтому я настоятельно рекомендую такую практику для каждого, кто хочет понять, что же такое эти загадочные запертые внутренние силы. Это тот самый случай, когда лучше один раз почувствовать, чем 100 раз услышать и прочитать. По сути, тенсегрити-модели это своего рода линза, волшебные очки, которые делают невидимые и запертые внутренние силы очевидными и наглядными.

Однако при работе с тенсегрити-моделями необходимо быть осторожным! Из-за того, что мы можем построить тенсегрити-модель, например икосаэдра, из подручных материалов, может возникнуть соблазн думать, будто кости и мягкие ткани тела сконструированы именно таким образом. Это структурный примитивизм, который я не разделяю.

Очевидно, что тенсегрити икосаэдра, ее различные вариации и комбинации никогда не интерпретировались мной буквально – в качестве фактических, геометрически идентичных анатомических структур внутри организма (Игольчатая башня едва ли буквально похожа на состоящий из позвонков позвоночник!). В биотенсегрити геометрии многогранников Фуллера рассматриваются исключительно как диаграммы тех внутренних сил, которые управляют физическим существованием сомы организма. Эти запертые силы представляют собой каскады внутренних преобразований и должны постоянно приспосабливаться к любой воздействующей на тело внешней силе через подстройку внутренних каскадных «танцев» и «ритмов».

В любом живом организме в любой конкретный момент времени происходит слишком много процессов и событий, чтобы можно было считать его статичной конструкцией с фиксированной геометрической формой. Однако я верю, что силовая векториальная диаграмма тенсегрити икосаэдра – тот самый алгоритмический процесс, который лежит в основе формообразования в биологии.

Хотя может сложиться впечатление, что кости похожи на компрессионные распорки, они, как и все остальное тело, представляют собой гели из мягкой материи, которые обладают как фазой жесткости, так и фазой податливости. Все наши поддерживающие ткани композитные и содержат элементы, которые могут управлять, как и в других пространственных каркасах, распределением натяжения и сжатия между различными компонентами.

В биологических пространственных каркасах происходит непрерывный «танец» сил и элементов натяжения и сжатия, сопровождаемый постоянной сменой партнеров. Живые ткани нашего тела так часто меняют свою динамическую фазу), что, называя ту или иную внутреннюю структуру жесткой или податливой, мы сталкиваемся с вопросом «в какой именно момент?» Вспомните, как наши мышцы могут принимать разную степень жесткости и податливости, или представьте себе хобот слона и сравните моменты, когда он поднимает им с земли маленький орешек с тем, когда им же он выкорчевывает дерево!

Вместо того чтобы подчиняться внешним силам, наша внутренняя вселенная, начиная от подкожной оболочки и заканчивая нашим внутренним центром, управляется своим собственным алгоритмом, формирующим наш внутренний пространственный каркас, который мы и назвали «биотенсегрити» и который основан на динамике тенсегрити-икосаэдра как значимой универсальной симметрии. Проявление этого алгоритма – наше тело – является воплощением этих сил, постоянно адаптирующейся структурой, взаимодействующей с внешними силами, такими как сила тяжести, и управляющей ими для удовлетворения собственных нужд.

В силу инженерно-механического характера нашего образования мы все привыкли воспринимать любые модели как неизменные материальные структуры и как архитектурно-строительные чертежи, не «чувствуя» разницы между широтой применимости принципа/архитектуры и ограничениями, накладываемыми конкретным материалом, из которого сделана модель. Поэтому многие биотенсегрити-энтузиасты склонны думать, что созданные мной и коллегами рукотворные тенсегрити-модели отражают конкретные анатомические структуры, и стараются найти их в живых организмах, пытаясь связать названия частей тела с теми силами, что представлены в тенсегрити-моделях. Однако нам следует быть с этим осторожными.

Когда мы приравниваем тенсегрити-модель как диаграмму внутренних сил к тем или иным анатомическим структурам, это заставляет нас воспринимать тело как совокупность линейных твердых тел вместо нелинейных структур из мягкой материи, которыми они в действительности являются. Части тела представляют собой жидкокристаллические структуры, столь же мимолетные, как и изображение на экране вашего телевизора, которое существует лишь одно мгновение и затем исчезает. Неизменная твердость нашего тела – это всего лишь иллюзия. Физические модели тенсегрити не столько моделируют конкретную структуру, сколько представляют собой диаграмму сил, и в биологических организмах эти силы постоянно меняются. Таким образом, модели, которые мы строим в рамках биотенсегрити-исследований, являются отражением баланса сил во времени, центральными областями растяжения или сжатия, материализованными в натяжных струнах и компрессионных распорках модели.

