banner banner banner
Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
Оценить:
Рейтинг: 0

Полная версия:

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей

скачать книгу бесплатно

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
Алексей Семихатов

Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения.

Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования.

Награды и премии

Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель».

В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие.

Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям.

…Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих.

Для кого

Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.

Алексей Семихатов

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей

Научные редакторы Владимир Сурдин, канд. физ.-мат. наук, Сергей Нечаев, д-р физ. – мат. наук

Редактор Петр Фаворов

Издатель П. Подкосов

Руководитель проекта А. Шувалова

Ассистент редакции М. Короченская

Корректоры Е. Барановская, О. Петрова

Компьютерная верстка А. Фоминов

Художественное оформление и макет Ю. Буга

Фоторедактор П. Марьин

Иллюстрации О. Любчанская, П. Марьин

© Семихатов А., 2022

© ООО «Альпина нон-фикшн», 2022

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

Очень короткое предисловие

О читателе. Эта книга для тех, кому мысли об устройстве мира приносят больше радости, чем расстройства; для тех, кого они скорее интригуют, чем раздражают.

О содержании. Вообще-то самая интересная часть «устройства мира» вокруг нас – это мир людей, но книга не про это, а про то, в чем я понимаю немного больше: про устройство мира неодушевленного, но, впрочем, такого, который сделал возможным появление одушевленного. И интересует меня в этом устройстве, по существу, один-единственный мотив, зато такой, который связан со многими другими. Вселенная не просто находится в движении, но и в некотором роде существует через движение. В нем соединены пространство, время и материя. Открытие Вселенной началось с изучения движения и во многом продолжается так же: наблюдая за движением одних частей мира, мы делаем выводы о существовании и свойствах других.

О жанре. Жанр этой книги – прогулки. Прежде всего необременительные (хотя кое-где я все-таки переборщил), имеющие своей целью не рассказать обо всем, а скорее заинтересовать чем-то; всегда можно двигаться дальше, но при желании можно и слегка задержаться там, где что-то привлекло внимание[1 - Что до некоторой степени оправдывает мою любовь к примечаниям.]. Не возбраняется и еще раз взглянуть на то, что мы уже видели, но с несколько другой стороны. В книге нет ни претензии, ни попытки излагать историю событий, или людей, или даже идей: несистематические исторические экскурсы – это просто элементы прогулки, а для тех, кого мне удалось заинтересовать, – приглашение к самостоятельному углублению в подробности. В ряде случаев подробности (или отступления, с которыми не удалось совладать) приведены в добавлениях к прогулкам. А в поисках читательского внимания я время от времени выношу на поля то, что хотелось бы особенно отметить. Да, и из-за рода моих занятий это прогулки в первую очередь по теоретическому знанию; практика и эксперимент составили бы отдельную книгу. Литературными комментариями в конце каждой прогулки я пользуюсь не только по их прямому назначению, но в ряде случаев и для того, чтобы сознаться в переупрощениях, неиспользовании стандартных терминов и других серьезных прегрешениях.

О дисциплине. Из-за многочисленных и разноуровневых связей идеи движения с другими темами мне следовало держать себя в руках и не отвлекаться на параллельные сюжеты. Полного успеха в таком самоограничении я не достиг. Пожалуй, только предисловие получилось по-настоящему коротким.

Благодарности

По прихоти судьбы – разносчицы даров –
в прекрасный день мне откровенья были.
Я написал роман «Прогулки фраеров»,
и фраера меня благодарили.

