скачать книгу бесплатно
+2ab + b
, что облегчает устранение одного или нескольких коэффициентов с помощью их уравновешивающих эквивалентов на противоположной стороне уравнения.
И снова обычные процессы арифметики обобщаются в алгебре, используя (1) знаки «+» и «-» как знаки процессов, способствующих некоторому конечному результату, независимо от того, существуют ли реальные величины, которые нужно сложить в одном случае, или из которых можно вычесть в другом, и (2) используя знаки «x» и «?», знаки умножения и деления, таким же образом. Кроме того, изложены правила использования обеих пар знаков, сначала + и -, а затем x и ?, в применении к + и – величинам. Последние правила вкратце гласят, что + величины, умноженные или деленные на + величины, и – величины, умноженные или деленные на – величины, одинаково дают + величины; и что + величины, умноженные или деленные на – величины (или наоборот), одинаково дают – величины. Причина этих последних правил станет очевидной, если мы рассмотрим необходимость при вычислениях с помощью переменных и неопределенных величин оставлять неопределенными результаты процессов, обозначаемых этими и подобными знаками (например, для потенцирования и ротоэкстракции), пока они не будут рассматриваться как части, которые вместе составляют все данные вычисления. Ибо эта необходимость ведет непосредственно к тому, что является, возможно, самым фундаментальным обобщением во всей алгебре, которое подразумевается во всех ее процессах и в форме, которую принимают все ее суждения, а именно к форме уравнения. Я имею в виду общую концепцию отрицательных величин, то есть величин, которые меньше, чем ничто, и именно настолько меньше, чем ничто, насколько выше фигуры, которые их выражают. Символ 0, или ноль, мыслится как стоящий посередине между двумя бесконечно большими классами чисел, один из которых содержит все положительные числа, или числа больше нуля, выраженные цифрой 4-, а другой – все отрицательные числа, или числа меньше нуля, выраженные цифрой – И к тому или другому из этих противоположных классов должно принадлежать каждое количество, отличное от нуля. Таким образом, в одном смысле нулевое значение 0, стоящее между положительными величинами с одной стороны и отрицательными с другой, занимает положение, аналогичное и подразумеваемое тем, которое занимает знак равенства = между любыми двумя величинами, отличными от 0, независимо от их места в этих классах; так как такие величины равны только тогда, когда при вычитании одной из них из другой получается 0, то есть когда между ними нет количественной разницы.
Теперь правила знаков, указанные выше для умножения и деления алгебраических величин, а именно, что подобные знаки дают +, а непохожие – -, можно рассматривать как правила, влияющие на них просто как на операции, определяющие, принадлежат ли их результаты (которые являются произведениями в одном случае, кванторами в другом) к положительному классу чисел, записанных справа, или к отрицательному классу чисел, записанных слева, от 0. Я имею в виду, что сами величины имеют знаки + или – до того, как мы их умножим или разделим, и что эти знаки должны быть отличны от тех, которые будут иметь их результаты, когда эти операции будут выполнены. Знаки этих результатов мы и хотим узнать, не выполняя операций, на которые они направлены, чтобы составить уравнения, из которых только и можно узнать числовое значение самих результатов. Вопрос заключается в том, какие знаки должны иметь величины, подлежащие умножению или делению одна на другую, до выполнения этих операций, чтобы результаты этих операций над ними были отнесены соответственно либо к положительным, либо к отрицательным величинам.
Сначала об умножении. В операции умножения одного количества + на другое количество + мы делаем следующее: считаем множимое столько раз, сколько единиц имеет множитель. Если оба количества положительны, то результат операции может быть только положительным.
Если же множимое или множитель отрицательны, то при положительном значении другой величины операция с ее результатом будет отрицательной. Ибо предположим, что множитель отрицательный, скажем -6, а множитель положительный, скажем +3. Тогда знак множителя является знаком операции, то есть мы имеем положительный счет от – 6 три раза. Ничто не меняет знак числа 6. Следовательно, результат получается отрицательным, -18. Во-вторых, предположим, что множитель отрицательный, и нам нужно, скажем, умножить +6 на – 3. Операция здесь отрицательная, это операция счета. Но что значит посчитать 6 раз на – 3? Рассмотрим это следующим образом. Если бы мы посчитали 6 один раз, то есть умножили на 1, то в результате получилось бы 6. Если бы мы сказали, что не считаем 6, то есть умножили бы его на 0, результат был бы 0. Если бы мы считали его один раз реже, чем 0, мы должны были бы умножить его на – 1, и результат был бы -6. Аналогично умножить его на – 3 – значит предположить, что его считают в 3 раза реже, чем 0, то есть сделать t-18.
Таким образом, в обоих случаях умножения величин с непохожими знаками результат имеет отрицательный знак или -.
И наконец, предположим, что мы умножаем два отрицательных или – количества, знаки которых одинаковы, но отрицательны. Это означает, что мы должны либо считать, скажем, – 6 за – 3 раза, либо – 3 за – 6 раз. Мы только что видели, что значит считать по – раз. В данном случае нам остается только повторить те же рассуждения; и здесь не имеет значения, какой фактор берется в качестве множителя, а какой – в качестве множимого. Скажем, нам нужно умножить – 6 на – 3, или сосчитать – 6 за – 3 раза. Теперь не считать – 6 вообще, то есть умножить его на 0, значит довести его до 0, от того, что он на 6 меньше 0; мы просто, как бы, уничтожаем долг. Считать его за – 1 раз – значит довести его до +6; за – 2 раза – до +12; за – 3 раза – до +18. Следовательно, результат, полученный при умножении двух отрицательных или – количеств, имеет знак +, как и при умножении двух 4- количеств.
Что касается деления, то здесь действует то же правило. Результат будет положительным, если знаки делимого и делителя совпадают, и отрицательным, если они не совпадают. Делитель здесь является действующим элементом, как и множитель при умножении, с той лишь разницей, что если множитель выражает, сколько раз нужно сосчитать количество, то делитель выражает, на сколько равных частей нужно разделить количество, или, что то же самое, сколько раз нужно сосчитать одну из этих частей, чтобы привести ее к равенству с целым. Делимое на делитель дает делитель; и наоборот, делимое, умноженное на делитель, дает делитель.
Здесь, во-первых, очевидно, что процесс деления количества + на количество + никогда не может дать ничего, кроме количества +, независимо от того, что мы берем в качестве делителя.
Во-вторых, если предположить, что делимое – величина, а делитель – величина +, то делитель должен быть величиной -, чтобы при умножении на делитель он, в соответствии с правилом умножения, был равен делимому.
Аналогично, если предположить, что делимое – это + количество, а делитель – количество, то и в этом случае делитель должен быть – количеством, чтобы, согласно тому же правилу умножения, он был равен делимому, когда умножается на делитель.
Таким образом, в обоих этих случаях два количества с разными знаками, разделенные одно на другое, дают в качестве своих коэффициентов количества -.
Наконец, если мы делим -количество на -количество, в зависимости от того, что мы берем в качестве делителя, то и здесь, как в случае с +количеством, делитель должен быть 4-количеством, чтобы, по тому же правилу умножения, при умножении на -делитель он был равен -делителю.
Все это, я полагаю, не более чем явное подчеркивание того, что имеется в виду, когда в оправдание правила знака при алгебраическом делении коротко говорят: «Это правило следует из того, что произведение делимого и делителя должно быть равно делителю».[13 - Todhunter’s Algebra, 5th ed., 1870, Art. 94, p. 41,]
Обоснование правила знака при умножении – действительно важный момент.