Чтобы полностью понять биотенсегрити, ее необходимо сначала разобрать, а затем заново собрать в мезоморфную совокупность, работающую на разных уровнях: от макромасштаба метров до масштаба нанометров внутри клеток. На каждом уровне масштаба функциональные возможности тенсегрити-комплекса определяются не столько ее отдельными компонентами, сколько синергетической самоорганизацей этих частей в операционную единицу пространственного каркаса, которую невозможно предугадать на основе лишь исследования меньших масштабов и материалов. Алгоритм биотенсегрити указывает нам, что для понимания пространственного каркаса живых организмов физика твердого тела, присущая твердым структурам, должна уступить место физике мягкой материи и ее жидкокристаллическим преобразованиям. Только так можно преодолеть те ограничения, которые классическая ньютоновская физика накладывает на биологию.

В этом плане именно биотенсегрити, а не стандартная инженерно-расчетная биомеханика, попадает в тренд современных наук о сложных системах, которые приводят нас к пониманию, что внутренние процессы в организме больше напоминают тающие часы Дали, чем башню из стекла и стали, будучи более эфемерными и зачастую неизмеримыми.

Биологические существа не инженерные конструкции – это внутренние организованные, эволюционирующие сообщества органической материи, управляемые главным алгоритмом. Наша форма и физиология трансмутируемы и контролируются физикой мягкой материи.

Благодаря такому расширенному пониманию биотенсегрити выходит за пределы только лишь механики опорно-двигательной системы, включая в себя не только структуру, но и функцию – физиологические процессы, происходящие на каждом отдельно взятом уровне.

Механика ДНК, производящий энергию цикл Кребса, внутренняя работа клетки, каждого органа и системы органов, а также интеграция всего организма – все эти уровни живой самоорганизации материи преемственно описываются алгоритмом биотенсегрити.

Все теории начинаются с гипотез, на проверку которых и на отработку всех подводных камней требуется время. То, что зародилось как гипотеза, – тенсегрити-икосаэдра как алгоритм самореализации универсального биологического пространственного каркаса – сегодня является рабочей моделью биотенсегрити как универсальной биологической физиологии, которая вот уже больше 40 лет выдерживает любые попытки ее опровергнуть. Она имеет самое широкое применение и является единственной из доступных моделей, которая единообразно описывает все формы жизни – вирусы, бактерии, растительный и животный миры.

Окружающий нас мир настолько сложен и многообразен, что ни один человек не обладает достаточным количеством необходимых навыков, чтобы самостоятельно оценить всю значимость той или иной теории. Поэтому я всегда старался привлечь как можно больше людей и умов, для того чтобы максимально развивать, тестировать и обогащать концепцию биотенсегрити и биологических пространственных каркасов.

Роль Грэхема Скарра в развитии биотенсегрити невозможно переоценить. Как никто другой, он сделал исключительно много для признания и внедрения биотенсегрити в жизнь. Грэхем по-новому проработал и изменил биотенсегрити-подход, сделав это абсолютно мастерски: он превратил сырой виноград наших совместных обсуждений и идей в изысканное вино, опьяняющее своей логикой и четкостью изложения. Конечно, с годами это биотенсегрити-вино будет дозревать и становиться еще лучше, но уже сейчас я горжусь нашим продуктом и приглашаю читателя выпить этот напиток до дна, прочитав книгу Грэхема Скарра «Биотенсегрити: структурная основа жизни» от первой до последней главы!

    Стивен М. Левин,
    доктор медицины, FACS
    Ezekiel Biomechanics Group,
    Вашингтон, США,
    сентябрь 2018 г.

Предисловие Джона Шарки

Мы можем судить о нашем прогрессе по смелости наших вопросов и глубине наших ответов, по нашей готовности принять то, что верно, а не то, что удобно.

    Карл Саган

Мне очень приятно писать предисловие к уже второму изданию книги «Биотенсегрити: структурная основа жизни», написанной моим коллегой и товарищем по Biotensegrity Interest Group (B.I.G.), биологом и остеопатом Грэхемом Скарром. Я с особой тщательностью выбирал вступительную цитату к этому предисловию, позаимствовав ее у героя моего детства Карла Сагана (Sagan, 2013). Поскольку я считаю, что те вопросы и ответы, которые предоставляет модель биотенсегрити, являются не только основой жизни, но и основой устройства Вселенной, или же, если использовать полемическую риторику, той основой, с помощью которой мы можем объяснить все что угодно.

