banner banner banner
Основы физиологии сердца
Основы физиологии сердца
Оценить:
Рейтинг: 0

Полная версия:

Основы физиологии сердца

скачать книгу бесплатно

– развитие у человека в эмбриогенезе на основе задненижнего конца правого синусового клапана специальных образований: клапана каудальной полой вены (евстахиева), служащего для направления тока крови в овальное отверстие, и клапана венечного синуса (тебезиева);

– редукция левой краниальной полой вены и формирование венечного синуса, устье которого прикрывается или специальной заслонкой (крупные четвероногие), или особым клапаном (человек);

– более полное втягивание в левое предсердие устья первичной легочной вены и формирование четырех ее первичных устий; образование трех устий у четвероногих и вторичное расхождение в стороны задних легочных вен у антропоидов с формированием четырех стволов;

– концентрация внутри сердечной сумки сильных миокардных наслоений на коллекторных стволах легочных вен, формирующих специальные манжеты;

– заметная редукция ушек предсердий, особенно сильно выраженная на левом;

– стабилизация положения, формы и величины створок в предсердно-желудочковых клапанах: трех в правом и двух в левом в соответствии с условиями внутрисердечной гемодинамики;

– образование высокой и расширенной восходящей аорты при очень крутой ее дуге и формирование на границе второго излома с нисходящей аортой специфического порогообразного перешейка у человека. Данные особенности строения создают особые гемодинамические условия – своеобразную запруду с повышенным давлением – для направления потока крови вертикально к голове с крупным головным мозгом;

– тенденция у человека к смещению устьев обеих венечных артерий сердца из кармашков аортального клапана выше, непосредственно на начальную часть самой аорты (освобождение их от прикрытия полулунными створками), что создает условия для сохранения высокой величины коронарного кровотока в диастолу;

– формирование относительно крупного овального отверстия и относительно слабой проходимости артериального протока (при его ответвлении из самой конечной части легочной артерии) у антропоидов. Это позволяет быстрее переключать плацентарное кровообращение на постоянное;

– формирование у высших плацентарных в клапане овального отверстия во второй половине эмбриональной жизни особой, циркулярно расположенной сердечной мускулатуры, развитой особенно у антропоидов. Это позволяет регулировать у плода ток крови через овальное отверстие в зависимости от фаз сокращения предсердий. Прогрессивное развитие сердечной мускулатуры к рождению тем самым как бы предварительно разобщает функционально обе половины во время систолы;

– формирование на конце клапана овального отверстия во второй половине эмбриональной жизни у крупных форм млекопитающих особых эластичных сетевидных образований, помогающих закрытию при рождении овального отверстия;

– высвобождение основания сердца от облегающей его сердечной сумки с образованием серозных выростов у человека, что позволяет сердцу более свободно совершать свои движения.

Сердце окружено околосердечной сумкой, или перикардом, который имеет два листка: внутренний (висцеральный) и наружный (париетальный). Между этими листками образуется щелевидная перикардиальная полость, выстланная мезотелием и содержащая небольшое количество серозной жидкости (в норме около 30–50 мл). Эта жидкость уменьшает взаимное трение листков перикарда при сокращениях сердца. Париетальный листок перикарда переходит в адвентицию крупных сосудов, а спереди прикрепляется к грудине. Висцеральный листок перикарда образует наружную оболочку сердца – эпикард.

Внутренняя оболочка сердца – эндокард – выстилает полости сердца изнутри. Она образована соединительнотканными элементами, гладкомышечными клетками и эпителиальной тканью (эндотелием), покрывающей поверхность эндокарда, обращенную в полость сердца. Складки (дупликатуры) эндокарда образуют клапаны сердца. Между правым предсердием и правым желудочком располагается трехстворчатый, или трикуспидальный, клапан, а между левым предсердием и левым желудочком – двустворчатый, или митральный. В проксимальных отделах аорты и легочного ствола расположены полулунные клапаны, каждый из которых представляет собой три карманообразные складки, направленные свободными краями в просвет сосудов.

