скачать книгу бесплатно
Рассмотрим механизм возникновения и основные соотношения, характерные для синусоидальной ЭДС.
Для этого удобно использовать простейшую модель – рамку, вращающуюся с постоянной угловой скоростью в равномерном магнитном поле. Проводники рамки, перемещаясь в магнитном поле, пересекают его, и в них на основании закона электромагнитной индукции наводится ЭДС. Значение ЭДС пропорционально магнитной индукции B, длине проводника l и скорости перемещения проводника относительно поля ?t : е = Bl?t.
Выразив скорость ?t через окружающую скорость ? и угол ?, получим: е = Bl? sin ? = Em sin ?.
Угол ? равен произведению угловой скорости рамки ? на время t: ? = ?t.
Таким образом, ЭДС, возникающая в рамке, будет равна: е = Em sin ? = Em sin ?t.
За один поворот рамки происходит полный цикл изменения ЭДС.
Если при t = 0 ЭДС е не равна нулю, то выражение ЭДС записывается в виде:е = Em sin (?t + y),
где e – мгновенное значение ЭДС (значение ЭДС в момент времени t);
Em – амплитудное значение ЭДС (значение ЭДС в момент времени );
(?t + ?) – фаза;
? – начальная фаза.
Фаза определяет значение ЭДС в момент времени t, начальная фаза – при t = 0.
Время одного цикла называется периодом T, а число периодов в секунду – частотой f:
Единицей измерения частоты является c–1, или герц (Гц). Величина
в электротехнике называется угловой частотой и измеряется в рад/с.
Частота вращения рамки n и частота ЭДС f связаны между собой соотношением:
откуда
13. ЦЕПЬ, СОДЕРЖАЩАЯ КАТУШКУ С АКТИВНЫМ СОПРОТИВЛЕНИЕМ R И ИНДУКТИВНОСТЬЮ L
Реальная катушка любого электротехнического устройства обладает определенным активным сопротивлением r и индуктивностью L. Участок цепи с индуктивностью L будем рассматривать как участок, обладающий индуктивным сопротивлением x
. Уравнение напряжений, составленное по второму закону Кирхгофа для цепи с r и L, имеет вид:U = U
+ U
.
Рис. 15. Цепь, содержащая катушку с активным сопротивлением R и индуктивностью
На векторной диаграмме (рис. 15б) вектор U
совпадает с вектором тока, а вектор U
опережает вектор тока на 90°.
Из диаграммы следует, что вектор напряжения сети равен геометрической сумме векторов U
и U
. U = U
+ U
, а его значение
Выразив напряжения через ток и сопротивления, получим
Последнее выражение представляет собой закон Ома цепи (рис. 15г):
где z – полное сопротивление цепи.
Из векторной диаграммы следует, что напряжение цепи опережает по фазе ток на угол р и его мгновенное значение равно: ? = U
sin (?t + ?).
Графики мгновенных значений напряжения и тока цепи изображены на рисунке 15в.
Угол сдвига по фазе ? между напряжением и вызванным им током определяют из соотношения:
График p
(t) показывает, что активная мощность непрерывно поступает из сети и выделяется в активном сопротивлении в виде теплоты. Она равна:
Мгновенная мощность, обусловленная энергией магнитного поля индуктивности, циркулирует между сетью и катушкой. Ее среднее значение за период равно нулю:
14. ЦЕПЬ, СОДЕРЖАЩАЯ РЕЗИСТИВНЫЙ И ЕМКОСТНОЙ ЭЛЕМЕНТЫ
Участок цепи с емкостью С будем представлять как участок, обладающий емкостным сопротивлением xc.
В этом случае уравнение напряжений цепи (рис. 16а) имеет вид: U = U
+ U
На (рис. 16б) изображена векторная диаграмма цепи r и С.
Рис. 16. Электрическая цепь, содержащая резистивный r и емкостный С элементы (а), ее векторная диаграмма (б), графики мгновенных значений (в), треугольники мощностей и сопротивлений (г и д)
Вектор напряжения U
совпадает с вектором тока, вектор U
отстает от вектора тока на угол 90°. Из диаграммы следует, что модуль напряжения, приложенного к цепи, равен:
Выразив Ur и Uc через ток и сопротивления, получим:
откуда
Последнее выражение представляет собой закон Ома цепи r и C:
где z – полное сопротивление.
Графики u(i), i(t) изображены на рисунке 16в. Разделив стороны треугольника напряжений (рис. 16б) на ток, получим треугольник сопротивлений (рис. 16д), из которого можно определить косинус угла сдвига фаз между током и напряжением:
Мгновенная мощность цепи:p = ui = I
sin?tU
? sin (?t +?)
Средняя мощность за период:
Подставив вместо cos ? его значение, получим P
= UI cos? = UI(r/z) = i
r = P
Таким образом, среднее значение мощности цепи с r, С, так же как и цепи с r, L, представляет собой активную мощность, которая выделяется в активном сопротивлении r в виде теплоты.
На (рис. 16в) изображен график мгновенной мощности цепи с r, С.
Энергетические процессы цепи с r, С можно рассматривать как совокупность процессов, происходящих отдельно в цепи с r и С. Из сети непрерывно поступает активная мощность. Реактивная мощность, обусловленная электрическим полем емкости, непрерывно циркулирует между источником и цепью. Ее среднее значение за период равно нулю.
15. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ R, L, C
Уравнение напряжений для цепи (рис. 17а) имеет вид: U = U
+ U
+ U
Рис. 17. Электрическая цепь, содержащая последовательно включенные r, L и С (а), ее векторная диаграмма (б), треугольники сопротивлений и мощностей (в и г) цепи при x
> x
, векторная диаграмма (д), треугольники сопротивлений и мощностей (е и ж) цепи при x
> x
.
Векторные диаграммы для цепи (рис. 17а) изображены на рисунках 17б и 17в. Вектор напряжения на активном сопротивлении совпадает с вектором тока, вектор напряжения на индуктивности U
опережает вектор тока на 90°, вектор напряжения на емкости U
отстает от вектора тока на 90°. Следовательно, между векторами напряжения на индуктивности и емкости образуется угол в 180°.
Если x
> x
, то и UL > U
и векторная диаграмма будет такой (см. рис. 17б), а треугольник сопротивлений – на рисунке 17в, где x = x
– x
. Если x
> x
, то U
> U
и векторная диаграмма будет иметь вид, изображенный на рисунке 17е, где x = x
– x
.
Значение напряжения, приложенного к цепи:
Выразив напряжение через ток и сопротивления, получим
Последнее выражение представляет собой закон Ома для последовательной цепи r, L, C:
где z – полное сопротивление цепи;
x – реактивное сопротивление цепи.
На основании проведенного анализа цепи, состоящей из последовательно соединенных r, L, C, можно сделать следующие выводы.
Если x
> x
, то напряжение сети опережает по фазе ток на угол ?: ? = U
sin (?t + ?).
Цепь имеет активно(индуктивный характер.