Именно в силу необходимой гармонии с этим высшим обобщением отрицательных величин та форма высказывания, которую алгебра выбирает в качестве той, в которую она переводит все общие результаты, из которых можно вывести решение конкретных случаев, а также все выкладки, которые к ним приводят, – я имею в виду форму уравнения, – сама является высшим примером обобщения процессов, или операций с числами или величинами. Демонстрация равенств является суммой и содержанием всех точных измерений. В конкретном объекте вычислений, которым является число или количество, утверждение равенства, выражением которого является знак =, занимает место копулы в утвердительных суждениях логического мышления в целом. Оно говорит гораздо больше, чем простая копула is, а именно то, что два числа или количества, между которыми оно стоит или которые оно уравнивает, являются в количественном отношении конвертируемыми. Отсюда следует, что уравнение – это логически обратимое суждение, или два простых логических суждения, A есть B и B есть A, в одном; это стало возможным благодаря ограничению предмета уравнения только количеством или числом. Отрицание равенства, если таковое имеется между рассматриваемыми величинами или числами, затем отбрасывается, не как в просто отрицательных логических суждениях, в копулу is-not, как в A не B, а в один или оба термина уравнения, как в
a + x = b, где x обозначает разницу, какой бы она ни была, между b и a; это уравнение можно также выразить как x = b – a, или снова как a – b + x = 0.
Алгебра, таким образом, может быть названа, по аналогии, логикой чистого числа или количества, причем знак = принимается в качестве копулы всех ее суждений или выкладок.
Переходя от уравнений как общих формул к их интерпретации в конкретных случаях, я взял следующее из примеров «замены цифр буквами», приведенных в статье «Алгебра» в Британской энциклопедии; отчасти потому, что оно показывает, как в алгебре используются символы, обозначающие ничто, 0, называемый нулем, и бесконечность, co, :
«Если a = ?, b = ?, c = ?, x = 0, то найдите значение
a
– b
/x – b
– c
/x
Первый член бесконечен, а второй бесконечно больше первого, так как x
= x * x. Ответ: -?».[14 - Encyc. Brit. Ninth Edition, 1875. Vol I. p. 519.]
Нуль, или 0, и бесконечность, или ?, используются здесь точно так же, как если бы они были реальными величинами. Логическое обоснование этого, как я полагаю, двояко: (1) в вычислениях мы всегда, по предположению, имеем дело с количеством или числом, и никогда – с чем-то, что не является количеством или не числом, и (2) место, в котором или точка, в которой появляется количество или число, в вычислительных операциях всегда определяет его значение. Теперь ноль, или 0, – это место или точка посередине между положительными, или +, и отрицательными, или -, величинами. Как алгебраическая величина он больше любого минуса или отрицательного значения. Аналогично с бесконечными величинами, или ?. Одна из них может быть больше или меньше другой, в зависимости от места, которое они соответственно занимают в вычислениях, с помощью которых к ним приходят. Обоснованность этого утверждения основывается на двойном характере, отмеченном выше, как присущем всем числам, (1) как акту счета, (2) как единице или группе единиц, которые подсчитываются. Ноль, как подсчитанное количество, означает отсутствие числового содержания в определенном месте, полученном при вычислении, то есть в серии актов счета, как, например, при вычитании (скажем) 9 из 9; бесконечность, как подсчитанное количество, положительное или отрицательное, означает наличие числового содержания, превышающего любое поддающееся определению содержание, в определенном месте, полученном аналогичным образом, как, например, при умножении 0 на 0 (x на x) в приведенном выше примере.
Поэтому нуль в числе и нуль количества в континуумах, одинаково обозначаемые 0, следует тщательно отличать от логического отрицания или противоречия числа или количества, как способов восприятия вообще. Реальное существование чисел или величин в смысле мест или точек в серии актов счета и, следовательно, их возможное существование в виде содержания, находящегося в этих местах или на них, обеспечивается самим актом счета или вычисления, поскольку он неотделим от него. Точно так же алгебраическую концепцию бесконечности, или оо, как способной к степеням сверх степеней, к которой приходят путем вычисления, следует тщательно отличать от той бесконечности, которая относится к определенным способам количества (хотя и не к числу) как способам восприятия вообще; я имею в виду время и пространство, поскольку они являются сущностями восприятия.
Способны ли такие алгебраические значения бесконечности быть интерпретированы как применимые к реальному миру – это другой вопрос. То обобщение арифметических процессов, которое мы называем алгеброй, несет в себе, просто как обобщение, обязанность увидеть, применимы ли и каким образом его результаты к перцептивным явлениям. Сами по себе они не являются гарантией перцептивной реальности, в той же мере, что и представления о гиппогрифах или химерах в обычном логическом мышлении. И это верно даже тогда, когда явления, которые они интерпретируют, имеют такой абстрактный вид, как деления чистого времени и длительности или геометрические конфигурации чистого или пустого пространства. Их следует рассматривать как объекты-вещи, в которых понятия чисто алгебраического исчисления могут находить или не находить образцы. В этом отношении обобщенные понятия и процессы алгебры отличаются от понятий и процессов арифметики, развитием которой они являются. Ибо, снова цитируя статью об алгебре в Британской энциклопедии, «все операции арифметики могут быть непосредственно интерпретированы сами по себе, в то время как операции алгебры во многих случаях могут быть интерпретированы только путем сравнения с предположениями, на которых они основаны». (Vol. I., p. 511.) " Теория уравнений», – читаем мы в той же статье, – «может быть названа собственно алгеброй» (стр. 515). Но поскольку работа с неизвестными и переменными величинами и отношениями величин (выраженными с помощью символов) является общей и существенной чертой в методах всех высших отраслей вычислений, все они в совершенно определенном смысле могут быть названы высшими отраслями алгебры и включены в нее. Я беру общие главы, под которые попадают эти ветви, из статьи об анализе в Chambers’ Encyclo- ptedia: «Математический анализ, в современном понимании этого термина, – это метод рассмотрения всех величин как неизвестных чисел и представления их для этой цели символами, например буквами, причем отношения, существующие между ними, могут быть таким образом установлены и подвергнуты дальнейшему исследованию. Таким образом, это то же самое, что и алгебра в самом широком смысле этого слова, хотя термин «алгебра» более строго ограничен тем, что относится к уравнениям, и, таким образом, обозначает только первую часть анализа. Вторая часть анализа, или анализ, называемый более строго, делится на анализ конечных величин и анализ бесконечных величин. К первому, называемому также теорией функций, относятся такие предметы, как ряды, логарифмы, кривые и т. д. Анализ бесконечных величин включает в себя дифференциальное исчисление, интегральное исчисление и вариационное исчисление».[15 - Chambers’ Encyclopaedia. Edition of 1888. Vol. I., p. 248.]
Теория уравнений, теория функций и анализ бесконечно малых, таким образом, являются основными главами, под которыми могут быть распределены все ветви, низшие и высшие, алгебры в широком смысле этого слова. Я процитировал вышеприведенный отрывок лишь для того, чтобы дать краткий обзор областей, охватываемых наукой исчисления в целом. Было бы совершенно нецелесообразно пытаться перечислить или каким-либо образом приступить к рассмотрению различных разделов и подразделов, содержащихся в нем. Тем не менее, прежде чем оставить эту тему, необходимо сказать несколько слов об анализе бесконечно малых или бесконечно малом исчислении, поскольку концепция пределов, на которой оно основано, проливает свет на изначальную и существенную природу числа, из которой оно, по сути, является непосредственным и необходимым следствием.