    Б. Окуджава

Я благодарен времени за то, что оно нашлось. А оглядываясь на это время, я могу только удивляться, как немного сделал я-и-только-я, чтобы эта книга появилась. Первый вариант начальных глав, предвкушая живой отклик, я попросил прочитать Ивана Семенова; он был настолько деликатен, что не только ничего не ответил, но и ни разу впоследствии не дал заподозрить себя в знании, что я хоть что-нибудь написал. Сообразив, что так писать нельзя, я взялся кое-что переделывать – не совсем напрасно, если судить по его же откликам на финальный вариант последних глав. Неоценимыми для меня оказались тренировки по дехаотизации мышления, в которых наряду с другими участвовали Виктория Гинанова, Дмитрий Мамонтов, Василий Панюшкин, Анастасия Решетняк, Валерий Ройзен и Мария Усачева; наши совместные упражнения развивали способность смотреть на вещи, которые я намереваюсь рассказывать, со стороны не рассказчика (т. е. меня самого), а слушателя. Видную роль в качестве этого последнего играл Дмитрий Ликин: он задавал вопросы, а потом отказывался воспринимать мои безнадежно развернутые, ab ovo, объяснения, чем поначалу будил негодование в недрах моего «я». Заинтересованной критикой рождающегося текста – критикой, послужившей для меня источником здравомыслия, энергии, решимости и вдохновения, – я обязан Ксении Ануфриевой, Виктории Гинановой, Василию Панюшкину и Марии Попцовой; их замечания и предложения даже могли стать причиной заметных улучшений. Алексей Кондратов не только прочитал предварительный вариант (около девяти десятых – что, по-видимому, близко к абсолютному пределу), выказывая при этом удачную комбинацию снисходительности и скептицизма, но и написал блюз «Черная дыра»; возможно, вы уже где-то слышали его исполнение. Сергей Кондратов и Дмитрий Баюк – фактически мои соавторы в двух главах/прогулках (каждый в своей). Кроме более или менее регулярных причин, события, включая и написание книги, могут иметь еще и триггеры, которые косвенно способствуют их реализации; среди тех, кто решительно не ставил себе такой цели, но тем не менее спровоцировал меня на дополнительные усилия (помог, попросту говоря, преодолеть лень), – Ивар Максутов, Максим Карпов, Сергей Серегин, Елена Петровская, Алексей Шилов. Ряд сложных для меня вопросов я обсуждал с Аркадием Цейтлиным и Владимиром Лосяковым; книга, вероятно, была бы лучше, если бы я смог использовать все, о чем они говорили. Я благодарен за разъяснения Алексею Топоренскому и за призывы к стилистической дисциплине Валентину Кориневскому. Интеллектуальные провокации со стороны Михаила Аркадьева помогли мне яснее определить свое позиционирование в пространстве идей. Немало выгоды принесли мне семейные связи: разного рода вопросы и критику я получал от Ксении Семихатовой и ее бабушки (моей мамы) Ирины Красивской. И мне определенно повезло с тем, что предфинальный вариант согласились прочитать Владимир Сурдин и частично Дмитрий Казаков (которые вообще-то являются для меня примером того, как систематически и с вниманием к аудитории рассказывать об устройстве мира). Помимо конкретных исправлений, Сурдин внес несколько предложений, которые я беззастенчиво использовал, не всегда это оговаривая. Я благодарен моему издателю Павлу Подкосову за приглашение, содержавшее в себе не только мотивированный отказ издавать книгу наспех, но и предложение вместо этого подготовить издание с командой «лучших людей», по его выражению. Это предложение имело последствия, включая положительные: многими фрагментами, где мой слог попадает в интервал от приемлемого и выше, я обязан редактору этой книги Петру Фаворову. Он, правда, и не думал ограничиваться слогом и стилем, а принялся методически изводить меня пожеланиями, плавно переходящими в требования, внести смысл туда, где его наличие вызывало у него сомнения (совершенно обоснованные, как я раз за разом убеждался). Под его неослабным давлением пришлось сделать то, что обычно бывает при подготовке второго издания, если книга удостаивается такого отличия: исправить глупости и разобраться с немалым числом неоднозначных и путаных формулировок, временами граничивших с ошибками. Одним словом, я бессовестно сел на шею Фаворову, сделавшему для создания новой версии ничуть не меньше меня, и в результате читателю уже сейчас фактически предлагается второе, «дополненное, исправленное и существенно переработанное» издание. (Первое, благо было в дюжине экземпляров, быстро разошлось.) Последующее научное редактирование, за которое неожиданно согласился взяться Сергей Нечаев, имело благотворные результаты в виде освежающей критики и сопутствующей ей расстановки смысловых точек над «i», включая такие, о существовании которых я ранее и не подозревал; в результате я открыл для себя новые связи между вещами, а в тексте появилось несколько уточняющих и дополняющих пояснений. Помимо всех этих «непосредственных» факторов, неоспоримо влияние, которое на меня оказали полтора десятка лет развития отношений с книгами того сорта, к которому я надеюсь присоединить и эту: благодаря Д. Б. Зимину (1933–2021) я имел обязанность и привилегию каждый год читать две дюжины книг о науке для широкого читателя, а затем – удовольствие обсуждать их в компании заинтересованных людей, которым Зимин доверил ту же задачу и к которым со страстью присоединялся (наряду со многим другим, что он делал для поддержания читающей, интересующейся, думающей среды). А прочитанные при этом книги оставили мне лишь небольшую незанятую область в гиперпространстве смыслов, из-за чего я начисто избежал мучительных раздумий, про что же писать.

И при всей благосклонности судьбы, которую она, возможно, проявляла по сей момент к этому замыслу, она не смогла бы помочь мне без постоянной вдохновенной и вдохновляющей поддержки моей жены Наташи.

Часть 1

Космические прогулки

Прогулка 1

Движение по правилам

Маршрут:От качества к количеству. – Открытие Солнечной системы. – Относительность и инерция. – Законы движения. – Всеобщее притяжение. – Уравнения движения. – Больше чем Кеплер. – Движение как организация.

Главный герой:Иоганн Кеплер

От качества к количеству. Планеты – т. е. блуждающие среди звезд – сопровождали человечество со времени первых сколько-нибудь раздумчивых взглядов в ночное небо. Вид этого неба с тех пор несколько изменился, хотя и не сильно, но наша острота взгляда и способность делать выводы из наблюдений развились фантастически – хотя сказать так, пожалуй, является даже умалением. Процесс начал самоускоряться, когда от наблюдения за движением планет и вещей мысль обратилась к причинам движения; от констатации наблюдаемого – к предсказаниям того, какое движение должно наблюдаться. Сейчас на основе всего достигнутого нашей научно-технической цивилизацией мы в огромной мере разделяем уверенность, что искать фундаментальные причины и формулировать законы природы – предприятие не просто осмысленное, но и чрезвычайно полезное и что Вселенная познаваема, по крайней мере до некоторой степени. Но легко рассуждать задним числом, стоя на плечах гигантов. Греки были лишены подобной привилегии, и у них, по-видимому, не было ясного представления о таких законах: они не сформулировали четкого закона движения, например, для выпущенной из лука стрелы. Тела падают, потому что их место – на земле, и к этой «цели» все они и стремятся. Наблюдения над поведением вещей подытоживались рассуждениями Аристотеля, который различал «естественное движение», т. е. движение к естественному состоянию, и «насильственное движение», т. е. происходящее против естества (а для объяснения сложных случаев, таких как стрела, которая все же летит некоторое время вверх, хотя естественное место ее на земле, потребовалось и «смешанное движение»).