Основную массу сердца составляет его средняя оболочка – сердечная мышца, или миокард, образованный целомической поперечнополосатой мышечной тканью. Миокард предсердий состоит из двух слоев: поверхностного, образованного циркулярными волокнами, который является общим для обоих предсердий, и внутреннего, образованного продольно расположенными волокнами, самостоятельными в каждом предсердии. Внутренний слой миокарда предсердий формирует вокруг устьев полых и легочных вен подобие сфинктеров, которые при сокращении предсердий почти полностью перекрывают просвет этих сосудов, препятствуя обратному току крови из предсердий в эти вены.

В желудочках миокард образован тремя слоями: поверхностным, средним и глубоким. Косо расположенные волокна поверхностно спускаются к верхушке сердца, где загибаются внутрь и переходят в глубокий продольный слой. Производными последнего являются сосочковые (папиллярные) мышцы, выступающие в просвет желудочков. От этих мышц отходят сухожильные нити (хорды), которые прикрепляются к атриовентрикулярным клапанам со стороны, обращенной в полость желудочков. При сокращении миокарда желудочков сокращаются и сосочковые мышцы. В результате сухожильные нити натягиваются и удерживают створчатые клапаны от прогибания в полость предсердий. Недостаточность этой функции, например генетически обусловленная, приводит к прогибанию (пролапсу) створок клапанов в полость предсердий во время сокращения желудочков и нарушению внутрисердечной гемодинамики.

Расположенный между поверхностным и глубоким средний слой миокарда образован циркулярными волокнами, самостоятельными для каждого желудочка. Толщина миокарда зависит от приходящейся на них нагрузки: стенки левых отделов сердца у взрослых толще стенок правых, а стенки желудочков толще стенок предсердий. Наибольшую толщину (10–15 мм) имеет стенка левого желудочка, который проталкивает кровь по сосудам большого круга кровообращения. Толщина стенок правого желудочка составляет 5–8 мм, толщина же стенок предсердий лишь около 2–3 мм. Однако при адаптации сердца к повышенной физической нагрузке, например у спортсменов, масса миокарда и толщина стенок сердца могут увеличиваться (рабочая гипертрофия миокарда).

Основным тканевым компонентом миокарда является мышечная ткань сердечного (целомического) типа. Волокна сердечной мышцы мельче волокон скелетной мускулатуры. Они имеют лентовидную форму (15–20 мкм ширины при толщине около 5 мкм) и разделены на отдельные клетки – кардиомиоциты. До 35,8 % от массы кардиомиоцитов составляют митохондрии – органоиды энергетического обмена. Кроме кардиомиоцитов в состав миокарда входят волокна соединительной ткани. Соединительнотканный каркас сердца связывает мышечные волокна между собой, а также с эндои эпикардом, влияя на механические характеристики сердечной мышцы – ее растяжимость и упругость.

Наряду с собственно миокардом в состав сердца входят две группы папиллярных (сосочковых) мышц, соединяющих внутреннюю поверхность миокарда со створками митрального и трикуспидального клапанов. В начале сокращения желудочков папиллярные мышцы тянут створки митрального или трикуспидального клапанов вниз, в полость желудочков. Удержание концов створок приводит к схлопыванию в первую очередь базальных участков створок и тем самым обеспечивает их герметичное смыкание. Поскольку папиллярные мышцы образованы такой же мышечной тканью, как и миокард, но анатомически обособлены от него, их часто используют как модельный объект для изучения биофизических закономерностей работы сердца.

В составе сердечной мышечной ткани выделяют несколько морфофункциональных разновидностей кардиомиоцитов:

1. Сократительные (типичные, рабочие) кардиомиоциты составляют 99 % массы миокарда. Они обеспечивают сократительную функцию сердца и содержат большое количество упорядоченных миофибрилл и митохондрий, имеют развитый саркоплазматический ретикулум и систему Т-трубочек.

Рис. 2. Продольное расположение и поперечная исчерченность миофибрилл кардиомиоцитов

Для миофибрилл кардиомиоцитов, как и скелетных мышц, характерна картина продольного расположения и поперечной исчерченности, видимая под микроскопом с помощью поляризованного света (рис. 2).

В этих условиях различают светлые изотропные (I), или однородные, полосы, темные анизотропные (А), или неоднородные, полосы и поперечно расположенные им Z-полосы (нем. zwischenscheibe – разделительные). Классической единицей продольного деления каждой миофибриллы кардиомиоцитов, как и в скелетной мышце, является саркомер, который содержит две половинки I-полосы и одну А-полосу. Границами же саркомера являются Z-полосы. Таким образом, в кардиомиоцитах, как и в скелетных мышцах, саркомер является функциональной единицей сократительного аппарата. Поскольку саркомеры в миофибрилле расположены последовательно, сокращение саркомеров вызывает сокращение миофибриллы и общее ее укорочение.