Инфинитезимальное исчисление имеет дело с величинами, которые являются функциями одна от другой, то есть с величинами, которые так связаны между собой, что изменение одной из них влечет за собой соответствующее изменение в другой. Ее цель состоит в том, чтобы, вводя сначала в одну, затем в другую переменную величину, связанную таким образом, которые входят в постановку любой данной проблемы, произвести ряд изменений, которые, поскольку они могут быть сделаны бесконечно малыми, и, следовательно, бесконечно многочисленными, будут нести с собой соответствующие изменения в других, или зависимых, переменных, достаточные для того, чтобы охватить и, в мыслях, учесть все содержание любого мыслимого периода времени или конфигурации пространства, включая все возможные относительные изменения в их частях. При таком методе получаются результаты, которые при последующем применении к явлениям природы адекватно выражают и даже предвосхищают путем вычислений любые отношения или изменения отношений, которые могут существовать или происходить в физическом мире материи и силы, – массы, объемы, движения, скорости, степени интенсивности, энергии и так далее, – словом, все, что угодно, насколько это может быть подведено под понятие количества, то есть насколько это связано с временными и пространственными отношениями.
С изменениями качества физических веществ или сил, как, например, с химическими сочетаниями и сродствами, исчисление имеет дело лишь постольку, поскольку можно показать, что возникновение таких качественных изменений зависит от изменений, которые выражаются в терминах временных и пространственных отношений и поэтому могут быть определены количественно. Калькуляция может быть вкратце описана как Органон для охвата всего поля чисто количественных отношений явлений, так же как Логика Аристотеля является Органоном для охвата всего поля явлений, которые являются случаями различия между Тождеством и Различием, то есть всех явлений вообще.
Теперь факт опыта, который используется в качестве средства и принципа метода для установления и работы этого Органона количества, есть не что иное, как тот, который, как мы видели, действует при возникновении числа и исчисления как таковых. Я имею в виду разделение временного континуума актом целенаправленного внимания, идеальное разделение, которое не занимает никакой части того континуума, в который оно внедряется. Разница лишь в том, что в случае исчисления деление производится на континуумы любого вида и с полным сознанием двух существенных обстоятельств: (1) что делимый континуум является предпосылкой идеального деления его, и (2) что идеальное деление не занимает никакой части этого континуума, но всегда оставляет меньший континуум, способный к еще большему идеальному делению, как бы часто ни повторялся процесс деления. Быть континуумом и быть способным к идеальному делению – это одно и то же.
Пределы, установленные бесконечно малым исчислением (в его дифференциальной ветви) при работе с переменными функциями для целей своих вычислений, являются делениями такого рода. Недавний авторитет дал им следующее определение. «Если существует фиксированная величина, которой переменная величина может быть почти равна, и если невозможно, чтобы переменная величина когда-либо была точно равна этой фиксированной величине, то фиксированная величина называется пределом переменной величины».[16 - Chambers’s Encyclopaedia, Art: Calculus, Vol. II., p. 636, New Edition, 1888.]
Возьмем элементарный и знакомый пример. Представьте себе круг с горизонтально проведенным диаметром, пересекающийся с окружностью справа в точке, которую мы назовем О. Затем проведите через точку 0 другую прямую линию, отсекающую часть или дугу правого верхнего квадранта круга, и назовите точку, в которой она снова пересекается с окружностью, В. Далее представьте, что эта линия 0 B вращается вокруг точки 0 как шарнира в плоскости круга слева направо, постепенно приближая точку B к точке 0; тем самым постепенно уменьшая (1) дугу перехваченной окружности, (2) длину прямой или хорды 0 B и (3) площадь, заключенную между дугой и хордой, пока эти три величины одновременно не исчезнут; что и произойдет в тот момент, когда точка B достигнет точного совпадения с точкой 0.
До этого момента линия O B является секущей окружности; в этот момент она перестает быть секущей и становится касательной к окружности; а если мы предположим, что она продолжает вращаться слева направо вокруг точки 0, то она перестает быть касательной и снова становится секущей окружности, только на этот раз часть окружности или дуги, которую она пересекает, лежит ниже диаметра и принадлежит нижнему правому квадранту окружности.
Положение прямой 0 B в тот момент, когда она становится касательной к окружности, и до тех пор, пока она ею остается, является пределом последовательного изменения положения, которое она занимала, будучи секущей окружности. И хотя в качестве секущей ее можно сколь угодно приблизить к ее положению касательной; то есть хотя ее расстояние от положения касательной может быть уменьшено последовательными дифференцированиями, пока мы не устанем находить выражения для ее миниатюрности, – все же она никогда не может совпасть с этим положением касательной, не переставая быть секущей; или, выражаясь другими словами, угол, который она как секущая образует с диаметром в точке 0, никогда не может быть точно равен углу, образуемому касательной в этой точке (что является прямым углом), без того, чтобы линия в то же время не перестала пересекать какую-либо часть дуги или окружности, какой бы незначительной эта часть ни была.
Единственная и достаточная конечная причина этого заключается в том, что последовательные положения, которые, как мы полагаем, занимает вращающаяся линия 0 B, являются идеальными делениями пространственных континуумов, а именно: области, заключенной в круге, и области или пространства вне круга, непрерывного с пространством внутри него, за исключением идеального деления, вносимого самим кругом. Ибо идеальные деления континуума не являются решениями его непрерывности, то есть не вносят в него разрывов или интервалов, которые не принадлежат
континууму, как это сделали бы физические деления материального континуума. Отсюда следует, что, пересекая континуум или предполагая движение точки, пересекающей его (будь то континуум времени, или длины, или ширины, или объема пространства), это движение также непрерывно в отношении пересекаемого континуума; то есть оно не может пропустить или оставить не пройденной ни одну часть, сколь бы малой она ни была или могла бы быть идеально разделена, то есть независимо от того, были ли эти идеальные деления явно отмечены или нет. Что касается непрерывности движения по континууму, то нет разницы, сколько или сколько идеальных делений в него внесено, поскольку никакое количество таких делений не может исчерпать его делимость, но всегда должен оставаться континуум, способный к дальнейшему идеальному делению. Короче говоря, непрерывное движение может пересечь весь континуум и в этом смысле исчерпать его, а идеальное деление – нет. Я не ставлю перед собой задачу рассматривать способы, с помощью которых фундаментальная концепция пределов становится основой методов, сначала дифференциального исчисления, а затем интегрального, которое является его противоположностью, дополнением и применением. Здесь нас интересует природа и обоснованность самого Lex Continui, из которого концепция пределов является прямым и непосредственным следствием. В связи с этим необходимо прежде всего отметить, что представление континуума, будь то время, пространство или движение, является представлением фактов чувственного восприятия, взятых в их низших и простейших проявлениях, и поэтому имеет прямую гарантию опыта. Возражения против его конечной эмпирической достоверности должны, с другой стороны, выводиться не непосредственно из данных чувственного восприятия, а из представлений, которые мыслимые рамки времени, пространства и движения, рассматриваемых по отдельности как абстрактные объекты, то есть из понятий о них, или из времени, пространства и движения как понятий. Ибо только в этом случае можно даже поставить вопрос о том, не может ли время в действительности быть последовательностью дискретных мгновений, пространство – сосуществованием дискретных точек, а движение – последовательностью скачков из одной сосуществующей точки пространства в другую, причем каждый скачок совершается в дискретное мгновение времени. Ни к чему, кроме путаницы, не приводило и не может привести такое выдвижение понятий на место восприятий в качестве конечного источника и проверки достоверности. Примером тому служат элеатские загадки о движении.
Ответ, который вытекает из опыта на вышеупомянутые вопросы, очень прост и неоспорим.
Ist. Если время состоит из череды дискретных мгновений, то из чего состоит интервал между этими мгновениями? Ведь очевидно, что если бы между ними не было интервалов, то мгновения не могли бы быть дискретными, и идея их последовательности должна была бы исчезнуть вместе с идеей их множественности. Поэтому ответ на первый вопрос заключается в том, что эти предполагаемые интервалы – это Время, предполагаемые мгновения – идеальные деления его, а само Время – непрерывная длительность, способная, поскольку она непрерывна, к идеальному делению in infinitum. Конечная природа Времени, как неотъемлемого элемента сознания, – не последовательность, а длительность.