С нашим современным умением пользоваться законами природы и представлением, что они действуют «через причины», довольно трудно принять античную точку зрения, искавшую закономерности в математическом мире, но не предполагавшую их неотвратимого и однозначного действия в мире физическом. Согласно Аристотелю, движение вообще невозможно описывать математически и изучение природы – «физика» – может строиться только качественно; сама идея приписывать качествам какую-то численную меру появилась только в Средние века. Но что же и потом довольно долго мешало разглядеть, что стрела летит по математически строгой траектории, называемой параболой? Среди прочего – тот простой факт, что стрела не летит по параболе. Сопротивление воздуха «портит» параболу и превращает ее во что-то сложное – почти буквально «смешанное». В реально наблюдаемых нами процессах многие факторы путаются. Чтобы сформулировать принципы, которыми управляется происходящее, часто (да почти всегда) требуется отделить одно от другого (и от третьего, и от четвертого – влияний разного рода, как правило, много). В целом ряде сложных явлений мы сумели разобраться, выделив в них несколько факторов, каждый из которых действует относительно просто, и поняв, как эти разные факторы влияют друг на друга. Ключевая идея, таким образом, состоит в том, что некоторый главный эффект может до некоторой степени «портиться» всяческими дополнительными влияниями. Но, чтобы увидеть главный эффект во всей его полноте и строгости, иногда требуется проделать работу по реальному или воображаемому устранению этих влияний. Идеальные проявления законов природы могут поэтому оказаться абстракцией, но такие абстракции доказали свою полезность в практическом плане. Да, тело, запущенное под углом к горизонту, не летит по математически строгой параболе; но любой артиллерийский офицер эпохи Наполеоновских войн сказал бы, что пользы от «нереализуемой» параболы все равно много: она математически точна и проста, и, хотя она дает лишь некоторое приближение к реальности, для учета сопротивления воздуха в разных обстоятельствах и других эффектов имеются таблицы поправок при прицеливании. Такой подход к описанию реальности (заметно отличный от аристотелевского) колоссально расширил наше понимание Вселенной[2 - Никто, конечно, не отменял сложные явления, в которых задействовано несколько ключевых механизмов сразу, из-за чего не получается построить картину происходящего, начав с какого-то одного из них. В подобных случаях нам все-таки приходится оперировать современными вариантами рассуждений о «смешанном» поведении. – Здесь и далее примечания автора, если не указано иное.].

*****

Открытие Солнечной системы. Впечатляющий шаг к ключевой идее, что законы мироустройства можно извлечь из наблюдений, был сделан при рассмотрении «идеального», как все еще казалось тогда, мира небесных тел и потребовал точных наблюдений планет на небе. Их выполнил в последней трети XVI в. Тихо Браге, происходивший, как бы теперь сказали, «из олигархов», что (нисколько не умаляя его приверженности точным и систематическим наблюдениям) способствовало наличию у него лучших из имевшихся тогда – до изобретения телескопа! – приборов. К составленным им таблицам с данными наблюдений в конце концов получил доступ сильно желавший этого Иоганн Кеплер – человек определенно не аристократического происхождения, упорство и гениальность которого в итоге превратили колонки чисел в математические кривые. Орбиты планет, как смог усмотреть из таблиц Кеплер, представляли собой эллипсы, причем Солнце располагалось вовсе не в центре, а несколько в стороне, в одном из двух фокусов (рис. 1.1); картина не очень симметричная, потому что во втором фокусе ничего нет.

Рис. 1.1. Эллипс интереснее окружности. Он определен тем, что сумма расстояний от каждой его точки до двух фиксированных точек (фокусов) постоянна. Поэтому нарисовать эллипс проще всего, закрепив в этих точках концы нитки и держа карандаш так, чтобы нитка всегда была натянута. Показано расстояние 2a между двумя самыми удаленными друг от друга точками эллипса. Его половина, a, называется большой полуосью

Космический телескоп, запущенный в 2009 г. и вооруженный самыми современными технологиями для поиска планет у других звезд (иначе говоря, экзопланет), получил имя «Кеплер». При этом в мире Иоганна Кеплера звезды были огнями на самой дальней из твердых сфер – какие уж там планеты! – и даже в том, что касается Солнечной системы, он и не подозревал о существовании Урана и Нептуна. И уж тем более там не было места рукотворным изделиям, отправленным путешествовать теми же путями, что планеты. Подходящее ли это название для космического телескопа?

Задача, которую решал Кеплер в первые годы XVII в., – найти форму (и относительные размеры) орбиты каждой из планет – осложнялась тем, что наблюдения за движущимися планетами велись с Земли, которая сама тоже двигалась каким-то образом (как одна из планет, должен был рассуждать Кеплер; но как именно? Заранее неизвестное движение Земли требовалось некоторым образом «вычесть» из результатов наблюдений). В этом смысле таблицы Тихо Браге носили несколько «внутренний» характер, как если бы Аристотелю были доступны только видео летящей стрелы, снятые с других стрел. И даже хуже того: наблюдаемые «положения» планет – это не их положения в пространстве, пусть и относительно Земли, а только направления на эти их положения в пространстве. И на небе они ведут себя не самым регулярным образом, время от времени меняя направление своего перемещения на фоне звезд (рис. 1.2). Ответ же, данный Кеплером на вопрос о движении вокруг Солнца всех планет, включая и Землю, носит совершенно «внешний» характер: мы вслед за Кеплером рисуем эллипсы так, как будто видим Солнечную систему со стороны. По сей день ни один наблюдатель, ни один беспилотный космический корабль не смотрел на Солнечную систему извне, чтобы в течение достаточно долгого времени – скажем, пары десятков лет – как на картинке удостовериться, что планеты вычерчивают эллипсы. И тем не менее в этом нет ни малейших сомнений. Я с трудом могу вообразить, как такой взлет мысли – переход от «внутренней» перспективы к «внешней», казалось бы немыслимой в век, когда и Земля-то не вся была исследована, – вообще мог произойти в голове отдельно взятого человека в 1600–1609 гг.[3 - Кеплерова «Новая астрономия» (Astronomia Nova) вышла в 1609 г. Впрочем, все три закона, о которых речь чуть ниже, обрели свою окончательную форму ближе к 1621 г.] Словами Эйнштейна:

Рис. 1.2. Два фрагмента пути, по которому Марс движется на небе

Он жил в эпоху, когда не было еще уверенности в существовании некоторой общей закономерности для всех явлений природы. Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и мало понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения![4 - Пер. А. М. Френка.]

Больше того, Кеплер жил в эпоху, когда ему в течение нескольких лет приходилось всерьез заниматься защитой своей матери от обвинений в колдовстве; женщине реально грозил костер.

Кеплер сформулировал три высказывания. Они известны как три закона Кеплера.

1. Про эллипсы как таковые. Орбиты – эллипсы; Солнце – в одном из фокусов. Это был грандиозный успех, превращение наблюдений – сырых данных о движении планет по небу – в математическое высказывание и одновременно с этим колоссальный прорыв в соотнесении наших представлений об идеальном с реальностью. Ведь вполне естественно было думать, что «природа предпочитает совершенство» в виде сфер и круговых орбит, с Солнцем в центре, но, во-первых, Кеплер понял, что это не так, а во-вторых, сумел показать, как же все происходит на самом деле, причем это второе – с математической точностью (окружность – частный случай эллипса; в этом смысле орбиты могли бы быть и круговыми, просто они такими не оказались).