Миофибриллы, состоящие из белковых нитей – миофиламентов, – расположены в саркомере параллельно друг другу с высокой упорядоченностью и окружены мембранами цистерн саркоплазматического ретикулума, а также митохондриями. Различают два типа миофиламентов: толстые, образованные белком миозином, и тонкие, образованные другим белком – актином (рис. 2-1).

Молекула миозина состоит из длинной хвостовой части, суженной шейки и утолщенной головки. Каждая толстая нить содержит более 100 молекул миозина, собранных в пучок, в средней части которого находятся хвостовые частицы молекул, а на обоих концах – выступающие над поверхностью нити головки. Каждая тонкая нить состоит из двух линейных молекул актина, спирально скрученных друг с другом. В желобках между нитями актина уложены линейные молекулы белка тропомиозина (по две пары молекул на один шаг спирали актиновой нити). Вблизи соединений между двумя последовательными молекулами тропомиозина к актину прикрепляются глобулярные молекулы еще одного белка – тропонина, состоящего из трех субъединиц: I, T и С. Он принимает участие в процессах сопряжения возбуждения и сокращения рабочего миокарда.

Рис. 2-1. Работа актомиозинового комплекса:

а – тонкий филамент состоит из трех протеинов. Его основу составляет актин. В состоянии расслабления миозинчувствительный сайт молекулы актина заблокирован тропомиозином. Когда кальций присоединяется к тропонину, последний претерпевает конформационную перестройку, в результате которой становится возможным взаимодействие актина и миозина; б – присоединение головки миозина к актину; в – скольжение тонких и толстых филаментов относительно друг друга. В результате гидролиза молекулы АТФ образуются АДФ и неорганический фосфат Pi; г – присоединение новой молекулы АТФ к головке миозина

2. Проводящие (атипичные, специализированные) кардиомиоциты имеют слабо развитый сократительный аппарат и формируют проводящую систему сердца. Среди этого вида кардиомиоцитов различают Р-клетки и клетки Пуркинье:

а) округлые Р-клетки (англ. рale – бледный) со светлой цитоплазмой, почти лишенной сократительных элементов, обладают способностью периодически генерировать электрические импульсы, обеспечивая (в норме) автоматию сердечной мышцы;

б) клетки Пуркинье имеют протяженную форму с большим диаметром и образуют волокна, осуществляя быстрое, незатухающее, своевременное и синхронное проведение возбуждения к сократительным кардиомиоцитам. Автоматия у клеток Пуркинье есть, но выражена в меньшей степени, чем у Р-клеток.

3. Переходные кардиомиоциты, или Т-клетки (англ. transitional – переходный), располагаются между проводящими и сократительными кардиомиоцитами и имеют промежуточные цитологические характеристики. Эти клетки обеспечивают взаимодействие остальных типов кардиомиоцитов.

4. Секреторные кардиомиоциты располагаются преимущественно в предсердиях и выполняют эндокринную функцию. В частности, эти клетки секретируют во внутреннюю среду предсердный натрийуретический пептид – гормон, принимающий участие в регуляции водно-электролитного баланса и артериального давления.

Морфологически сердечная мышечная ткань, в отличие от скелетной, не имеет симпластического строения, однако отдельные кардиомиоциты и структурно, и функционально тесно связаны друг с другом посредством вставочных дисков, особенно хорошо выраженных между сократительными кардиомиоцитами. Механическую связь обеспечивают находящиеся в области вставочного диска десмосомы и интердигитации, а функциональное взаимодействие – щелевые контакты (англ. gap junctions), или нексусы. В зоне щелевых контактов, которая занимает около 10–20 % площади вставочного диска, мембраны соседних клеток находятся на очень малом (около 2–3 нм) расстоянии друг от друга и пронизаны каналами, которые представляют собой сложные белковые комплексы (коннексоны) и проницаемы для ионов. Такое строение межклеточных контактов обеспечивает их низкое электрическое сопротивление и свободную передачу электрического сигнала от одной клетки к другой (по типу электрического синапса). Вставочные диски, расположенные на торцах клеток, соединяют кардиомиоциты «конец в конец», что приводит к образованию мышечных волокон, которые также связаны друг с другом посредством вставочных дисков.