2-е. Если пространство – это сосуществование дискретных точек, то что такое интервал или расстояние между любыми двумя такими точками? Очевидно, что это пространство. Точки – это идеальные деления его; а пространство – это континуум, способный, поскольку он непрерывен, к идеальному делению in infinitum. Его конечная природа, как неотъемлемый элемент определенных состояний сознания, – это не конфигурация, а расширение.
3-е. Если движение – это последовательность скачков из одной сосуществующей точки пространства в другую, причем каждый скачок совершается в дискретное мгновение времени, то – независимо от того, считаются ли время и пространство действительно непрерывными или нет, – движение может происходить только вне времени и пространства, а именно, путем выхода из них в одной точке и возвращения в них в другой. Это очевидно, если считать, что время состоит из дискретных мгновений, а пространство – из дискретных точек. И едва ли менее очевидно, если либо время, либо пространство считать непрерывными; ведь тогда, принимая время за непрерывное, движение должно выйти из времени, если оно должно быть дискретным по отношению ко времени, а принимая пространство за непрерывное, движение должно выйти из пространства, если оно должно быть дискретным по отношению к пространству. Таким образом, представление о движении как о дискретном не только противоречит обычно принятому представлению о нем, основанному на опыте, а именно, что оно является прохождением части пространства за часть времени, но и само по себе не может быть разумным представлением, поскольку мы не знаем среды или сред, в которые можно было бы представить движение как прыжок, когда предполагается, что оно состоит в прыжке либо из пространства, либо из времени, и в них снова. Следовательно, у нас нет другого выхода, кроме как представить движение как в равной степени непрерывное с теми частями пространства и времени, которые являются необходимыми элементами его описания; то есть как непрерывное в том смысле, что оно не оставляет ни одной части пространства не пройденной и ни одной части времени незанятой.
Отступления от общего факта или закона непрерывности, подобные тем, которые я только что попытался подвергнуть критике, возникают, по-видимому, из-за попыток сформулировать концепции числа, времени, пространства и движения, которые могут соответствовать целям или, возможно, служить конечными основаниями наук исчисления, геометрии и физики, не прибегая к субъективному анализу опыта. Эти реальности воспринимаются по отдельности, каждая из них является объектом отдельной и независимой концепции. Но этот метод препятствует восприятию того факта, что, хотя непрерывность и делимость подразумевают и предполагают друг друга, тем не менее непрерывность и ее идеальное деление не находятся в одном ряду с точки зрения их основы в опыте. Непрерывность – это представление элементарного факта, данного во всех чувственных восприятиях. Ее идеальные деления вводятся актами целенаправленного внимания со стороны воспринимающего. Идеальная делимость, но не какое-либо конкретное идеальное деление, задействована в каждом представленном или репрезентируемом континууме. Поэтому единственными неделимыми в числе, времени, пространстве и движении являются деления в континуумах, а значит, и между ними, причем сами деления не являются континуумами по сравнению с тем, что они делят. Отсюда следует, что при введении идеальных делений в любой конечный континуум между последним делением, которое мы вводим, и границей конечного континуума, в который мы его вводим, всегда существует непрерывный остаток, который всегда больше 0 и всегда способен к дальнейшему идеальному делению. Идеальные деления, которые мы вводим, происходят per saltum; но это предполагает заданную непрерывность того, в который они вводятся, до их введения. Минутные континуумы между этими идеальными делениями, которые можно делать сколь угодно малыми (и сколь угодно многочисленными), – это так называемые инфинитезимальные, или «бесконечно малые», величины Исчисления. Мы мысленно проходим над ними per saltum, но они не могут быть пройдены per saltum никаким движением, которое мыслится как реальное. Движение, чтобы быть реальным, должно быть непрерывным. Ошибочно приписывать природе те деления, которые мы вводим в явления природы, чтобы вычислить или измерить их.
Бросив ретроспективный взгляд на сказанное, мы видим, что наука чистого вычисления имеет своим первым или непосредственным объектом материю, чистые или абстрактные Числа и их отношения между собой, рассматриваемые так, как если бы они были реальностью, обладающей свойствами, вступающей в отношения и подчиняющейся собственным законам; несмотря на то, что они являются созданиями актов счета, которые являются первыми шагами в науке вычисления, и что их свойства, отношения и законы могут быть открыты только путем продолжения и развития тех самых актов счета и вычисления, посредством которых они первоначально были образованы из восприятия мыслью. Числа, рассматриваемые таким образом, а именно как отделимые от действий, которые их производят, являются первым или непосредственным объектом науки чистого вычисления.
С другой стороны, как существа мысли, в счете и вычислении, – что является для них характером в равной степени существенным, – все числа идеальны и реальны; то есть, говоря метафизическим языком, они являются объективными мыслями, даже когда они берутся как сами объекты, мыслимые в рефлектирующем сознании. Но хотя все числа и реальны, и идеальны в этом смысле, они, тем не менее, подвержены несколько схожему различию, которое ни в коем случае нельзя путать с этим, я имею в виду различие между реальными, или рациональными, и воображаемыми, или иррациональными, в зависимости от того, являются они или не являются строго соизмеримыми с единством, и поэтому могут или не могут быть точно выражены конечным числом фигур. Такие иррациональные числа также называются сурдами, например, квадратный корень из 2, или ?2. В этом классе мнимых или иррациональных чисел можно выделить и те, которые просто невозможны и нереальны из-за противоречия, заложенного в обычных терминах, используемых для их описания, как, например, в идее четного корня из отрицательной величины, ?– 1.
Таким образом, во всем своем диапазоне мы видим, что чистое вычисление обеспечивает свой собственный непосредственный объект-вещество и не зависит ни от какого другого объекта-вещества. Нельзя сказать, что оно в большей степени применяется к своему собственному объекту, чем производит его. Он исследует, производя, и производит, исследуя. Его законы и законы его объекта-вещества, говоря в целом, одинаковы. Но кроме того, она применима к посторонней для себя объектной материи, возникающей из совершенно независимого источника в чувственном восприятии; поэтому она применима к ней в строгом смысле этого слова, которое подразумевает неоднородность. И к ней она применима, поскольку вовлечена в методы, то есть в науки, с помощью которых исследуются законы этой посторонней объектной материи. Эта вторичная материя чистого исчисления подпадает под два основных раздела, один из которых ближе к чистому числу по абстрактности, чем другой, но оба они чисто количественные по характеру, и оба они связаны с ним и друг с другом центральным или шрифтовым понятием Равенства, которое является общим для всех. Первая из них состоит в фигурах пространства, направлениях и скоростях движения, которые являются предметом чистой Геометрии и Кинематики; вторая – в объемах, массах, силах и энергиях, проявляемых физической Материей, насколько они могут быть обработаны количественно и сделаны предметом любой точной физической науки.
Основа для применения чистого вычисления к пространственным и физическим величинам закладывается путем взятия некоторой непрерывной части любой такой величины, выражения ее числом и использования этого числа в качестве единицы измерения; например, в пространственной длине, если мы берем фут в качестве единицы измерения и называем его 1, то 1, умноженная на 3, представляет собой длину, называемую ярдом, а разделенная на 12 – дюймом. Окружность круга также делится на 360 равных дуг, называемых градусами, каждая из которых делится на 60 равных минут, а каждая из них – на 60 равных секунд, причем каждая равная дуга образует равный угол в центре круга. Все это, выраженное числами, может быть обработано численно, то есть с помощью процессов чистого вычисления, результаты которых должны быть переведены в конце процессов в определения пространства, те же самые, что и те, для которых числа были вначале заменены. Это точно так же, как если бы вычисление было языком со значением, только это вычисление (в отличие от звуков языка, взятых самих по себе) имеет свои собственные значения, а именно числовые значения, помимо пространственных (или физических) значений, для выражения которых оно используется ex institute.
