banner banner banner
Организация связи в сетях LTE
Организация связи в сетях LTE
Оценить:
Рейтинг: 0

Полная версия:

Организация связи в сетях LTE

скачать книгу бесплатно


Кроме того, к сетям LTE относится большая часть спецификаций для сетей UMTS, в том числе, касающихся предоставления пользовательских услуг.

В стандарте LTE гармонически соединились передовые технологии 21 века. На физическом уровне в LTE использована технология OFDM, обеспечивающая высокие скорости передачи в радиоканалах с многолучевым распространением радиоволн. На уровне соединений (L2) и сетевом уровне (L3) за основу взяты протоколы стандарта UTRA (UMTS) при высокоскоростной передаче трафика с коммутацией пакетов. Поэтому стандарт LTE по праву является новым этапом развития сетей радиодоступа Evolved UTRA. Со дня появления стандарта LTE он претерпел существенную модернизацию. Новые версии стандарта LTE-A (Advanced) Rel.10 – 14 обеспечивает высокое качество предоставляемых услуг и сквозные скорости в сотни мегабит/с. Для достижения подобных скоростей в LTE-A используют совместно 2 технологии:

– расширение полосы передаваемого сигнала за счет агрегации рабочих полос,

– пространственное мультиплексирование передаваемых сигналов.

Агрегация полос позволяет увеличить суммарную полосу до 5?20=100 МГц. Пространственное мультиплексирование предоставляет возможность одновременно передавать в одном частотном канале до 8 различных потоков данных. В результате скорости передачи в радиоканале возрастают на порядок.

Другой отличительной чертой сетей LTE является прописанная в спецификациях неоднородность их структур. Кроме макро, микросот и пикосот в зданиях предполагается широкое использование фемтосот – домашних базовых станций, по сути аналогичных точкам доступа в сетях Wi?Fi. При этом появляется возможность высококачественного обслуживания абонентов, находящихся в помещениях, что создает конкурентную среду с другими сетями радиодоступа. Улучшению связи также будет способствовать использование прописанных в спецификациях релейных станций LTE.

В стандарте LTE все типы трафика, включая голосовой, передают с коммутацией пакетов. Сети LTE являются all-IP сетями, где все интерфейсы, кроме радио интерфейса, построены на основе IP-протокола. Это позволяет унифицировать структуру интерфейсов транспортной сети, широко использовать туннельные соединения, технологию IMS при организации услуг, применять стандартные в сети Интернета методы защиты информации. Существенно упрощаются межсистемные сигнальные соединения и протоколы передачи пакетов трафика.

Структура сети LTE и принципы работы

Сети стандарта E-UTRAN (LTE) предназначены для обмена пакетным трафиком как между различными абонентами сетей радиодоступа, так и для доставки пакетов на абонентский терминал с интернет-серверов. Сети LTE относят к all-IP сетям, где внутрисетевые интерфейсы строят на основе IP-протоколов. Структура сети LTE представлена на рис. 1.

Рис.1. Структура сети LTE

Сеть включает в себя мобильные терминалы (UE – User Equipment), сеть радиодоступа E-UTRAN (Evolved Universal Terrestrial Radio Access Network)и новое ядро сети Evolved Packet Core (EPC). Для обслуживания абонентов сеть имеет выход на сети с предоставлением услуг по IP-протоколу и на домашние сети абонентов (HSS – Home Subscriber Server).

Сеть радиодоступа E-UTRAN построена как совокупность узлов базовых станций eNB (E-UTRAN NodeB или eNodeB), где соседние eNB соединены между собой интерфейсом Х2. Ядро сети EPC (Evolved Packet Core) (рис.1) состоит из обслуживающего шлюза S-GW (Serving Gateway), шлюза для выхода на пакетные сети PDN GW (Packet Data Network Gateway), структуры управления по протоколу Mobility Management MME (Mobility Management Entity), связанной с S-GW и eNodeB сигнальными интерфейсами. На рис. 1 соединения для передачи данных показаны толстыми линиями, сигнальные соединения – тонкими.

eNB подключены к EPC посредством интерфейса S1. При этом интерфейс S1 в пользовательской плоскости S1-U (User Plane) непосредственно замыкается на обслуживающий шлюз S-GW (Serving Gateway), в то время как сигнальная часть интерфейса S1-C (Control Plane) следует на MME – Mobility Management Entity.