Таким образом, кардиомиоциты объединены в непрерывную электрическую сеть – функциональный синцитий, что отличает миокард от скелетных мышц. Вследствие данных особенностей строения миокарда возбуждение, возникшее в одном кардиомиоците, с высокой скоростью передается на другие клетки и быстро охватывает миокард целиком. Однако при повреждающих воздействиях на сердце, например в условиях гипотермии, проницаемость каналов в области щелевых контактов резко снижается, что приводит к нарушениям проведения возбуждения в миокарде. Важно также отметить, что большая часть мышечных волокон предсердий и желудочков прикреплена к фиброзной ткани, которая разделяет камеры сердца и электрически изолирует их друг от друга. В результате возможно раздельное последовательное сокращение предсердий и желудочков.

Все клетки миокарда являются высоко дифференцированными и не обладают способностью к делению, поэтому в постэмбриональном периоде жизни человека мышечная ткань сердца не способна к регенерации и процессы рабочей гипертрофии миокарда развиваются за счет увеличения размеров и объема отдельных кардиомиоцитов, а не их общего количества (гиперплазии). В случае некроза участка миокарда (инфаркта), например при ишемической болезни сердца, поврежденный участок замещается соединительной тканью, что приводит к формированию рубца. Поэтому при лечении инфаркта миокарда перспективным является использование стволовых клеток. Указанные клетки при их введении непосредственно в миокард под влиянием клеточных факторов роста могут превращаться в кардиомиоциты и восполнять, таким образом, утраченную сократительную функцию участка миокарда. Однако широкое применение клеточных технологий в клинической практике требует наличия дорогостоящего высокотехнологичного оборудования и проведения дополнительных клинических исследований.

1.2. Происхождение автоматии сердца

Со времен анатомических исследований, выполненных в эпоху Возрождения, и практически до конца XIX в. в физиологии оставался нерешенным вопрос о причинах сокращений сердца, то есть вопрос о том, обусловлены ли они нервными влияниями (нейрогенный механизм) или же являются собственными свойствами сердечной мышцы (миогенный механизм). Еще Леонардо да Винчи писал: «…Проследи нервы до сердца и посмотри, сообщают ли они движение сердцу или оно движется само собой». Исследования, выполненные на беспозвоночных животных, показали, что у многих из них – насекомых, ракообразных, моллюсков – электрические импульсы, запускающие сокращения сердца, возникают в нервных клетках ганглия, расположенного в толще стенок венозного конца сердца или на поверхности последнего. Однако, как было установлено уже к началу XX в., причина сокращения сердца позвоночных животных зависит от собственного миогенного механизма. Следовательно, нейрогенная гипотеза автоматии сердца, справедливая в отношении многих беспозвоночных животных, неприменима к человеку.

В пользу миогенной теории свидетельствует опыт, поставленный в середине XIX в. немецким физиологом Г. Станниусом. В этом опыте показано, что при наложении лигатуры на сердце лягушки по границе между венозным синусом (место впадения полых вен) и правым предсердием венозный синус продолжает сокращаться с исходной частотой, а предсердия и желудочек останавливаются. Через 30–40 с сокращения желудочка и предсердий возобновляются, но с собственной частотой, меньшей, чем частота сокращений венозного синуса. Иногда возобновление сокращений желудочка происходит только после стимуляции области сердца между предсердиями и желудочком путем наложения второй лигатуры по атриовентрикулярной борозде. Наложение еще одной лигатуры в нижней трети желудочка приводит к прекращению сокращений верхушки сердца, в то время как остальные отделы продолжают сокращаться в прежнем ритме. При этом возбудимость и сократимость верхушки сердца не нарушаются – в ответ на раздражение (укол иголкой) происходит сокращение.