2. Про скорость движения по этим эллипсам. Она, оказывается, не постоянная. Кеплеру принадлежит ясная формулировка, из которой следует, в какой части эллипса планета движется быстрее и в точности во сколько раз быстрее, чем в какой-нибудь другой части. Закон так закон! – ему следуют все планеты, включая Землю. Чтобы его сформулировать, Кеплер снова приглашает нас посмотреть на орбиты со стороны и делает геометрические построения, проводя воображаемую линию от Солнца к планете и рассуждая о том, как эта линия поворачивается. Это довольно удивительно, если учесть, что никакой такой «линии» нет, но математические рассуждения с ее использованием позволяют сформулировать правило, описывающее реальные движения всех планет. Сравнивая положение планеты на орбите «сейчас» и, скажем, через день, Кеплер просит нас обратить внимание на площадь фигуры, образованной двумя радиусами и участком орбиты, который планета прошла за день. Второй закон Кеплера состоит в том, что площадь такого треугольника, заметаемого за выбранное время (скажем, день), – одна и та же вдоль всей орбиты. Там, где планета ближе к Солнцу, она движется как раз настолько быстрее, чтобы скомпенсировать меньшую высоту треугольника (расстояние от Солнца). Разница в скоростях вблизи Солнца и вдали от него велика для вытянутых эллипсов; для Земли же максимальная и минимальная скорости составляют 30,29 км/с и 29,29 км/с (соответствующие расстояния до Солнца при этом 147,09 млн и 152,10 млн километров). Земля ближе к Солнцу и движется быстрее, когда в Северном полушарии осень и зима, из-за чего этот прекрасный сезон формально оказывается укороченным на несколько дней. (Пять миллионов километров ближе или дальше от Солнца – далеко не первостепенный фактор, влияющий на климат.)

3. Про то, как размеры эллипсов, по которым движутся разные планеты, соотносятся с временем их полного оборота вокруг Солнца. Не только каждая планета сама по себе следует законам, но и каждая пара планет подчиняется строгой и одной для всех математике. «Размером» эллипса в данном случае является его большая полуось – расстояние от центра (а не от Солнца!) до точки наибольшего удаления. Для любой пары планет Кеплер предлагает поделить друг на друга их большие полуоси, а результат возвести в квадрат. В качестве второго действия нужно поделить друг на друга продолжительности года на каждой планете, а результат этого деления возвести в куб. Получится, говорит Кеплер, одно и то же. Чем дальше планета от Солнца, тем больше времени занимает ее полный оборот – не только из-за того, что орбита длиннее, но еще и из-за того, что скорость планеты меньше (в 4 раза дальше – в 8 раз дольше; в 9 раз дальше – в 27 раз дольше).

Кеплер начал с определения формы орбиты Земли, потом это сильно облегчило ему задачу найти форму всех других орбит. Но как же было подступиться к орбите тела, с которого были сделаны все наблюдения? Понадобилось третье, кроме Земли и Солнца, тело, а именно – Марс. Но, поскольку орбита Марса была равным образом неизвестна, Кеплер использовал его как источник некоторого набора отдельных точек («дискретной» информации). Ключ – момент, когда Солнце, Земля и Марс оказались на одной прямой. (Такое положение трех тел случается с неплохой точностью, потому что орбиты Земли и Марса лежат почти в одной плоскости; Земля при этом совершает один оборот вокруг Солнца быстрее, чем Марс.) Направление этой прямой относительно звезд следовало зафиксировать; оно сыграет «опорную» роль. А далее – вот источник дискретности в применяемой схеме! – требовалось знать продолжительность марсианского года (это отдельный вопрос, ответ на который у Кеплера был). Через один марсианский год Марс окажется снова на той же прямой, но Земля нет. Для наблюдателя с Земли Марс и Солнце будут видны под некоторым углом друг к другу. Этот угол, который можно непосредственно измерить, – полдела. Вторая половина – это линия «Солнце – Земля» в этот же момент: необходимо определить ее направление относительно звезд, что позволит найти угол, который она образует с «опорным» направлением. Принимая расстояние от Солнца до Марса в «опорном» положении за единицу, находим треугольник по стороне и двум углам. Мы определили (!) точку на земной орбите. После этого все вычисления надо повторить, найдя в таблице положение Марса и Солнца относительно звезд еще один марсианский год спустя, и еще один и так далее. Каждый раз таким образом появляется по точке; Кеплер сумел уложить все эти точки на слабо вытянутый эллипс (не поддавшись искушению заявить о круговой орбите в пределах точности вычислений!). Когда орбиты всех планет были найдены, настала очередь следующей задачи – угадывать законы движения планет по этим орбитам. Это означало делать какие-то допущения (с каких начать?!), проверять их, определяя с помощью таблиц пространственное положение планет в разные моменты времени, и если допущения не подтверждались, то придумывать и проверять другие. Перед нами одинокий человек в окружении пустоты и сферы звезд, вооруженный числовыми таблицами данных и одержимый страстным желанием своими силами разобраться в устройстве известного ему мира.

Кеплер не открыл для нас планеты – они были известны с доисторических времен. Но он в некотором роде открыл для нас Солнечную систему, показав, какова в ней система – какой порядок там действует. Сейчас все предсказания, скажем, взаимного расположения Земли и Марса, необходимые для планирования путешествий между ними, математически делаются на основе тех самых кеплеровых эллипсов (хотя и требуют на фоне главного эффекта учитывать ряд дополнительных факторов, с которыми у нас будет еще немало поводов познакомиться). Про орбиты планет, да и не только планет, часто говорят «кеплеровы». Космический телескоп «Кеплер» проработал (не без приключений) до 2018 г., исследовав в общей сложности 530 506 звезд и открыв 2662 экзопланеты. Небольшая выборка экзопланет, сравнимых с Землей по размеру и находящихся в зоне обитаемости[5 - То есть на таком удалении от светила, при котором на планете не слишком холодно и не слишком жарко, так что там может существовать вода в жидкой фазе при не слишком высоком давлении.], приведена на рис. 1.3. Поиск таких объектов заведомо невозможен без знания о том, что искомые планеты – о существовании которых Иоганн Кеплер не мог и помыслить – движутся вокруг своих звезд по кеплеровым орбитам. По-моему, «Кеплер» – подходящее название для такого телескопа.