UE (абонентский терминал) подключенный к сети LTE, может находиться в состоянии CONNECTED (ACTIVE) или в состоянии IDLE. В состоянии CONNECTED идет обмен сообщениями (как сигнальными, так и пакетами трафика) по радио интерфейсу. В состояние IDLE станцию переводят на время пауз в сеансе связи. В этом состоянии абонент сохраняет свой IP-адрес, сеть поддерживает абонентские базы данных, а местоположение абонента определено с точностью до зоны слежения Tracking Area [1, гл.5].

eNB объединяет в себе функции базовых станций и контроллеров сетей 3-го поколения. Для каждого активного абонента в eNB открыта база данных. eNB выполняет:

– обеспечивает передачу трафика и сигнализации в радиоканале,

– управляет распределением радио ресурсов,

– обеспечивает сквозной канал трафика к S-GW,

– выбирает обслуживающий MME,

– поддерживает синхронизацию передач и контролирует уровень помех в соте,

– обеспечивает шифрацию всех пользовательских сообщений и целостность передачи сигнализации по радиоканалу [1, гл.6],

– выбирает MME и организует сигнальный обмен с ним,

– производит обработку данных и сигнализации на уровне L2 [1, гл.4],

– организует хэндоверы,

– поддерживает услуги мультимедийного вещания.

MME:

– ведет базы данных абонентов, зарегистрированных в сети,

– выбирает S-GW и PDN GW при подключении абонентов к сети,

– обеспечивает передачу и защиту сигнализации NAS (Non Access Stratum) по протоколам MM (Mobility Management) SM (Session Management) между MME и UE [1, гл.6],

– обеспечивает локализацию, аутентификацию и авторизацию абонентов,

– участвует в организации межсетевых связей и хэндоверов,

– организует вызовы UE, находящихся в состоянии IDLE,

– ведет сигнальный обмен с eNB при организации сквозных каналов.

Каждый UE, зарегистрированный в сети, обслуживает один Serving Gateway. S-GW – обслуживающий шлюз:

– выполняет функции “якоря” в визитной сети, маршрутизируя трафик при перемещениях UE в состоянии CONNECTED от одного eNB к другому (хэндовере),

– ведет базу данных абонентов, зарегистрированных в сети,

– участвует в организации сквозных каналов с eNB и PDN GW, а также сигнальных соединений с MME при регистрации абонента в сети и при выполнении процедуры локализации,

– предоставляет учетные данные для тарификации и оплаты выполненных услуг.

PDN GW:

– является “якорем” при подключении к внешним IP-сетям; ведет базу данных абонентов, подключенных к нему,

– организует точку доступа к внешним IP-сетям,

– активизирует статический IP-адрес абонента; если абонент должен получить на время сеанса связи динамический IP-адрес, PDN GW запрашивает его с сервера DHCP (Dynamic Host Configuration Protocol) или сам выполняет необходимые функции DHCP, после чего обеспечивает доставку IP-адреса абоненту,

– обеспечивает качественные характеристики услуг на внешнем соединении через интерфейс SGi и фильтрацию входящих пользовательских пакетов данных,

– организует сквозные каналы и сигнальные соединения между S-GW PDN GW,

– устанавливает требуемые качественные характеристики сквозных каналов на основе установок, полученных от PCRF, в том числе максимальные и минимальные скорости передачи данных в сквозных каналах в соответствии с качественными характеристиками передаваемого трафика QCI (QoS Class Identifier) [1, гл.7],

– ведет учёт предоставленных абонентам услуг.

PDN GW обычно находится в домашней сети абонента, а S-GW, MME и eNB в визитной. Если абонента обслуживает домашняя сеть, то PDN GW и S-GW связаны интерфейсом S5; если S-GW находится в визитной сети, а PDN GW в домашней, то между ними интерфейс S8, представляющий собой межсетевой вариант S5.

Policy and Charging Resource Function (PCRF) по сути представляет собой управляющий сервер, обеспечивающий централизованное управление ресурсами сети, учет и тарификацию предоставляемых услуг. Как только появляется запрос на новое активное соединение, эта информация поступает на PCRF. Он оценивает имеющиеся в его распоряжении ресурсы сети и направляет в PCEF (Policy and Charging Enforcement Function) шлюза PDN GW команды, устанавливающие требования к качеству услуг и к их тарификации. PCRF находится в домашней сети абонента. Согласно спецификациям PCRF является опциональным узлом, но большинство операторов строят сети с PCRF.

HSS – Home Subscriber Server, обеспечивает выполнение процедур безопасности в сети LTE, исполняя функции HLR и AuC в сетях GSM/UMTS [1, гл. 6]. HSS поддерживает сигнальную сеть IMS при организации услуг. ММЕ имеют прямой выход на HSS через интерфейс S6a по протоколу Diameter.