Примерно в это же время английский физиолог В. Гаскелл показал, что охлаждение сравнительно небольшой зоны в области устья полых вен приводит к остановке сердца у млекопитающих. Результаты опытов Г. Станниуса и В. Гаскелла указывали также на то, что участки сердечной мышцы, ответственные за ее самовозбуждение (очаги автоматии), имеют ограниченную локализацию и находятся, в частности, в правом предсердии, а также на границе предсердий и желудочков. В дальнейшем было установлено, что клеточными элементами, обеспечивающими автоматию сердца, являются специализированные кардиомиоциты. В 1902 г. в России А. А. Кулябко наблюдал восстановление сократительной активности сердца человека, которое извлекли из трупа, поместили в теплый физиологический раствор и некоторое время массировали.

Таким образом, в результате перечисленных экспериментов было доказано существование в сердце собственных, миогенных механизмов обеспечения его периодической сократительной активности, автономных по отношению к центральной нервной системе и достаточных для поддержания нормального ритма сердечной деятельности.

Миогенная природа автоматии сердца является результатом его ранней эмбриональной дифференцировки (зачаток сердца формируется к концу второй недели эмбриогенеза). Тем самым обеспечиваются формирование кровеносной системы плода и оптимальный режим снабжения кислородом всех тканей, включая нервную. С другой стороны, автономность кровеносной системы по отношению к нервной необходима вследствие большой зависимости нервной ткани от уровня доставки кислорода. Прекращение кровоснабжения мозга даже на несколько секунд вызывает резкие функциональные нарушения, которые уже через 4–6 мин приводят к необратимым органическим изменениям в ЦНС. Поэтому зависимость сердечной деятельности и всей системы снабжения организма кислородом от состояния ЦНС резко снизила бы адаптивные возможности организма в условиях действия на него экстремальных факторов среды.

1.3. Особенности строения проводящей системы сердца и распространения возбуждения в миокарде

Проводящая система сердца образована специализированными кардиомиоцитами и включает в себя следующие основные структуры (рис. 3):

1. Синоатриальный, или синусовый, узел (в старой литературе – узел Кейт – Флака) располагается на задней стенке правого предсердия вблизи устья верхней полой вены. Он образован Р-клетками, которые посредством Т-клеток связаны между собой и с сократительными кардиомиоцитами предсердий. Этот узел гомологичен синусовому узлу холоднокровных (узел Ремака). Венозный синус как анатомически обособленное место впадения полых вен у теплокровных существует только на ранних стадиях эмбриогенеза, сливаясь в дальнейшем с правым предсердием. От синоатриального узла в направлении к атриовентрикулярному узлу отходят три межузловых тракта: передний (тракт Бахмана) с отходящим от него к левому предсердию межпредсердным пучком, средний и задний (соответственно тракты Венкебаха и Тореля). Однако степень гистологической дифференциации этих структур от окружающих тканей миокарда у разных людей сильно варьирует.

2. Атриовентрикулярное соединение, в котором выделяют три зоны: зону перехода от предсердных кардиомиоцитов к атриовентрикулярному узлу; АN (лат. аtrium nodus) – предсердный узел, или атриовентрикулярный узел (в старой литературе – узел Ашоф-Тавара), расположенный непосредственно над местом прикрепления септальной створки трехстворчатого клапана; NH (лат. nodus His – узел Гиса) – зона перехода от атриовентрикулярного узла к общему стволу пучка Гиса. В атриовентрикулярном соединении обнаруживаются Р-клетки (в меньшем количестве, чем в синусовом узле), клетки Пуркинье, а также Т-клетки. У холоднокровных этим структурам соответствуют узлы Биддера и Людвига.

Рис. 3. Проводящая система сердца:

ВПВ – верхняя полая вена; НПВ – нижняя полая вена; штриховка – фиброзная ткань между миокардом предсердий или желудочков; СА – синоатриальный узел; АВ – атриовентрикулярный узел.

Основные проводящие пути: 1 – передний межузловой тракт; 1а – межпредсердный пучок Бахмана; 2 – средний межузловой тракт Венкебаха;

3 – задний межузловой тракт Тореля; 4 – общий ствол предсердно-желудочкового пучка (пучка Гиса); 5 – правая ножка пучка Гиса; 6 – левая ножка пучка Гиса; 6а – передневерхняя ветвь левой ножки пучка Гиса; 6б – задненижняя ветвь левой ножки пучка Гиса; 7 – субэндокардиальные волокна Пуркинье. Дополнительные (аномальные) проводящие пути: 8 – пучок Джеймса; 9 – пучки Кента