Начиная с таких простых начал, как эти, все мыслимые конфигурации пространства, направления, движения, скорости и их изменения могут быть введены в диапазон чистого вычисления. Вся аналитическая геометрия состоит в применении ее к посторонней предметной материи пространственных фигур. И благодаря чрезвычайной общности ее символов и методов в сочетании с минимальностью того, что мы можем назвать ее прожектором – исчисления, мы можем быть уверены, что ни одна часть пространства, времени или возможного движения не должна быть оставлена непредставленной в ее результатах.
Из этого, однако, отнюдь не следует, что все результаты в форме алгебраических или символических выражений, к которым приходит чистое исчисление или которые выводятся из его процессов в ходе такого применения, должны иметь корреляты, представленные ими в объектной материи, к которой применяется исчисление. По сравнению с общими понятиями и процессами чистого вычисления, объект-материя, который мы знаем как поддающееся измерению пространство, время и движение, – это данный и конкретный объект-материя. Ее явления, хотя и весьма абстрактные, не допускают обобщения так же, как это делает простое арифметическое число, благодаря приему обращения с неизвестными числами, как если бы они были известны, и несуществующими или отрицательными числами, как если бы они существовали для целей вычисления. Следовательно, никогда нельзя избежать вопроса, могут ли символические выражения, к которым мы приходим или которые участвуют в вычислении, быть или не быть истолкованы как указывающие или представляющие какие-либо позитивно мыслимые особенности или отношения в данном объекте-материи; ибо этот объект-материя имеет свою собственную природу и законы, полностью независимые от тех процессов чистого вычисления, которые действительно используются для их открытия, но сами по себе не ограничиваются этим открытием и никоим образом не являются творческими в отношении природы и законов, которые они используются для открытия. Акты целенаправленного внимания к временному потоку сознания порождают число и исчисление, но ни число, ни исчисление не порождают восприятия пространственной протяженности или того движения, которое ее предполагает. Именно из актов целенаправленного внимания к восприятию пространственной протяженности и движения возникает Геометрия; и именно этим объектом-материей определяется ее цель и определение как науки. Каким бы необходимым ни было чистое вычисление для должного изучения пространственных явлений, оно никогда не сможет изменить ни их природу, вытекающую из пространственного протяжения, ни природу самого пространственного протяжения как непосредственной данности опыта. Эти замечания еще более очевидно применимы к тому более конкретному объекту-веществу чистого вычисления, который состоит из физических масс, сил и энергий Они также, включая их интенсивности, направления и изменения, вводятся в область вычисления теми же средствами, а именно, путем принятия единиц измерения, выраженных численно. При условии, как и прежде, что они рассматриваются исключительно как существующие и происходящие во времени и пространстве, то есть как величины, абстрагируясь от их реальных условий и последствий, отличных от тех, которые могут быть выражены как величины самих сил. Качественные изменения, такие как те, которые происходят вследствие химического сродства между веществами, хотя они могут быть результатом количественных изменений, таких как изменения конфигурации, в веществах, которые объединяются, таким образом, как качественные, исключены даже из этого вторичного объекта-материи чистого вычисления; хотя они также таким образом ipso facto классифицируются как принадлежащие к третьему и еще более отдаленному объекту-материи его, я имею в виду в силу их зависимости от чисто количественных физических изменений, относящихся ко второй главе, насколько законы этих изменений могут быть количественно установлены.
Таким образом, чистое исчисление можно рассматривать как априорную количественную обработку явлений всего физического мира, – априорную, конечно, не в трансцендентальном смысле этого слова, но в том смысле, что она основана на необходимости (вследствие того, что время и пространство являются нераздельными элементами в конечных данных опыта) представлять их как явления, существующие во времени и пространстве и занимающие их, и ограничиваться обработкой их только в этом характере. Она разрабатывает, с одной стороны, мыслимые возможности, с другой – неизбежные необходимости, связанные с этими явлениями. Таким образом, в этих пределах он может как предложить физику, химику или биологу новые гипотезы, так и проверить уже предложенные гипотезы, проработав количественные последствия, которые они влекут за собой.
Однако чистое вычисление, хотя и основано на делениях только времени (а не пространства), не является наукой о времени в том смысле, в каком чистая геометрия может быть названа наукой о пространстве, а именно как наука о его конфигурациях, или о фигурном пространстве, или о фигурном пространстве и его границах, точках, линиях и поверхностях, вместе взятых. Длины времени не являются объектом вычисления в том же непосредственном смысле, в каком протяженности и фигуры являются объектом геометрии, хотя вычисление, конечно, может быть применено для их определения. Длины времени не являются содержанием чисел, как пространственные протяженности являются содержанием пространственных границ. Числа возникают первоначально из последовательных актов деления временного континуума, но равенство всех единичных числовых единиц само по себе не вытекает из какого-либо воспринимаемого равенства в нескольких интервалах между этими последовательными актами деления. Длительность этих интервалов имеет не больше отношения к числовому значению единиц, чем длительность времени, психологически необходимого для выполнения каждого акта деления в мысли. Никакой единицы измерения времени таким образом не создается. Поэтому то обстоятельство, что время является единственным континуумом, необходимым для совершения актов счета, то есть для создания единиц, не делает эти акты мерами временной длины и не возводит измерение абстрактного времени в единственную или даже главную цель вычисления. Геометрия – это наука об измерении пространственной протяженности, делимой или делителями; исчисление – это наука о самом делении, каким бы ни был континуум, который оно измеряет.
Акты счета являются первым условием или ингредиентом установления единиц измерения; а установление единицы или фиксированного стандарта, всегда равного самому себе, в свою очередь, является первым и необходимым шагом в измерении явлений любого рода. Таким образом, вычисление во всем своем развитии непосредственно применимо к делениям или границам пространства, а именно, путем разбиения их на единицы равной длины, или части, измеряемые друг другом. Следовательно, фигуры в пространстве могут быть выражены числами; единицы длины, ширины и объема, будучи однажды взятыми. Измерение длины времени с помощью постоянных и общеприменимых единиц зависит от измерения длины пространства как одного из условий и поэтому возможно лишь косвенно.[17 - См. доклад покойного Эдварда Хоксли Родса «Научная концепция измерения времени», прочитанный в Аристотелевском обществе 1 июня 1885 г. и опубликованный в журнале «Mind», том X., стр. 347, первая серия. Возможно, мне следует также упомянуть о моей работе «Измерение времени в его отношении к философии», опубликованной в «Трудах Аристотелевского общества», том II, Я пользуюсь этой возможностью, чтобы с благодарностью отметить помощь, которую я получил от бесед с моим другом мистером Э. Хоксли Родсом в последние годы его жизни, а также от переписки с моим другом (и постоянным учителем математики во время его пребывания в Англии), мистером Эдуардом Мерлье, по теме настоящего раздела. Я ни в коей мере не хочу возлагать на них ответственность за ошибки, вызванные моим собственным несовершенным пониманием математической науки, и тем более за ход моих метафизических спекуляций относительно нее.]