В данной книге поднимаются по-настоящему смелые вопросы, и я искренне верю, что хорошие ответы на эти большие вопросы о жизни и о Вселенной обязательно должны включать биотенсегрити-модели. Второе издание теперь еще включает дополнительные цветные иллюстрации, предоставляет нам пошаговые объяснения, выстраивая цепочку неопровержимых логических доказательств моделей тенсегрити и биотенсегрити как основы жизни, формы и функции. Я надеюсь, что после прочтения нового (второго) издания вы со мной согласитесь.

В жизни всегда будут вещи, о которых мы не сможем рассуждать со 100-процентной уверенностью, равно как и вещи, о которых мы, возможно, никогда ничего не узнаем. Такова природа науки. Если окажется так, что биотенсегрити – это неполная или ошибочная модель, я готов это принять. Однако как ученый и как практик считаю, что наука о биотенсегрити теоретически дала самые убедительные ответы на самые трудные вопросы независимо от того, касаются ли они физиологии движения, физических упражнений функциональной анатомии, практической медицины или чего-то другого.

В работе Грэхэма Скарра «Биотенсегрити: структурная основа жизни» меня особенно восхищает то, что эта книга одновременно и строго научна, и в то же время написана очень доступным языком. А значит, послужит интеллектуальным вызовом как для ученых, так и для широкого круга практиков, заставляя пересмотреть многие привычные представления о биомеханике архитектурно-строительных принципов устройства живых организмов и человека.

Все мы нуждаемся в том, чтобы кто-то оспаривал наши устоявшиеся модели и убеждения, используя этичный и научно обоснованный подход. Переосмысление инженерно-расчетной биомеханики, предлагаемое Грэхемом Скарром, кому-то может показаться угрозой нашим устоявшимся убеждениям, я же вижу в этом возможность лучше понять и объяснить то, что кажется сложным или даже невозможным.

В предисловии к французскому изданию «Принципов Философии» французский философ Рене Декарт (1596–1650) использовал дерево в качестве метафоры для отражения своего холистического взгляда на философию. Мне очень интересно, что бы сказал Декарт о биотенсегрити, если бы у него была возможность прочитать эту новаторскую книгу.

И почему-то мне кажется, что, поняв биотенсегрити, Декарт бы пересмотрел свою точку зрения, отказавшись от простых механических представлений, основанных на понятиях корней и опоры. В то время как дерево действительно нуждается в земле как неизменной опоре, для человека она не обязательна! Люди и другие животные могут выжить даже в невесомости, где нет действия силы тяжести!

По сути, биотенсегрити – это понимание биомеханики человека как замкнутых, натяженно-компрессионных, сетевых, самоподдерживающихся контуров, которое приводит нас к выводу о том, что дерево без земли не может, а вот человек может без нее обойтись благодаря его способности к внутреннему самоподдержанию. Вот к таким неожиданным выводам приводит нас биотенсегрити!

Книга Грэхема Скарра будет полна таких сюрпризов и неожиданных выводов. Поэтому я уверен, что Декарт порекомендовал бы эту книгу своим друзьям и коллегам.

Я предлагаю читателям продолжить этот исторический ряд. А что бы подумал Джованни Альфонсо Борелли (1608–1679), автор первой биомеханической концепции о шарнирных и рычажных соединениях в человеческой анатомии, по которым мы во многом живем и сегодня? Изменил ли бы он свою интерпретацию? Я думаю, что да, потому что книга Грэхема Скарра написана в удивительно логической и доказательной последовательности, не избегая сложных вопросов, а предлагая на них новые ответы! Поэтому, мне кажется, окажись это книга хоть у Сократа (399 г. до н. э.), хоть у Да Винчи (1452–1519 гг.) или Микеланджело (1475–1564 гг.), они бы наверняка, подобно мне, с большим энтузиазмом порекомендовали бы ее своим коллегам.

    Джон Шарки,
    магистр естественных наук,
    клинический анатом (BACA/Anatomical Society),
    физиотерапевт (BASES).
    Факультет медицины, стоматологии и клинических наук Честерского университета, Англия / NTC, Дублин, Ирландия
    Июнь 2018

Предисловие и благодарности

Путь в тысячу миль начинается с первого шага.