В сетях LTE при передаче информации в транспортной сети используют IP-технологии. Все элементы сети LTE имеют локальные IP-адреса. Сигнальные сообщения по S1 (S1 – Control Plane) следуют между eNB и MME. Подуровни L2 SCTP (Stream Control Transmission Protocol) и IP поддерживают стандартный транспорт для передачи сигнальных сообщений. В частности, SCTP обеспечивает надежность передачи и последовательность доставки сообщений.

Организация каналов в LTE

В сети LTE существуют каналы трех уровней: логические, транспортные и физические.

Логические каналы

Логические каналы по типу передаваемой информации делятся на логические каналы управления и логические каналы трафика. Логические каналы управления используются для передачи различных сигнальных и информационных сообщений. По логическим каналам трафика передают пользовательские данные. В нисходящем направлении определены пять управляющих логических каналов:

Broadcast Control Channel (BCCH) – канал, по которому передают системную информацию всем пользователям (UE), находящимся в соте. Перед входом в систему пользовательское устройство считывает информацию, которая передается по каналу BCCH, и определяет параметры сети.

Paging Control Channel (PCCH) – канал для передачи пейджинговых сообщений, которые передаются пользовательским устройствам, местоположение которых не определено с точностью до соты.

Common Control Channel (CCCH) – общий канал управления, предназначенный для решения общих для всех пользовательских терминалов задач.

Dedicated Control Channel (DCCH) – индивидуальный выделенный канал управления для обмена командными сообщениями с пользовательским терминалом.

Multicast Control Channel (MCCH) – канал передачи групповой служебной информации. Используется для передачи служебной информации необходимой при приеме канала MTCH.

И два трафиковых логических канала:

Multicast Traffic Channel (MTCH) – канал передачи трафика для выделенной группы пользовательских терминалов, используется для передачи услуги мультимедийного вещания MBMS.

Dedicated Traffic Channel (DTCH) – выделенный канал типа "точка-точка" для передачи пользовательских данных. Предназначен только для одного пользовательского терминала.

На рис. 2 приведена классификация логических каналов.

Рис. 2 Классификация логических каналов

Транспортные каналы

Информацию логических каналов после обработки на RLC/MAC уровнях размещают в транспортных каналах для дальнейшей передачи по радио интерфейсу в физических каналах. Транспортный канал определяет, как и с какими характеристиками происходит передача информации по радио интерфейсу. Информационные сообщения на транспортном уровне разбивают на транспортные блоки. В каждом временном интервале передачи (Transmission Time Interval, TTI) по радио интерфейсу передают хотя бы один транспортный блок. При использовании технологии MIMO возможна передача до четырех блоков в одном TTI.

Определены следующие транспортные каналы:

Broadcast Channel (BCH) – транспортный вещательный канал для передачи информации логического канала BCCH, имеет фиксированный формат.

Paging Channel (PCH) – транспортный канал для передачи информации логического канала PCCH. Данный канал поддерживает прием с перерывами (режим Discontinuous Reception, DRX), что позволяет пользовательскому устройству дольше сохранять заряд батареи.

Downlink Shared Channel (DL-SCH) – транспортный канал с разделением пользователей, который используется для передачи информации "вниз". Данный канал поддерживает адаптацию скорости передачи, планирование передач во временной и частотной области, модифицированный автоматический запрос на повторную передачу непринятых пакетов (Hybrid Automatic Repeat Request, HARQ), а также режим DRX.

Multicast Channel (MCH) – транспортный канал групповой передачи, используется для поддержки услуг мультимедийного вещания MBMS.

Uplink Shared Channel (UL-SCH) – транспортный канал с разделением пользователей "вверх", аналогичный каналу DL-SCH.

Random Access Channel (RACH) – транспортный канал случайного доступа. Используется для передачи запросов на подключение к сети, при хэндовере (handover, HO), для восстановления синхронизации "вверх".

На рис. 3 приведена классификация транспортных каналов.

Рис. 3 Классификация транспортных каналов

Физические каналы

В LTE определены следующие физические каналы:

Physical Downlink Shared Channel (PDSCH) – физический канал для передачи информации "вниз" с разделением пользователей. Используется для передачи информации каналов DL-SCH и PCH.

Physical Downlink Control Channel (PDCCH) – физический канал управления "вниз". Используется для передачи информации о назначении канального ресурса для передачи транспортных блоков каналов PCH, DL-SCH, UL-SCH и HARQ информации, относящейся к каналу DL-SCH. Также по этому каналу передаются ответы на запросы на доступ к сети. Передача осуществляется с помощью модуляции 4-ФМ.