3. Предсердно-желудочковый пучок, или пучок Гиса (описан немецким анатомом В. Гисом в 1893 г.), в норме является единственным путем проведения возбуждения от предсердий к желудочкам. Он отходит от атриовентрикулярного узла общим стволом и проникает через фиброзную ткань, разделяющую предсердия и желудочки, в межжелудочковую перегородку. Здесь пучок Гиса разделяется на две ножки – правую и левую, идущие к соответствующим желудочкам, причем левая ножка делится на две ветви: передневерхнюю и задненижнюю. Эти разветвления пучка Гиса проходят под эндокардом, широко ветвятся и заканчиваются в желудочках сетью субэндокардиальных волокон Пуркинье (описаны чешским физиологом Я. Пуркинье в 1845 г.). Основу проводящей системы желудочков (системы Гиса – Пуркинье) составляют клетки Пуркинье, связанные с сократительными кардиомиоцитами посредством Т-клеток.

У некоторых людей встречаются варианты развития, при которых в сердце содержатся дополнительные (аномальные) проводящие пути, например пучок Джеймса, соединяющий предсердия с нижней частью атриовентрикулярного соединения, пучки Кента, соединяющие предсердия и желудочки, а также пучок Махайма, соединяющий нижние участки атриовентрикулярного узла и правую ножку пучка Гиса. Данные пути участвуют в возникновении некоторых нарушений сердечного ритма (например, синдрома преждевременного возбуждения желудочков). В норме возбуждение сердечной мышцы зарождается в синусовом узле, охватывает миокард предсердий и, пройдя атриовентрикулярное соединение, распространяется по ножкам пучка Гиса и волокнам Пуркинье на миокард желудочков.

Таким образом, нормальный ритм сердца определяется активностью группы Р-клеток синоатриального узла, который называют водителем ритма первого порядка, или истинным пейсмекером (англ. pacemaker – отбивающий шаг). Такой ритм сердца называется синусовым. Однако кроме клеток синусового узла автоматия присуща и другим структурам проводящей системы сердца. Водитель ритма второго порядка локализован в NН-зоне атриовентрикулярного соединения. Задаваемый им ритм называется идиовентрикулярным.

Водителями ритма третьего порядка являются клетки Пуркинье, входящие в состав проводящей системы желудочков. Кардиомиоциты клеток атриовентрикулярного узла и волокон Пуркинье в норме автоматию не проявляют.

Водители ритма распределены в сердце согласно «закону градиента автоматии», сформулированному В. Гаскеллом в 1887 г.: степень автоматии пейсмекера тем выше, чем ближе он расположен к синоатриальному узлу. Так, собственная частота нормальной ритмической активности клеток синусового узла в покое составляет 60–80 имп./мин, атриовентрикулярного соединения – 40–60 имп./мин, системы Гиса – Пуркинье – 20–40 имп./мин, причем в дистальных отделах меньше, чем в проксимальных. Поэтому активность нижележащих водителей ритма в норме подавляется синоатриальным узлом. Иными словами, синусовый узел как бы навязывает свою частоту генерации импульсов водителям ритма второго и третьего порядков. В радиотехнике аналогичный процесс навязывания частоты генерации импульсов одним генератором другому называется синхронизацией. Следовательно, пейсмекерные клетки синусового узла обеспечивают синхронизацию распространения возбуждения по проводящей системе сердца к рабочему миокарду, поэтому водители ритма второго и третьего порядков называют латентными (или потенциальными) пейсмекерами. При снижении активности синусового узла или же нарушении проведения возбуждения к латентным пейсмекерам (как, например, в опыте Станниуса) частота возбуждений и сокращений сердца определяется активностью водителей ритма второго или третьего порядка. Кроме того, в патологических условиях электрические импульсы могут генерироваться не только клетками проводящей системы сердца, но и сократительными кардиомиоцитами.

Возникшее в синоатриальном узле возбуждение распространяется по миокарду предсердий, однако из-за асимметрии расположения синусового узла правое предсердие возбуждается раньше левого. Значение предсердных специализированных проводящих путей в этом процессе невелико, и их перерезка существенно не нарушает распространение возбуждения по миокарду, так как скорость проведения по этим путям (0,4–0,8 м/с) почти такая же, как и по сократительным кардиомиоцитам предсердий (0,1–0,2 м/с).