    Лао Цзы

Как биолог и остеопат, интересующийся структурной механикой человеческого тела, я быстро осознал, что традиционные представления о движении и биомеханические расчеты неспособны объяснить очень многие, если не большинство, из тех наблюдений, с которыми я сталкивался на практике, однако очевидной альтернативы для них не существовало. В то же время на протяжении всей жизни у меня был большой интерес к природным узорам, геометрическим паттернам и формам, но который, казалось, ни к чему не приводил, поскольку не было единой концепции, которая могла бы объединить все это воедино. Поэтому, когда Лиз Дэвис (2004a; 2004b) написала пару статей, в которых связывала простые геометрические формы со сложными анатомическими структурами, они стали для меня своего рода зацепкой, возродившей интерес к архивам, которые я собирал на протяжении всей жизни.

Буквально за неделю вся собранная мною информация о природной геометрии была извлечена с пыльной полки, и в ней обнаружилась одна деталь, которая привлекла мое особое внимание, – статья Дональда Ингбера в Сайнтифик Америкэн «Архитектура жизни» (1998), которую я в свое время сохранил как нечто занимательное, но так и не удосужился прочитать.

Эта находка произвела на меня настолько сильное впечатление, что к концу недели сделал все то, до чего не доходили руки на протяжении нескольких лет: я нашел статьи Стивена Левина по биотенсегрити, записался на его предстоящую лекцию и начал делать тенсегрити-модель руки на основе того, как я понял биотенсегрити.

Более того, со временем я обнаружил, что написание писем является для меня лучшим способом организовать собственные мысли. К тому же невероятно неожиданно вся моя жизнь перешла в новое движение, и я начал переписываться и встречаться с другими коллегами из областей остеопатии, биотенсегрити и фасциальных исследований. С годами этих людей становилось все больше, и каждый из них внес свой вклад в прогресс моего понимания мироустройства жизни и природы. Таким образом, эта книга во многом есть продукт коллективного творчества, поскольку на мое понимание биотенсегрити повлияло множество людей, с которыми я общался на протяжении последних 10 с лишним лет.

Однако среди всех отдельного упоминания заслуживает Стивен Левин – мой близкий друг и наставник. Я бесконечно благодарен ему за его терпение, мудрость и за те многочисленные часы, которые мы провели в совместных обсуждениях биотенсегрити. Многие из идей, представленных в этой книге, – результат наших бесед и совместных лекций на протяжении нескольких лет, но лишь малая часть из них была опубликована ранее в статьях и выступлениях. И вот наконец пришло время воздать должное этим пониманиям и дискуссиям, изложив их в книге.

Именно С. Левин первым применил синергетическую геометрию Б. Фуллера к биологии, обосновав преимущества тенсегрити-интерпретации устройства живых организмов, перед традиционной «рычажной» моделью биомеханики, исходя из постулатов о первичности адаптивной динамической самостабилизации пространственного каркаса как самой основы биологической организации.

С помощью простых тенсегрити-моделей он продемонстрировал наглядную взаимосвязь между динамической структурой, самозамыканием внутренних сил в единый самостабилизирующийся контур и минимизацией необходимых на это энергозатрат.

Именно первичность внутренней самоустойчивости и самостабилизации – биомеханического гомеостаза – выделяет концепцию биотенсегрити как, на мой взгляд, наилучший фундамент для понимания сущности сложных живых структур.

В то время как традиционные биологические представления о «главных двигателях» эволюции акцентируют именно поведение организмов во внешней среде и их способности к добыче пищи и к размножению в качестве главных драйверов эволюционного процесса, биотенсегрити-подход более фундаментален. Биотенсегрити задается более глубоким и фоновым вопросом: «А что предшествует любому действию организма?»

Иначе говоря, как перед, так во время, так и после любых внешних действий организм должен сохранять и динамически адаптировать свою внутреннюю суперстабилизацию на ВСЕХ масштабах – от метров до сантиметров, до микрон и до нанометров! Это самое первичное и необходимое условие, предшествующее не только выживанию через пищевое поведение во внешней среде, но и самой фоновой возможности существования, роста и развития живых организмов.

Как ни удивительно, эти, казалось бы, очевидные основы и предпосылки биологической организации как таковой на удивление поверхностно и слабо проработаны в современной науке. Биомеханика рассматривает живые организмы по тем же инженерно-расчетным лекалам и формулам, что и искусственно спроектированные, а не спонтанно самоорганизовавшиеся, механизмы, машины и строительные конструкции, в основе которых лежат системы строительных блоков и рычагов, приводимых в движение моторами.