Physical Hybrid ARQ Indicator Channel (PHICH) – физический канал для передачи HARQ ACK/NACK в ответ при передаче информации "вверх".

Physical Broadcast Channel (PBCH) – физический канал передачи вещательной информации.

Physical Multicast Channel (PMCH) – физический канал групповой передачи пакетов мультимедийного вещания.

Physical Control Format Indicator Channel (PCFICH) – физический канал передачи формата, который используется для канала PDCCH.

Physical Random Access Channel (PRACH) – физический канал передачи запросов случайного доступа.

Physical Uplink Shared Channel (PUSCH) – физический канал передачи пользовательского трафика и сигнализации Uplink Control Information (UCI).

Physical Uplink Control Channel (PUCCH) – физический канал передачи сигнализации UCI в отсутствии канала PUSCH.

На рисунке 4 и 5 приводится взаимосвязь между логическими, транспортными и физическими каналами в нисходящем направлении и восходящем направлении (от eNodeB к UE).

Рис. 4 Взаимосвязь между логическими, транспортными и физическими каналами в нисходящем направлении

Рис. 5 Взаимосвязь между логическими, транспортными и физическими каналами в восходящем направлении

Механизм диспетчеризации и адаптация канала связи

В отличие от предыдущих коммуникационных технологий, использовавших пакетную передачу данных с традиционной структурой пакета, в LTE применяется передача по слотам, в которых нет ни традиционной преамбулы, ни символов контроля четности. Для повышения эффективности использования выделенной базовой станции полосы частот в LTE используется диспетчеризация сетевых ресурсов.

Под диспетчеризацией понимается процесс распределения сетевых ресурсов между пользователями, передающими данные. В технологии LTE предусмотрена динамическая диспетчеризация в восходящем и нисходящем каналах.

Целью диспетчеризации является сбалансированность качества связи и общей производительности системы. В радио интерфейсе LTE реализована функция диспетчеризации в зависимости от состояния канала связи. Она обеспечивает передачу данных на повышенных скоростях (за счет использования модуляции более высокого порядка, уменьшения степени кодировки каналов, передачи дополнительных потоков данных и меньшего числа повторных передач), задействуя для этого временные и частотные ресурсы с относительно хорошими условиями связи. Таким образом, для передачи любого конкретного объема информации требуется меньше времени. Частотно-временная сетка OFDM помогает выбирать ресурсы в частотной и временной областях.

Для трафика сервисов, пересылающих пакеты с небольшой полезной нагрузкой и через одинаковые промежутки времени, объем трафика сигнализации, необходимой для динамической диспетчеризации, может превышать объем переданной пользователем информации. Поэтому в LTE также имеется функция статической диспетчеризации (в дополнение к динамической). Под статической диспетчеризацией понимается выделение пользователю радиочастотного ресурса для передачи определенного числа подкадров.

Механизмы адаптации канала нужны для того, чтобы «выжать все возможное» из канала с изменяющимся качеством связи. Такой механизм «выбирает» схемы модуляции и канального кодирования в соответствии с условиями связи. От его работы зависят скорость передачи данных и вероятность возникновения ошибок в канале.

Регулирование мощности в восходящем канале

Речь идет об управлении уровнем излучаемой терминалами мощности для того, чтобы увеличить емкость сети, расширить зону радио покрытия, повысить качество связи и снизить энергопотребление. Для достижения перечисленных целей механизмы регулирования мощности, как правило, добиваются максимального увеличения уровня полезного принимаемого сигнала при одновременном снижении уровня радиопомех.

Сигналы в восходящем канале LTE являются ортогональными, а значит, взаимные радиопомехи между пользователями одной соты отсутствуют —по крайней мере, при идеальных условиях радиосвязи. Уровень помех, создаваемый пользователям соседних сот, зависит от местоположения излучающего мобильного терминала, а точнее, от уровня затухания его сигнала на пути к этим сотам. Вообще говоря, чем ближе терминал к соседней соте, тем выше уровень создаваемых им помех в ней. Соответственно терминалы, находящиеся на более далеком расстоянии от соседней соты, могут передавать сигналы большей мощности, чем терминалы, расположенные рядом с ней.

Ортогональность сигналов в восходящем канале LTE позволяет мультиплексировать сигналы терминальных устройств разной мощности в этом канале в одной и той же соте. Это означает, что вместо компенсации всплесков уровня сигнала, возникающих вследствие многолучевого распространения радиоволн (путем снижения излучаемой мощности), их (всплески) можно использовать для увеличения скорости передачи данных посредством механизмов диспетчеризации и адаптации канала связи.

Повторная передача данных