Рис. 1.3. Земля и несколько экзопланет. Данные им названия отражают тот факт, что они открыты с помощью космического телескопа «Кеплер»

*****

Относительность и инерция. Современник Кеплера Галилей не бросал предметы с колокольни на Кампо-деи-Мираколи в Пизе, за возможным исключением незадокументированных случаев баловства[6 - Этот эпизод придумал Винченцо Вивиани для первой официальной биографии Галилея, которую он сочинял по заказу великого герцога Тосканского, ориентируясь на пример «Жизнеописаний» Вазари; духу Вазари эта история действительно вполне соответствует.]. Галилей первым всерьез направил телескопическую трубу в небо и совершил революционные открытия (включая спутники Юпитера, кольца Сатурна, горы на Луне, пятна на Солнце и фазы Венеры); однако среди тех многочисленных вещей, которые он постоянно был готов обдумывать, предметом его долгосрочного интереса было движение.

Для нас важны два глубоких свойства движения, осознание которых началось с Галилея: относительность и инерция. Галилей усматривает их в природе вещей с помощью того, что ему неизменно удавалось с блеском: он извлекает «идеальные» следствия не из идеальных, а вполне реальных опытов, а также применяет логический анализ путем постановки мысленных экспериментов. Успехи в таком подходе к исследованию природы, собственно говоря, и снискали ему титул основоположника научного метода (что, впрочем, известно нам сейчас, но не было известно ему самому). Если художник рисует натуру, находясь вместе с ней в каюте на корабле, который плавает в виду берега, то при идеальном состоянии моря, рассуждает Галилей, художник может забыть, что он находится не на берегу, а на корабле; ничто не будет мешать созданию картины. Но на взгляд людей, стоящих на берегу, рука художника участвует в движении, включающем движение самого корабля. Следовательно, если корабль не качается и не дергается, его движение не оказывает никакого влияния на происходящее в каюте. Отсюда происходят две идеи: одну впоследствии стали называть принципом относительности, а другая, важная для Галилея (и неизменно важная с тех пор), – независимость движений, т. е. движение кисти относительно холста и движение холста относительно берега независимы. Развивая именно этот тезис, Галилей стал первым, кто теоретически получил параболу для «стрелы» (тела, брошенного под углом к горизонту). Исходя из того, что горизонтальное и вертикальное движения независимы, он замечает, что горизонтальное движение равномерно, а вертикальное ускоренно; их сложение и дает параболу – вывод, который Галилей считал одним из главных результатов своей теории движения.

Галилею принадлежит и сама идея равноускоренного падения, причем одинакового для всех тел[7 - Последнее обстоятельство, как выяснилось впоследствии, может служить проводником глубоко в природу мира, и на дальнейших прогулках нам предстоит познакомиться с впечатляющим развитием событий.]. Доминировавшая до того точка зрения опиралась на представление о естественности равномерного движения; это, по-видимому, должно было означать, что после разжатия руки яблоко сразу приобретает ту скорость, с которой ударится о землю. Исходный же пункт рассуждений Галилея состоял в том, что падающие тела, когда им «ничто не мешает» (что тоже не так просто организовать), изменяют скорость по мере того, как падают. Но как меняется скорость? Галилей установил, что скорость увеличивается в течение всего падения и что тело последовательно проходит «через все градусы скорости» (этот подход, существенно расходящийся со взглядами Аристотеля, присутствует уже здесь, хотя и не принадлежит лично Галилею: приписывать качествам определенные «градусы» – не античная, а средневековая идея). Довольно долго он думал, что скорость увеличивается равными порциями через равные отрезки пути, но потом логическими рассуждениями отверг эту идею, а вместо этого показал, что скорость растет равными порциями за равные промежутки времени – пропорционально времени, как мы бы сейчас сказали. Я часто напоминаю себе, что все это происходило в отсутствие часов, хоть сколько-нибудь пригодных для точных измерений, и – что, может быть, даже более важно – до формализации понятия ускорения[8 - Галилею удалось выразить закон равноускоренного движения («естественно ускоренного», в его трактовке), не вводя никакой количественной меры для ускорения; собственно говоря, при естественно ускоренном движении тело проходит все градусы скорости, но никаких градусов ускорения нет.]. Три с половиной столетия спустя, 2 августа 1971 г., командир «Аполлона-15» Дейв Скотт, стоя на поверхности Луны перед своим лунным модулем, произнес, глядя в камеру:

Вот в левой руке у меня перо, а в правой – молоток. И можно сказать, что одной из причин, по которой мы сюда добрались, был джентльмен по имени Галилео, живший очень давно, который сделал довольно существенное открытие о падающих телах в гравитационных полях. И мы подумали: где найти лучшее место, чтобы подтвердить его результаты, как не на Луне? Так что мы решили, что попробуем это вам сейчас показать. ‹…› Я отпущу оба предмета, и, будем надеяться, они достигнут поверхности одновременно.

[Он разжимает перчатки – молоток и соколиное перо падают на лунную поверхность в согласии с ожиданиями.]

Как вам такое?!

Справедливости ради надо сказать, что Галилей развивал не идею притяжения, а тезис о естественности равноускоренного движения; тем не менее одинаковое ускорение для всех падающих тел в отсутствие сопротивления воздуха – его открытие.

Как тебе такое, Галилео Галилей?