Чем больше мы узнаем о свойствах живой материи, о самоорганизации и нелинейности ее поведения, тем менее и менее адекватной выглядит такая идеализация. Она, конечно же, удобна для расчетов, но при этом совершенно оторвана от податливой, пластичной, иррегулярной и неожиданной биологической реальности, динамически возникающей в своей эмерджентности.

В традиционную биомеханическую модель строительных блоков заложена структурная неспособность к самостабилизации, заложена зависимость от положения в пространстве, заложена необходимость высокопрочных материалов, жестких креплений и точных расчетов – все то, чего в живой природе с очевидностью не наблюдается. Более того, в основу инженерных расчетов биомеханики заложена модель системы рычагов, которая по самой своей природе генерирует напряжение сдвига вкупе с угловыми моментами и предполагает возникновение локальных пиковых концентраций нагрузок, которые неизбежно бы приводили к разрушению живых тканей.

Биотенсегрити считает традиционную модель и сами концептуальные основания биомеханики неудовлетворительными, и именно С. Левин имел научную честность и личную смелость открыто говорить об этом!

За прошедшие 40 лет из первых ростков, заложенных С. Левином в 1970-е годы, биотенсегрити выросло в самостоятельное направление, и возникло сообщество, которое по всему миру объединяет сотни исследователей и практикующих специалистов в самых различных областях.

Огромную роль в формировании настолько живого, активного и продуктивного всемирного сообщества биотенсегрити принадлежит Biotensegrity Interest Group (B.I.G.), неформальному объединению со скромным названием «Биотенсегрити кружок», который объединил ядро исследователей и энтузиастов из многих стран.

Я приношу свою глубокую благодарность доктору философии в области физики Даниэль-Клод Мартен, без всепроникающего энтузиазма и упорства которой этот неформальный мозговой центр биотенсегрити не был бы создан.

Также большое ей спасибо и за все беседы и дискуссии, надолго и во многом стимулировавшие работу моей мысли, а также за то, что позволила мне повторно использовать изображения из ее книги (2016). Спасибо Нику Вудхеду, Крису Стэплтону, Андреа Риппе, Яну Шофилду, Полу Серку, Джону Шарки и всем из B.I.G. за предоставленную возможность слушать других и транслировать и развивать свои собственные мысли; Стивену Левину и Джону Шарки за чтение и комментирование моей рукописи; Джоан Ависон – за то, что указала мне в направлении издательства Handspring; а также Джейн Райли за поддержку в углублении моего интереса к функциональной анатомии и за совет, что книгой надо заняться в первую очередь.

Особая благодарность моему приемному сыну Рори Джеймсу за фотосъемку тенсегрити-моделей в качестве иллюстраций к данной книге и моему сыну Джейкобу Скарру за помощь в процессе фотографирования и подготовки материала. Я также хочу поблагодарить Крис Клэнси, Дональда Ингбера, Джона Шарки, Тео Дженсена и Тома Флемонса за возможность использовать их собственные изображения; Джеральда де Йонга – за создание сделанного на заказ изображения его прыгающей сферы; Дона Эдвардса, Хелену Харрисон, Стивена Левина и Тео Янсена за то, что они позволили мне сфотографировать предметы из их коллекций; Марию Гоф – за предоставление копии изображения выставки ОБМОХУ 1921 года в высоком разрешении; Витаса СанСпирала – за помощь в получении прототипа Super Ball Bot, воспроизведенного в НАСА Эймс/Эриком Джеймсом, с исследованиями, выполненными Витасом Спиралом, Адрианом Агоджино и Джорджем Гороспом из НАСА Эймса, в Лаборатории Dynamic Tensegrity Robotics; Джонатаном Брюсом из Калифорнийского университета в Санта Крус; Дрю Сабельхаус и Алисой Агоджино из Калифорнийского университета в Беркли; Атиль Исчен из Орегонского государственного университета; Джордже Корбел., Софи Милам, Кайле Морсе и Дэвиде Аткинсоне из Университета Айдахо; с моделью, построенной Кеном Калувартсом из Гентского университета.[2 - Dynamic Tensegrity Robotics Lab –} Лаборатория робототехники динамической тенсегрити. – Прим. перев.]