В атриовентрикулярном соединении (АN- и N-зоны) скорость проведения возбуждения составляет около 0,05 м/с, что является минимальной величиной по сравнению со скоростью проведения в других участках проводящей системы, а также рабочего миокарда. Поэтому при переходе возбуждения от предсердий к желудочкам возникает задержка проведения импульса на 0,02–0,04 с. Атриовентрикулярная задержка, а также низкая скорость проведения возбуждения в предсердиях обеспечивают последовательное сокращение предсердий и желудочков, которые начинают сокращаться только после систолы предсердий. Наличие атриовентрикулярной задержки может вызывать частичную блокаду проведения импульсов, следующих из предсердий к желудочкам с высокой частотой (более 300 в 1 мин), при мерцательной аритмии. В результате желудочки сокращаются с меньшей частотой (до 100–120 в 1 мин), что обеспечивает их удовлетворительное кровенаполнение во время диастолы.

Пройдя атриовентрикулярное соединение, электрическое возбуждение продолжает распространяться по проводящей системе желудочков и достигает их сократительных кардиомиоцитов. При этом скорость проведения возбуждения по проводящей системе и рабочему миокарду желудочков существенно различается: в пучке Гиса она составляет около 1 м/с, в волокнах Пуркинье – до 4 м/с, тогда как в сократительных кардиомиоцитах лишь около 0,5 м/с. Высокая скорость проведения импульсов по проводящей системе желудочков обеспечивает синхронное возбуждение и сокращение последних, что повышает эффективность выполнения насосной функции сердца. Особенности возбуждения рабочего миокарда желудочков состоят также в том, что сначала возбуждается межжелудочковая перегородка, далее – верхушка сердца и в конце цикла – базальные отделы желудочков. Папиллярные мышцы, образованные глубоким слоем миокарда, возбуждаются несколько раньше, чем средний и поверхностный слои миокарда желудочков, что имеет большое значение для нормальной работы атриовентрикулярных клапанов. Такие особенности распространения возбуждения в миокарде желудочков обусловлены взаиморасположением пучка Гиса и волокон Пуркинье. Общее время охвата миокарда желудочков возбуждением составляет около 5–10 мс. Нарушение распространения возбуждения по пучку Гиса, что может иметь место, например, при инфаркте миокарда, часто приводит к десинхронизации сократительных кардиомиоцитов и снижению скорости проведения возбуждения в рабочем миокарде. В результате резко (до 50 %) снижается сократимость миокарда и насосная функция сердца.

1.4. Ионные механизмы возникновения мембранных потенциалов кардиомиоцитов и автоматии клеток – водителей ритма

Фундаментальные исследования механизмов электрической активности миокарда были выполнены в 1950–1960-е гг. в лабораториях Б. Гоффмана и П. Крейнфилда наряду с экспериментами А. Ходжкина и Б. Катца по изучению общих электрофизиологических свойств нервной ткани. Эти исследования позволили установить, что кардинальные свойства миокарда: возбудимость – способность отвечать на действие раздражителей возбуждением в виде электрических импульсов; проводимость – способность проводить возбуждение от клетки к клетке без затухания; автоматия (автоматизм) – способность генерировать электрические импульсы в отсутствие внешних раздражителей, – обеспечиваются трансмембранными ионными токами, движущимися как внутрь клетки (входящие токи), так и из нее (выходящие токи); рефрактерность – неспособность к тетаническому сокращению, которая обеспечивает периодичность фаз сердечного цикла и пульсирующий характер кровотока.

Активный транспорт ионов (движение против градиента концентраций) осуществляется ионными насосами, которые сопряжены с мембранными ферментами, ускоряющими гидролиз аденозинтрифосфорной кислоты (АТФ), – АТФ-азами. Выделяющаяся в результате энергия АТФ расходуется на перенос ионов. Наиболее значимая роль в процессах активного транспорта на наружной мембране (сарколемме) кардиомиоцитов, как и в мембранах клеток других возбудимых тканей, принадлежит К

/Nа

-насосу, который переносит ионы К

внутрь клетки, а Nа

– из нее. При работе этого насоса происходит неэквивалентный (электрогенный) обмен ионов: на каждые 2 иона К