Таким образом, время, хотя (или скорее потому, что) оно является наиболее фундаментальным условием науки вообще, по своему характеру как единственный необходимый формальный элемент сознания, избегает быть предметом какой-либо специальной науки о нем. Ибо для того, чтобы вообще быть понятым как объект, оно должно быть взято вместе с некоторыми определениями или различиями, принадлежащими к его неотделимому содержанию, или со-элементу, ощущению, поскольку время в чистом виде есть абстракция, неспособная быть даже приведенной в сознание без некоторой ссылки на то, от чего она абстрагирована мыслью. Более того, чтобы его рассматривать как объект особой отрасли науки, посвященной только ему, эти определения могут быть взяты только из того неотъемлемого соэлемента чувства, который является исключительно его собственным, то есть из чувств, которые занимают только время, а не время и пространство вместе. Но эти ощущения сами по себе, как мы видели, не являются постоянной единицей, применимой для измерения последовательных временных интервалов.
В этом отношении время отличается от пространства, неотъемлемое содержание или сопутствующий элемент которого, я имею в виду элемент зрительных и осязательных ощущений, богат различиями направления и величины, которые могут быть приведены в сопоставление и измерены один против другого. И эти пространственные измерения на самом деле являются конечными средствами, которыми мы располагаем для измерения временных интервалов, хотя и только косвенно. В идеале, конечно, мы можем представить себе время, разделенное на точно равные друг другу длительности, и сделать из этого идеальный стандарт, к которому, по идее, должны приближаться фактические косвенные измерения. И это фактически то самое, что делает Ньютон, когда говорит об «абсолютном времени», что оно «течет равномерно», ибо это эквивалентно представлению о нем, разделенном на единицы равной продолжительности. В этой концепции «абсолютного времени» наука о времени, можно сказать, одновременно и начинается, и заканчивается. Как доктрина она не существует. Однако на практике ее место занимает наука о делениях времени, то есть исчисление, или наука о чистом числе. Чистое исчисление и чистая геометрия, основанные соответственно на двух формальных элементах всего сознания – длительности времени и протяженности пространства, – это две науки, которые стоят у истоков всех позитивных и точных наук. Из вышеизложенного рассказа о применимости абстрактного или чистого числа к измерению конкретных содержаний или частей того конкретного временного потока сознания, из которого, благодаря вниманию и абстракции, оно возникает, мы видим не только происхождение концепции количества в целом, но и происхождение двух видов или классов, на которые количество обычно рассматривается как делимое, а именно: (1) непрерывное, (2) дискретное количество. Число – это дискретное количество в смысле представления результата идеального деления непрерывного количества на множество частей, или меньших континуумов, хотя следует помнить, что только путем деления первоначально нерасчлененный континуум становится или может мыслиться как количество вообще. Число – это название одной или нескольких частей, возникающих в результате такого деления. Если рассматривать числа как состоящие из одного или нескольких единиц, а непрерывные величины сводить к измерению путем деления их на единичные континуумы, то фактическое измерение непрерывной величины можно рассматривать как ответ на вопрос Сколько, а фактическое измерение дискретной величины – как ответ на вопрос Сколько? И применение последнего к первому, когда оно может быть осуществлено, всегда говорит нам, сколько единиц непрерывной величины можно найти в континууме, который измеряется. Таким образом, непрерывное и дискретное количество – это, строго говоря, не два отдельных класса количества, а два различных, хотя и неразделимых способа, с помощью которых количество может рассматриваться. Без непрерывности никакое количество не могло бы существовать; без дискретности оно не могло бы быть признано количеством. Сама идея количества возникает из целенаправленного введения идеального деления в данный репрезентативный континуум.
§6. Понятие бесконечности
От этих кратких рассуждений о математических науках – геометрии, кинематике и исчислении – я предлагаю теперь вернуться к вопросу об отношении, которое явления абстрактного пространства, времени и числа, когда они так рассматриваются, имеют к объективированной панораме реального внешнего мира, как он представляется нам в результате метафизического анализа опыта. И прежде всего, замечания, сделанные сейчас по поводу числа, позволяют нам вкратце изложить, как мы приходим к тому, чтобы приписать бесконечность пространству и вечность времени, как они выглядят в этой объективированной панораме, и это в обоих направлениях, (1) делимость, (2) растяжимость, in infinitum. В природе и происхождении числа у нас есть нечто, с чем можно контрастировать и посредством контраста сделать понятной бесконечность времени и пространства в обоих направлениях. Число есть для времени, как объективированный континуум, что геометрическая фигура есть для пространства, как объективированный континуум; оба являются ограничениями, введенные мыслью в заранее предположенные содержания восприятия, которые без них были бы абстрактными континуумами; восприятие фактических различий в содержании, в обоих случаях, является обстоятельством, которое мысль повторяет в представлении, и возводит в идеальное ограничение пространства и времени как абстрактных восприятий. Ряд чисел, скажем, от 1 до 100, или по ту сторону нуля от – 1 до -100, соответствует замкнутой геометрической фигуре, скажем, кубу или сфере. Процесс подсчета, то есть называния цифрами или символами, любого ограниченного количества единиц только во времени, с абстрагированием от пространства, – это то, чем является процесс воображения замкнутой твердой геометрической фигуры в пространстве и времени вместе. Как неотъемлемые элементы восприятия, их существенный характер – непрерывность; и этот перцептивный характер является основой их бесконечности, когда они воспринимаются как абстрактные представления. Таким образом, восприятие того, что они выходят за пределы любого ограничения, когда бы мы ни подвергали их испытанию либо представлением, либо репрезентацией, является фактом, который, когда мы сознательно обращаем на него внимание, становится концепцией их бесконечности; бесконечность времени, в направлении растяжимости, называется конкретным именем вечности. Бесконечными считаются те и только те вещи, которые не имеют возможных или мыслимых конечных пределов. Ничто, для чего мы можем представить себе конечный предел, не может быть представлено как обязательно или по своей природе бесконечное, хотя оно может быть представлено как неопределенное, то есть как становящееся либо бесконечно большим, либо бесконечно малым. Время и пространство мы не в состоянии представить себе как имеющие такой конечный предел. Мы представляем их как неограниченную и неоформленную непрерывность. Предполагать, что время или пространство, когда они представляются бесконечными, представляются завершенными тотальностями (что означало бы представлять их eo ipso как конечные), – простая логическая ошибка на том основании, что всякое представление есть ограничение. Тот перцептивный факт, что время и пространство избегают ограничения или выходят за его пределы посредством концепции, а не восприятие времени и пространства как тотальностей, действительно сам по себе является ограничением; однако не тем ограничением, которое концепция накладывает на время и пространство, а тем, которое они, как перцептивно данные, накладывают на нашу способность к восприятию. Тот факт, что они избегают ограничения концепцией, является тем самым фактом, благодаря которому наше представление о них как о бесконечных само конституируется, или благодаря которому оно становится определенным представлением.
С замкнутыми фигурами и числами, с другой стороны, дело обстоит иначе. Они образованы ограничением, ограничением сознательного внимания и мысли. Их природа и бытие заключаются в том, чтобы иметь предел или границу. Следовательно, хотя мы можем представить их как величины, способные к неограниченному расширению или неограниченному сжатию, мы не можем представить их как неограниченные по величине в любом направлении, не представляя их полностью упраздненными как замкнутые фигуры или как con- tinua, выраженные числами. Нет такой вещи, как бесконечно большая или бесконечно малая замкнутая фигура; нет такой вещи, как бесконечно большой или бесконечно малый континуум времени, выраженный числом. Изменения в их величине способны лишь на неопределенную прогрессию.