Кроме того, Галилей смог усмотреть в свойствах движения то, что позднее стали называть инерцией (склонность движущихся тел сохранять свое состояние движения или в частном случае – покоя), хотя слова «инерция» сам Галилей не употребляет. Свойство каждого тела двигаться по инерции не вполне очевидно на первый взгляд, потому что мы воспринимаем разные свойства вещей одновременно: тела вокруг нас не сохраняют состояние своего движения из-за того, что на них действует сила трения или сила сопротивления среды. Не зная заранее всех действующих здесь факторов, не так легко выделить свойство инерции и объяснить, как оно проявляет себя, когда других факторов нет. Здесь снова в полной мере потребовалась способность Галилея логически доводить постановку эксперимента до некоторого предела – скажем, предела исчезновения трения, – добиться которого в реальности невозможно, но свойства которого тем не менее делались ясными исходя из шагов, приближающих реальную постановку к идеальной.

Галилею же принадлежит мысль, что книга природы написана языком математики:

Я распознал у Сарси твердое убеждение в том, будто при философствовании необычайно важно опираться на мнение какого-нибудь знаменитого автора ‹…› В действительности же, синьор Сарси, все обстоит не так. Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту[9 - Пер. Ю. А. Данилова.].

Вопрос о том, почему математика настолько эффективна в естественных науках, обсуждался многократно, и простого ответа на него нет, но рассуждения и примеры, приводимые различными авторами, читать интересно. Как бы то ни было, математика снабжает нас «движком» для того, чтобы делать выводы. Она особенно ценна в этом качестве, когда мы выходим за пределы области, где помощником может служить «здравый смысл». Это набор представлений, выработанных в рамках нашего ограниченного опыта, и они вполне могут отказывать (и отказывают!), когда этот опыт расширяется. Как следствие такого положения вещей математика скрыто присутствует почти везде на этих прогулках.

*****

Законы движения. Но почему три закона Кеплера таковы? Почему Солнце в фокусе? Почему планеты движутся именно так?

Ответ на каждое «почему» должен опираться на нечто, что принимается без объяснения, иначе никакое объяснение не останавливается и поэтому перестает быть объяснением. Ответы, которые удается дать довольно близко к тому уровню, где уже приходится разводить руками, называются фундаментальными. В момент формулировки законов Кеплера они сами, вероятно, считались бы фундаментальными, реши тогда кто-нибудь классифицировать подобные утверждения таким образом. Как-никак эти законы были приложимы ко всем известным планетам. Но 80 лет спустя уже нельзя было так думать, потому что фундаментальными оказались другие законы – Ньютона[10 - Ньютоновы «Начала» (Philosophi? Naturalis Principia Mathematica) вышли в 1687 г.]. И это были законы совсем другого сорта. Из них следовало множество утверждений, включая и эллипс для планеты, и параболу для стрелы, не испытывающей сопротивления воздуха (и заодно – направление мысли, позволяющее как-то учесть это сопротивление). События начали разворачиваться стремительно, потому что фокус внимания сместился на причины.

Причины наблюдаемых движений Ньютон сформулировал в виде законов движения – утверждений совсем иного свойства, чем законы Кеплера. Законы Ньютона напрямую ничего не говорили о том, по какой траектории полетит стрела или планета! Вместо этого они предлагали всем заинтересованным лицам действовать более прогрессивным образом: определить траектории самостоятельно (!) на основе буквально нескольких принципов. Ключевой аспект всей схемы – универсальность этих принципов. Их меньше, чем пальцев на руке, но их можно применять снова и снова – и к явлениям уже известным, и к тем, которые могут нам встретиться когда-нибудь в будущем. Это довольно удивительно: ничем не похожие явления подчиняются одним и тем же общим принципам. Слово «принципы» здесь надо понимать в первую очередь как уравнения. Это не уравнения типа x

+ 3x

+ 3x – 1 = 0, решением которых могут являться числа (например, как в данном случае, число, примерно равное 0,259921); вместо чисел неизвестным тут является поведение, или, чуть более технически, траектории. Всякое движущееся тело с течением времени описывает траекторию, и предложенная Ньютоном схема сводилась к поиску того, какова эта траектория, т. е. как именно координаты чего-то движущегося зависят от времени. Входные данные для этого состоят в воздействиях, которым подвергается то, что движется, – планета, или стрела, или что угодно. Выражаясь еще чуть более технически, требовалось решить уравнения, где неизвестными вместо чисел были зависимости от времени – функции. Слово «функция» в таком контексте означает не набор обязанностей, а именно характер зависимости: если ваш вклад в банке – возрастающая функция времени, это значит, что сегодня у вас больше денег, чем вчера; иногда становятся интересны и другие подробности, например, сколь быстро эта функция времени растет, меняется ли сама скорость роста и т. д.[11 - Тема, привлекающая к себе неослабевающее внимание: а каким уравнениям подчиняются функции, определяющие доходность финансовых инструментов? Сама постановка этой задачи навеяна успехом стратегии «выразим наши представления о причинах в виде уравнений, а потом будем их решать».] Все то же самое можно спрашивать и про разные другие функции. Скорость самолета, разгоняющегося на взлетно-посадочной полосе, – тоже функция времени, и важная часть истории состоит в том, через какое время скорость достигнет значения, обеспечивающего отрыв от земли. Чтобы узнать это, необходимо понять причины.

Прежде всего, говорит нам Ньютон, движение «сохраняется», если то, что движется, предоставить самому себе, т. е. никак не воздействовать на него со стороны. Это факт, понятый уже Галилеем; Ньютон определенно действовал не на пустом месте[12 - «Если я видел дальше других, то потому, что стоял на плечах гигантов». Ньютон родился в год смерти Галилея. Я бы оценил разницу между ними в три поколения.]. В воздушном хоккее шайба продолжает двигаться туда, куда вы ее направили, пока не испытает воздействия еще какого-то предмета (бортика или биты). Умение забивать голы в этой игре состоит в том, чтобы привести шайбу в движение устраивающим вас образом – направить ее в ворота, и после этого ничего больше делать не надо, потому что от вас уже ничего не зависит, пока шайба не испытает какое-то следующее воздействие, из-за которого изменит свое движение; в промежутке же она движется «сама», причем по прямой и с заданной скоростью[13 - Конечно, если бы поле для воздушного хоккея имело размер хоккейного-с-шайбой, то по мере движения шайбы было бы заметно ее замедление из-за сопротивления воздуха, но в общепринятых вариантах воздушного хоккея это сопротивление никак не успевает себя проявить.]. В этом и состоит «сохранение движения» в отсутствие сил, оно же – закон инерции Галилея, и оно же – первый закон Ньютона. У инертности есть количественная мера: это масса.