Я также благодарен Крейгу Невину за эскиз ленты Мёбиуса в области бедра и ноги; Даррену Эйнсворту – за объяснение того, как работает копыто лошади; Дэвиду Хоэншурцу-Шмидту и Крису Стэплтону – за обсуждение актуальности биотенсегрити в клинической практике; Нику Хеддерли – за предоставление информации о раннем конструктивистском искусстве в России; Стивену Дибне – за то, что он привлек мое внимание к особому расположению пузырьков на поверхности перемешиваемого в чашке кофе; и любому, кого я случайно не учел. Наконец, пожалуй, самое важное – это сотрудники Handspring Publishing, с особой благодарностью Сарене Вольфард, Эндрю Стивенсону, Салли Дэвис и Брюсу Хогарту за их замечательную работу по созданию этой книги.

Биотенсегрити дает исследователям, преподавателям и практикующим специалистам намного более глубокое и, главное, реалистичное понимание человеческого тела, и цель этой книги состоит в том, чтобы начать путь к переосмыслению нашего понимания анатомии и физиологии в свете новых открытий. Подобно тому, как любая часть структуры тенсегрити оказывает влияние на другие ее части, каждая глава данной книги опирается на все остальные – следует помнить об этом, чтобы оценить их по достоинству.

В каждой новой сфере всегда стоит вечная дилемма: как сделать так, чтобы было понятно и интересно новичку, который впервые услышал о предмете, и как одновременно не разочаровать тех, кто занимается темой давно и глубоко в нее погружен. Насколько хорошо мне удалось отобразить содержание основных идей и прикладных приложений биотенсегрити в этой книге, судить, конечно же, читателю. Я приложил максимум усилий к поиску такого баланса при написании этой книги, особенно при подготовке расширенного и переработанного второго издания.

Во втором издании в качестве иллюстрации по-прежнему используются простые тенсегрити-модели, а также изображения геометрических паттернов и природных форм, помогающие провести читателя через первопринципы биотенсегрити (которые на самом деле очень просты); при этом в нем содержится и много нового материала, поскольку эта область продолжает развиваться.

Центральный вопрос этой книги, который часто звучит: что такое (био) тенсегрити? Однако эта книга не учебник, транслирующий общепринятые ответы, а в первую очередь личная точка зрения, шаг на пути познания природы живых форм и ключ к лучшему пониманию их физиологии.

    Грэхам Скарр,
    Дипломированный биолог,
    член Королевского общества биологии (FRSB),
    член Линнеевского общества (FLS)
    Стэплфорд, Ноттингемшир, Великобритания,
    апрель 2018 г.

Глоссарий

Агонист мышца, вызывающая движение за счет своей собственной сократительной активации путем создания вращательного момента в суставе

Адгезивная молекула (Молекулы клеточной адгезии) мембранный белок, который соединяет внутренний цитоскелет одной клетки с внеклеточным матриксом или цитоскелетом другой клетки

Актин глобулярный белок (G-актин), который может полимеризоваться в длинные волокна (F-актин), называемые микрофиламентами

Актин-миозиновые двигатели комбинация белков актина и миозина, которые регулируют натяжение в цитоскелете

Альвеола концевая часть дыхательного аппарата млекопитающих в форме пузырька, открывающегося в просвет респираторных бронхиол, отделенная от окружающих капилляров базальной мембраной

Аминокислота одна из 22 органических молекул, в которых одновременно содержатся карбоксильные и аминные группы

Анкирин периферический мембранный белок, связывающий примембранный актин-спектриновый цитоскелет с интегральными мембранными белками

Антагонист функционально «сдерживающая» мышца, которая создает вращательный момент в суставе, противоположный активирующей движение мышце-агонисту

Антипризма полуправильный многогранник, состоящий из двух одинаковых и параллельных многоугольников (оснований), соединенных между собой чередующейся полосой с треугольными гранями

Апериодический (несистематический) нерегулярный, не повторяющийся паттерн

Апоневроз глубокая фасция в виде листа фиброзной ткани, которая имеет большую поверхность и площадь крепления к надкостнице и передает силы натяжения между мышцами

Артериальный конус (Воронка) гладкостенная воронкообразная часть правого желудочка спереди от отверстия легочного ствола в птичьем легком

Аттрактор область фазового пространства, вокруг которой будет стремиться развиваться динамическая система

Ауксетический особое свойство материала, имеющего отрицательное значение коэффициента Пуассона, состоящее в том, что при растяжении (удлинении) материал утолщается, то есть его ширина увеличивается перпендикулярно приложенной силе (в отличие от типовых материалов с положительным коэффициентом Пуассона, которые при удлинении истончаются)

Базальная мембрана внеклеточный матрикс, отделяющий соединительную ткань от клеток различного генеза (эпителиальных, мышечных и т. д.)

Бедренная кость