Время и пространство, как формальный элемент восприятия, будучи континуумами, занятыми ощущениями, материальным элементом, и разделенные на части различиями в ощущениях, являются конечной основой любого представления о количестве или величине. Точно так же материальный элемент, с его бесчисленными различиями, является конечной основой любого представления о качестве. Количество и качество перцептивно противоположны, но не являются логическими противоположностями. Это вытекает из их природы как представлений, оформленных мыслью, о том, что, будучи данными, является конечными и неотделимыми элементами всех эмпирических представлений. Логическими противоположностями количества и качества в целом являются не-количество и не-качество, любое из которых, если бы утверждалось о чем-либо конкретном, было бы эквивалентно утверждению его небытия, то есть отрицанию его существования; поскольку оба они являются представлениями об элементах, которые являются существенными, а также нераздельными в составе перцептивных реальностей.
Количество, опять же, если брать его так, как мы его сейчас берем, в связи с анализом сознания, а не только в связи с его местом в математической теории, исчерпывающе делится на логические противоположности, конечное и бесконечное количество. Каждое количество, которое достигается или описывается числовым или геометрическим ограничением, является конечным количеством; каждое количество, которое продолжается за пределы каждого такого ограничения и в силу этого продолжения, является бесконечным количеством. Но это продолжение бывает двух видов. Если последовательные ограничения идут в направлении деления или уменьшения, ???? ?????????, то бесконечность количества, которое их избегает, выражается тем, что оно бесконечно делимо, или делимо in infinitum, не переставая существовать как количество. Если ограничения направлены в сторону прибавления или увеличения, ???? ?????????, то количество, которое их избегает, называется просто бесконечным, или, в случае времени, вечным. Мы можем, пожалуй, табулировать количество, взятое в этом смысле, следующим образом:
Никакое накопление конечных количеств, никакой процесс in indefinitum никогда не может привести к бесконечному количеству, ибо бесконечное количество по сути своей является продолжением за любым мыслимым пределом. Таково наше представление о времени и пространстве, обусловленное их перцептивным происхождением, как о формальном элементе восприятия, в котором они предстают в качестве длительных и протяженных элементов с ощущениями любого и каждого вида. Таково наше представление о них, когда они составляют часть единого реального мира, объективной панорамы реального существования, обязательно придавая ему свою собственную бесконечность и как бы объединяя позитивно познаваемый мир с бесконечной вселенной, частью которой он является. Представить себе время, пространство и вселенную как бесконечные – значит представить себе тот факт, что, будучи восприятиями, они выходят за пределы концепции.[18 - Для более полного обсуждения этого вопроса я бы отослал вас к моей «Философии размышления», глава VIII. (Vol. II., pp. 67—121), а также к моему Аристотелевскому обращению за ноябрь 1893 г., «Концепция бесконечности», опубликованному в. Proceedings of the Aristotelian Society, Vol. II., No. 3, 1894, хотя в последнем есть некоторые утверждения, которых я теперь, пожалуй, не склонен придерживаться.]
Теперь я перехожу к другому разделу этой темы. В предыдущем разделе мы видели, что не существует науки об абсолютном времени, взятом отдельно, но что любое измерение времени, которое является общеприменимым, зависит от некоторого предыдущего измерения объектов или движений во времени и пространстве вместе. Таким образом, в определенном смысле измерение пространства является предшествующим условием измерения времени, и именно об этом я должен сейчас рассказать.
Обычное геометрическое представление о реальном, но абстрактном пространстве – это представление о нем как о безграничном пространстве, или протяженности во всех направлениях, абстракции, которая позитивно воспринимается только при сохранении в мысли некоторой определенности, взятой из ее материального со элемента в восприятии, чтобы противопоставить ее полной пустоте одного лишь формального элемента. Минимальным определением, или sine qua non восприятия абстрактного пространства, является мысль о математической точке в нем, как о центре расходящихся линий, или направлений, в которых может происходить движение, без ограничений или отклонений, возникающих из пустоты, в которую оно направлено.
Наше первоначальное комплексное восприятие конкретного мира пространства включало в себя восприятие его как окружающего единственного постоянного центра; но этот центр был занят конкретным объектом, телом воспринимающего, как показал анализ, приведенный в книге I. Но когда мы абстрагируем формальный элемент, называемый пространством, от этого конкретного мира и объективируем его как абстрактный объект, мы не только абстрагируемся от любого конкретного объекта в качестве его центра, но и обнаруживаем, что математическая точка, которую мы затем сохраняем в мысли как минимальное условие ее представления, не имеет в ней никакого конкретного положения; при этом в мысли не сохраняется никакой другой точки или точек, по отношению к которым ей можно было бы приписать конкретное положение. На самом деле мы имеем полную свободу действий, вводя определения и фигуры в наше представление реального, но абстрактного пространства, при одном лишь условии, что они не будут противоречить тому представлению о нем, которое вытекает из опыта, а именно как об абстрактной и безграничной Необъятности, простирающейся во всех направлениях от любой точки, которую мы можем принять за центр. Из этого следует, что все направления, определения или фигуры, которые мы можем ввести в него, будут идеальными делениями одного бесконечного и непрерывного пространства, подобно тому, как в предыдущем разделе мы видели, что все производство чисел состоит в актах деления временного континуума. Теперь, чтобы создать геометрию, или научную систему, всех возможных определений или фигураций пространства, которая будет адекватна этому представлению о нем как о безграничной пустоте и в то же время применима для измерения конкретных физических явлений космического мира, первым и наиболее существенным шагом является приведение к некоторому порядку того неопределенно большого числа направлений, о которых говорят как о «всех возможных направлениях», из одной точки пространства, взятой в качестве центра. Для этого используется система трех прямоугольных осей координат, введенная Декартом и положенная им в основу применения алгебры к геометрии, известной как алгебраическая или аналитическая геометрия.
Чтобы понять, что имеется в виду, представьте себе три прямые линии, каждая из которых может быть продлена в любом направлении до бесконечности и пересекаться под прямым углом в любой точке пространства. Одна из этих линий представляет собой направление или направления вверх и вниз от точки пересечения, другая – направления вправо и влево, а третья – направления вперед и назад от той же точки. Очевидно, что мы можем заменить эти три прямые линии тремя плоскостями, пересекающимися под прямым углом и встречающимися в одной точке; одна из этих плоскостей будет лежать посередине между направлениями вверх и вниз из этой точки, другая – посередине между направлениями вправо и влево от нее и под прямым углом к ним, третья – посередине между направлениями вперед и назад от нее и под прямым углом к ним. Очевидно также, что все остальные точки пространства, кроме этой центральной, должны лежать либо на самих этих линиях или плоскостях, либо в восьми областях, на которые они делят все пространство, в остальном не разделенное на части.[19 - Эти восемь областей – восемь пирамид, каждая из которых состоит из трех сторон и основания (основание находится в бесконечности) и имеет общую вершину. Чтобы представить себе это в воображении, возьмите, скажем, апельсин и разделите его на две половины по горизонтали, причем горизонтальное деление обозначает первую из трех плоскостей, о которых говорилось выше. Затем разделите его на две половины по вертикали, сделав разрез под прямым углом к направлениям Q’iyht и left; и снова на две половины, сделав разрез под прямым углом к направлениям forward и backwards. Если взять верхнюю половину апельсина, образованную первым или горизонтальным разрезом, то очевидно, что теперь она состоит из четырех цельных четвертей или квадрантов, отделенных друг от друга двумя вертикальными разрезами, о которых уже говорилось, и от нижней половины апельсина первым или горизонтальным разрезом. Нижняя половина также состоит из четырех точно таких же четвертей; всего их восемь; таким образом, получается весь апельсин. Наконец, представьте, что поверхность, или поверхностная граница, апельсина удалена, в результате чего восемь его четвертей открыты в направлении их оснований и от их общей вершины в центре апельсина, и вы получите образ бесконечного или безграничного пространства, исчерпывающе отображенного тремя измерениями.]