Итак, если не воздействовать, то движение сохраняется. Как только этот факт полностью осознан, естественно предположить, что если как-то воздействовать, то движение изменится. Осталось только сказать как, и Ньютон примерно это и говорит, но только не вполне прямо, потому что природа отвечает на этот вопрос не прямо, а косвенно. Чтобы высказываться точнее, нам понадобятся средства. Одно из них – количество движения. Оно тем больше, чем быстрее нечто движется и чем больше его масса. Грузовик, весящий 10 тонн и движущийся со скоростью 30 км/ч, имеет то же количество движения, что и автомобиль весом 2 тонны на скорости 150 км/ч. Количество движения – это просто произведение массы на скорость, с тем только уточнением, что, кроме величины, оно имеет еще и направление – такое же, как у скорости; в общем, как и скорость, это стрелка (вектор). Когда говорят о сохранении (неизменности) таких стрелок, это означает, что не меняется ни их длина, ни направление (шайба в воздушном хоккее летит по прямой, пока на что-нибудь не натолкнется), а изменить стрелку означает изменить ее длину или направление (или и то и другое).

Высказывание, что движение сохраняется, в точной формулировке звучит как «количество движения сохраняется» в отсутствие внешних воздействий (сил). Если же какие-то силы действуют, то количество движения меняется, и, главное, меняется быстро или медленно в зависимости от того, велика ли сила. У каждого изменения есть свой темп (если это не приводит к недоразумениям, можно говорить «скорость изменения»). И вот темп изменения количества движения как раз равен полной действующей силе, сообщает нам Ньютон. Просто равен. Нет никакой возможности сосчитать, сколько раз это высказывание применялось для описания мира. В нем содержится указание на причину: это сила. Сила тяги двигателей самолета, разгоняющегося для взлета, определяет, как быстро меняется количество движения самолета – что в салоне ощущается как эффект прижимания к спинке кресла; в горизонтальном направлении на самолет действуют еще и силы сопротивления (рис. 1.4), и полный баланс этих сил определяет изменение – нет, не скорости, а количества движения; именно поэтому столь важна взлетная масса («взлетный вес») самолета: одна и та же прибавка к количеству движения для самолета, в полтора раза более тяжелого, означает в полтора раза меньшее увеличение скорости. Сила, действующая здесь и сейчас, «не отвечает» за итог – за то, что получится, скажем, в конце взлетно-посадочной полосы. Она отвечает только за то, быстро или нет меняется количество движения здесь и сейчас.

Рис. 1.4. Силы, действующие на самолет во время разгона

Сила говорит количеству движения, как ему изменяться

Ньютон не мог думать о решении задачи про взлетающий самолет, как не мог думать и о решении своих уравнений на компьютере. Я затрудняюсь даже сказать, о какой из этих двух тем он «не мог думать в большей степени». Но современные компьютеры определяют, как будут развиваться события при взлете самолета или ракеты, действуя в точности так, как это наверняка представлял себе Ньютон: если в первую миллисекунду после старта действует определенная сила, то приобретенное количество движения – это и есть та самая сила, умноженная на прошедший малый интервал времени (ту самую миллисекунду). В следующую миллисекунду сила тяги может измениться, а кроме того, появляется сила сопротивления со стороны воздуха. Две силы действуют в противоположных направлениях, одну надо вычесть из другой, а результат умножить снова на выбранный интервал времени длиной в миллисекунду, и так мы узнаем, сколько же количества движения прибавилось за вторую миллисекунду. Потом мы точно так же поступаем с третьей миллисекундой и не забываем суммировать все накопленные прибавки к количеству движения. Если нам нужна особая точность (и уж во всяком случае, если речь идет о взлете ракеты), то надо вспомнить, что по мере израсходования топлива уменьшается масса, поэтому пересчет количества движения в набранную скорость надо производить внимательно, помня, что и масса меняется от миллисекунды к миллисекунде. Например, ракета-носитель «Сатурн V» сжигала – и выбрасывала из себя – 15 кг смеси из горючего и окислителя в миллисекунду, т. е. 15 тонн в секунду.

Поведение – результат сложения причин

Стратегия, позволяющая узнать, что получится, т. е. делать предсказания о том, что будет, состоит в суммировании накопленных прибавок. Компьютер буквально суммирует накопленное по малым интервалам времени, а Ньютон (изобрел и) широко применял математический метод такого суммирования. Он называется интегрированием и не требует, чтобы разбиение на малые интервалы времени выполнялось буквально: такое разбиение встроено в сам метод, причем наилучшим возможным способом. Дело в том, что если для самолета миллисекунда – это малый интервал времени в том смысле, что действующие силы (да и масса) практически не успевают измениться, то для других процессов (например, горения или взрыва) расчет с шагом в миллисекунду даст неправильный результат, потому что за это время многое успевает измениться, и интервал времени надо выбирать еще короче. Вся идея интегрирования состоит в том, что интервал «уже взят» меньше любого, который вы в состоянии назвать. Поэтому интегрирование как математическая процедура точнее любого вычисления на компьютере. Другое дело, что результат интегрирования далеко, далеко не всегда удается выразить в обозримых терминах (т. е. используя привычные функции): хотя задача поставлена математически точно, записать точный ответ мы часто оказываемся не в силах. В таких случаях или изобретают приближенные способы осуществить математическую процедуру, или, конечно же, «сажают задачу на компьютер», т. е. применяют одну из многочисленных программ, которые, да, суммируют малые накопления.

Промежуточный итог: Ньютон не считал (и с тех пор никто, в общем, не считает), что законы природы могут описывать картину целиком. Кеплер со своими тремя абсолютно верными законами, в которых констатировалось поведение в целом, остался в прошлом. Законы Ньютона говорят, как причины (силы) определяют темп изменения количества движения. А дальше уж что получится путем «накопления», то получится – или на компьютере, или с помощью специальной математической процедуры. Если не удается ни то ни другое, то это наша проблема, а не проблема природы, в которой все «само себя суммирует» по мере того, как течет время: разнообразные причины постоянно действуют, накапливаемые изменения, в свою очередь, рождают новые причины, которые снова влияют, и так далее; время – это и есть способ упорядочения действующих причин и накапливающихся следствий.

*****

Всеобщее притяжение. Причины изменений количества движения планет в Солнечной системе (и подоплека законов Кеплера) – притяжение. Это ключевой дополнительный постулат, без которого у Ньютона ничего бы не получилось. Все тела притягивают друг друга. Одни делают это сильнее, другие слабее. Мерой («гравитационным зарядом») является масса каждого тела – то, что мы обычно измеряем в килограммах. Никакие подробности касательно состава и других свойств тел не имеют значения. Странно, нет? Из всего многообразия свойств материи в данном случае важно только одно число[14 - Еще более странно, что одно и то же число – масса тела – измеряет два совершенно разных свойства: степень инертности и гравитационный заряд, но мы вынуждены отложить обсуждение этой загадки до одной из следующих прогулок.].

Масса – гравитационный заряд

Гравитационные заряды одного знака притягиваются, а масса любого тела может быть только положительной; никакие тела поэтому не отталкиваются. Это делает гравитацию всепобеждающей: нет возможности «закрыть» положительный гравитационный заряд отрицательным и тем самым спрятаться от действия гравитации (нельзя «заземлиться», давая зарядам стечь туда, где они скомпенсируются противоположными). Гравитация слаба (см. добавления к этой прогулке), но неостановима. Гравитация убывает с расстоянием, но делает это не слишком быстро – как обычно говорят, «по закону обратных квадратов». Я никогда не понимал, почему здесь появляется множественное число: в законе тяготения присутствует всего один квадрат всего одной величины – расстояния R между двумя маленькими кусками материи (любой материи, как уже было сказано) массами M

и M

. Сила притяжения между ними равна

Буква G здесь обозначает постоянную, которая, собственно, и выражает интенсивность гравитационного взаимодействия; это одна из Мировых постоянных – величин, встроенных куда-то глубоко в устройство нашей Вселенной. Численное значение этой постоянной – не предмет рассуждений, а экспериментальный факт. При всех «разумных» единицах измерения, выбранных для других входящих в формулу величин, постоянная G весьма мала, из-за этого гравитационное взаимодействие и оказывается таким слабым. Ньютон угадал формулу (1.1) (пришел к ней на основе ряда вспомогательных рассуждений), а многие тысячи раз ее использования с тех пор привели к впечатляющему прогрессу в познании мира[15 - Привычная для нас формулировка «закон всемирного тяготения» содержит неидеальный, с моей точки зрения, перевод слова universal (lex universalis, если с латыни). Лучше было бы говорить «всеобщего», но калька в виде «универсальный закон тяготения» была бы еще лучше, подчеркивая ключевую идею универсальности: в гравитационном взаимодействии участвуют все тела, причем универсальным образом, а именно вне зависимости от того, из чего они сделаны, и любых других особенностей.]. Ньютонова теория тяготения позволяет делать отличные предсказания о движении притягивающих друг друга тел; она описывает и падение яблока, и движение Луны вокруг Земли. Лабораторией для систематических проверок ее предсказаний стала Солнечная система; мы увидим несколько ее триумфов на следующих прогулках.

Постепенно (сильно не сразу), впрочем, выяснилось, что приведенная формула хорошо работает, пока нет быстрых движений, а сама гравитация не адски сильная. В случае «быстрых» и «сильной» приходится довольно радикально менять взгляды на устройство тяготения (прогулка 6), но в Солнечной системе мы окружены «медленными» и «слабой», за одним-единственным астрономическим исключением: это движение планеты Меркурий вокруг Солнца, которое очень немного, но все же отличается от предсказанного по Ньютону (и которое у нас будет еще много поводов обсудить). Эти отличия свидетельствуют, что закон тяготения в форме (1.1) все же не является точным. Средства наблюдений, имевшиеся во времена Ньютона, не позволяли заметить отклонения в движении Меркурия, но у Ньютона были независимые основания для некоторого беспокойства за свой закон тяготения, исходя из того, что мы сейчас бы назвали проблемой передачи информации. Предположим, что Солнце по какой-либо причине внезапно начинает двигаться с ускорением в направлении какой-нибудь выбранной звезды. (Реализовать такое крайне непросто, но это не запрещено законами природы, а физические законы должны корректно описывать явления вне зависимости от того, в людских ли силах эти явления осуществить.) Спрашивается, как скоро Земля почувствует изменения в силе притяжения со стороны Солнца? Каким образом Земле передастся информация о том, где Солнце? Проблема с законом тяготения в виде формулы (1.1) в том, что если продолжить применять ее «как написано» (а что еще делать?!) и в этом гипотетическом случае, то мы вынуждены будем заключить, что изменения силы притяжения передаются к Земле (и вообще куда угодно) мгновенно. Это называется «действие на расстоянии»: эффект мгновенно передается через пустоту. Действие на расстоянии определенно не нравилось Ньютону:

Тот факт, что гравитация должна быть внутренним, существенным образом присуща материи так, чтобы одно тело воздействовало на другое на расстоянии через пустоту без посредничества чего бы то ни было еще, способного передавать воздействие или силу от одного тела к другому, представляется мне таким колоссальным абсурдом, что, как я полагаю, никто со сколько-нибудь развитым пониманием философских вопросов в него не впадет. Гравитация должна вызываться каким-либо агентом, действующим постоянно и в соответствии с определенными законами; но вопрос о том, быть этому Агенту материальным или нематериальным, я оставил на Усмотрение моих читателей[16 - Письмо Ньютона к Бентли, 1692 г.].

Ньютон подозревал наличие Агента