, перенесенных в клетку, выводится 3 иона Na

. Однако в кардиомиоцитах, в отличие от нейронов, клеток гладких и скелетных мышц, осуществляется и так называемый Ca

/Na

-обмен, когда из клетки выводятся ионы кальция в обмен на ионы натрия. Обеспечивающий этот обмен ионный насос, как и калий-натриевый, также является электрогенным – один ион кальция заменяется на три иона натрия. Основным результатом деятельности ионных насосов является создание и поддержание градиентов концентрации ионов по обе стороны плазматической мембраны: внутри клетки больше концентрация ионов калия, тогда как снаружи – натрия и кальция. Так, концентрация калия внутри кардиомиоцитов составляет около 140 ммоль/л, а снаружи – 5 ммоль/л. Концентрация же натрия внутри клетки – около 10 ммоль/л, а снаружи – примерно 142 ммоль/л.

Пассивный транспорт ионов через сарколемму, не требующий затрат энергии, осуществляется через ионные каналы – специальные комплексы интегральных белков мембраны. Направление и скорость диффузии определяются разностью внутри- и внеклеточной концентраций ионов, а также зарядом мембраны. Скорость диффузии ионов из области высокой концентрации в область низкой концентрации описывается дифференциальным уравнением Фика, согласно которому

где V – скорость диффузии; k – коэффициент диффузии; S – площадь поверхности мембраны; dC – градиент концентраций; dx – толщина мембраны. Знак «минус» перед уравнением означает, что по мере выравнивания концентраций ионов по обе стороны мембраны скорость диффузии убывает во времени.

Большинство ионных каналов относительно селективны, то есть проницаемы преимущественно для какого-либо одного вида ионов, хотя некоторые ионные каналы могут проводить ионы разных типов. Поскольку ионные каналы образованы белками, которые кодируются определенными генами, то очевидно, что изменения свойств ионных каналов, которые могут наблюдаться при патологии сердца, зависят от нарушений генетического аппарата клетки. Поэтому исследования свойств отдельных ионных каналов являются перспективными для понимания патогенеза и лечения аритмий и других заболеваний сердца.

Классические представления А. Ходжкина и Б. Катца о свойствах ионных каналов клеток возбудимых тканей, в том числе и миокарда, получили дальнейшее развитие в 1970– 1980-е гг. благодаря разработке методики точечной фиксации мембранного потенциала и регистрации тока через одиночные ионные каналы (patch clamp). Эта методика была впервые предложена Э. Неером и Б. Сакманом в 1976 г. и оказала огромное влияние на развитие клеточной электрофизиологии. (В 1991 г. указанные авторы получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся функций одиночных ионных каналов в клетках».) Ими было установлено, что активация (открытие) и закрытие ионных каналов представляют собой вероятностный процесс, поскольку у каждого канала имеется свой порог открытия. Некоторые ионные каналы могут проводить токи как внутрь клетки, так и из нее, то есть в различных направлениях.

В кардиомиоцитах были обнаружены несколько подтипов калиевых и натриевых каналов, различные виды каналов для ионов кальция и хлора. Приводим краткую характеристику основных типов ионных каналов миокардиальных клеток.

I. Каналы для ионов К

:

а) Потенциалзависимые:

1. Каналы входящего прямого К

тока (англ. inward recti?er – входящие выпрямляющие), I

+

, способны проводить ионы калия внутрь клетки при изменении потенциала мембраны. Однако в основном эти каналы обеспечивают выходящий ток, то есть движение ионов калия из клетки, в результате чего возникает мембранный потенциал покоя. Блокируются ионами бария Ba

и цезия Cs

.

2. Быстро инактивируемые каналы выходящего K

-тока (англ. transient outward – быстро выводящие), I

. Эти каналы по скорости прохождения через них ионов калия разделяются на два подвида: быстрые (англ. fast), I

, и медленные (англ. slow), I

.

3. Каналы задержанного выходящего тока (англ. delayed recti?er – задержанные выпрямляющие), I

+. В современной электрофизиологической литературе эти каналы разделяют на три подвида: медленно активируемые (I

), быстро активируемые (I

) и сверхбыстро активируемые (I

).

4. Кальций-регулируемые калиевые каналы, I

+,

2+ .

б) Лиганд-активируемые калиевые каналы выходящего тока:

1. Ацетилхолин-зависимые, I

+

.