Из этого следует, что три декартовы оси координат позволяют определить положение любой точки в пространстве, измерив ее расстояние по прямой линии от каждой из трех прямых, называемых осями, или от плоскостей, которыми они могут быть заменены. Эти три оси или направления известны как три измерения Пространства, потому что эти направления и их число, а именно три, одновременно необходимы и достаточны для того, чтобы наметить и обеспечить средства измерения фигур внутри всей этой бесконечной пустоты, которая носит название Пространства. Все остальные направления, или измерения, как средства измерения, а также все фигурации или определения должны лежать где-то внутри областей пространства, выделенных этими тремя. Они делят его исчерпывающим образом, поскольку разделяют его бесконечность.
Менее точным языком будет говорить о длине, ширине и глубине как о трех измерениях пространства или о фигурах в пространстве. Измерение означает направление, по которому можно производить измерения. Широта включает в себя два таких направления, представленных в простейшей форме для целей измерения двумя прямыми линиями в одной плоскости под прямым углом друг к другу. Глубина включает в себя третье направление, представленное по той же причине прямой линией под прямым углом к обеим. Таким образом, ширина и глубина – это не размеры пространства, а свойства его фигуры, определяемые размерами; ширина – двумя, глубина – тремя, начиная с первого, то есть с направления, в котором в конечном счете измеряется только длина и которое представлено прямой линией, поскольку прямая линия тождественна расстоянию между любыми двумя точками.[20 - Что касается того, что расстояние между любыми двумя точками всегда уникально и может быть представлено только прямой линией, и вытекающей отсюда необходимости, которой подчиняется вся геометрия, принимать прямую линию в качестве одного из своих конечных оснований или аксиом, см. замечательную работу «Априори в геометрии» достопочтенного Бертрана Рассела, прочитанную в Аристотелевском обществе 30 марта 1896 года и напечатанную в его Трудах, том III, Я хотел бы также обратить внимание на «Эссе об основаниях геометрии» г-на Рассела, Кембридж, 1897 г., работу, которая попала мне в руки только тогда, когда настоящий раздел уже находился в печати.]
Тем не менее, линии, поверхности и твердые фигуры не могут быть названы измерениями пространства. Линии – это общий класс, содержащий два вида: прямые и кривые линии. Поверхности – это общий класс, содержащий плоские и кривые поверхности. Твердые фигуры – общий класс, содержащий бесчисленное множество подклассов, в зависимости от природы поверхностей, которые являются их границами. Правда, кривая линия, как и прямая, взятая сама по себе, не имеет ширины и в этом смысле может рассматриваться как имеющая только одно измерение. Но это означает лишь то, что ее следует рассматривать как разделение или деление пространства, границу между поверхностями, а не то, что она может служить конечным средством измерения, то есть сама быть измерением пространства или использоваться как таковое, пока не будет установлено ее собственное направление, то есть ее кривизна. Аналогичное замечание справедливо и для кривых поверхностей, и для твердых тел. Только прямые линии могут служить конечными измерениями пространства или фигур внутри пространства, потому что только они являются конечными определениями расстояния между любой точкой и другой.
Принимая таким образом три декартовы оси координат за три измерения, мы возвращаемся к той самой концепции пространства, которая, как мы видели, обоснована метафизическим анализом опыта, в котором она была первоначально приобретена, и которая, будучи объективирована сама по себе как абстрактный объект, как это происходит в чистой геометрии, идентифицируется с концепцией Ньютона «истинного, математического и абсолютного пространства» (гомалоидного пространства, как оно теперь называется), данной в уже цитированном Scholium. Ньютон говорит: «Spatium absolutum, natura sua sine relatione ad externum quodvis, semper manet similare» [гомалоидное] «и неподвижное». Таким образом, концепция Ньютона, метафизическая концепция, обычная концепция здравого смысла и, смею думать, строго геометрическая концепция пространства также совпадают в существенных обстоятельствах представления его как (1) непрерывного протяжения, (2) трех и только трех измерений, (3) бесконечного, а потому (4) только одного пространства, а не многих.
Но эта концепция пространства очевидно и prima facie противоречит некоторым новым событиям, частично обусловленным новыми концепциями в области собственно геометрии, а частично – применением к ней алгебраических методов, которые в последнее время широко признаются в качестве установленных истин. Я говорю, во-первых, о том, что известно как неевклидова геометрия, и, во-вторых, о том, что тесно с ней связано, а именно о гипергеометрической геометрии, или геометрии четырех и более измерений, или, кратко, n-мерного пространства. Необходимо сказать несколько слов по обеим этим темам, чтобы показать, (1) что неевклидовы геометрии неадекватны как геометрии бесконечного пространства, но в то же время не противоречат этой концепции, и (2) что концепция n-мерного пространства самопротиворечива и немыслима; результат, который исключает даже предположение, что такое пространство или пространства могут существовать, хотя и недоступны для существ, наделенных только человеческими способностями восприятия. Логическое противоречие – это причина для отрицания реального существования, значительно отличающаяся от любой причины для его отрицания, возникающей только из-за ограниченности человеческих способностей. Пространство n измерений, как я попытаюсь показать, столь же логически немыслимо, как и утверждение в арифметике, что 2 +2 равно 5, или что в геометрии квадрат и круг могут быть одинаковыми. Если n-мерное пространство влечет за собой логическое противоречие, то мысль о его существовании в других мирах, кроме нашего, не может даже возникнуть.
В предыдущем разделе мы видели, что в науке исчисления определение величин осуществлялось с помощью символов, которые имели значение и использовались в расчетах, совершенно независимо от того, были ли символизируемые величины реальными, или воображаемыми, или даже противоречивыми. Мы увидели, что символы, обозначающие ничто, 0, и бесконечность, co, могут иметь различные значения в зависимости от того, какое место они занимают в конкретном вычислении, в котором они встречаются; что co может иметь различные степени, одна двойная (скажем) другой; и что 0 не обязательно подразумевает полное исчезновение количества. Короче говоря, мы увидели, что концепция количества в целом была вовлечена в процесс, акт целенаправленного внимания, от которого зависела вся наука вычисления или определения конкретных количеств. Теперь точно такое же положение, какое занимает концепция количества в целом в науке исчисления, занимает концепция «абсолютного пространства», или фигуративной Вакуиты, в науке геометрии, как науке об определениях или фигурациях пространства. Именно на основе этой концепции строится вся геометрия, или, другими словами, «абсолютное пространство» предполагается как существо, в которое геометр может идеально ввести деления, направления, величины, способы измерения, конфигурации, отношения и системы конфигураций, при соблюдении лишь условий, (1) что аксиомы, с которых он начинает, должны быть утверждениями самоочевидных фактов восприятия, и (2) что системы, к которым он приходит, должны быть логически последовательными внутри себя и с теми аксиомами, с которых он начинает. Очевидное невыполнение первого из этих условий одиннадцатой аксиомой Евклида (я имею в виду ту, которая гласит, что две прямые линии в одной плоскости, будучи продолжены, должны рано или поздно встретиться, если другая прямая, пересекающая их, делает внутренние углы, по ту же сторону пересекающей линии, в совокупности меньше двух прямых углов), было, в сущности, тем обстоятельством, из которого возникли те исследования, которые в конце концов, в руках Лобачевского, Гаусса, Бельтрами, Римана, фон Гельмгольца и других, привели к установлению возможности самосогласованной, но неевклидовой геометрии. Утверждалось, что геометрия Евклида – это не то же самое, что геометрия «абсолютного пространства», как предполагалось ранее, а лишь одна из трех систем геометрии, каждая из которых, исходя из своих собственных предпосылок, но только из них, представляет собой совершенно самосогласованную систему геометрических истин.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера: