скачать книгу бесплатно
Прежде всего, если вы планируете подвергнуться стрессу как нормальный представитель класса млекопитающих, столкнувшийся с острой физической проблемой, и не можете «включить» соответствующую реакцию на стресс, то у вас большие проблемы. Чтобы это увидеть, достаточно понаблюдать за тем, что происходит, если организм не может активировать реакцию на стресс. Как мы увидим в следующих главах, во время стресса выделяются два очень важных гормона. При одном заболевании, болезни Аддисона, у человека не вырабатывается один класс этих гормонов. При другой болезни, синдроме Шая-Дрейджера, угнетена секреция второго класса гормонов. Люди с болезнью Аддисона или синдромом Шая-Дрейджера не рискуют заболеть раком, диабетом или другими расстройствами, возникающими вследствие медленного накопления мелких повреждений. Однако, сталкиваясь с серьезными стрессорами, например автокатастрофой или инфекционным заболеванием, люди с болезнью Аддисона переживают «аддисоновский» криз: у них снижается артериальное давление, они не могут поддерживать кровообращение и впадают в состояние шока. При синдроме Шая-Дрейджера человеку трудно просто стоять, уж не говоря о том, чтобы поймать зебру на обед, – даже попытка встать со стула вызывает серьезное понижение артериального давления, непроизвольные судороги, подергивание мышц, головокружение и другие неприятные симптомы. Два этих заболевания демонстрируют очень важную вещь: во время физических потрясений реакция на стресс необходима. Болезнь Аддисона и синдром Шая-Дрейджера приводят к катастрофической неспособности «включить» реакцию на стресс. В следующих главах мы поговорим о некоторых расстройствах, связанных с пониженным уровнем секреции гормонов стресса. Среди них – синдром хронической усталости, фибромиалгия, ревматический артрит, один из типов депрессии, критические состояния, а возможно, и посттравматическое стрессовое расстройство.
Эта первая идея, очевидно, важна, – особенно для зебры, которой иногда приходится бежать, чтобы выжить. Но вторая идея намного больше касается нас с вами, в раздражении сидящих в пробках, планирующих семейный бюджет, переживающих из-за напряженных отношений с коллегами. Если мы слишком часто «включаем» реакцию на стресс или не можем «выключить» ее, когда стрессовое событие закончилось, реакция на стресс в конце концов может стать разрушительной. Чаще всего стрессогенные заболевания – это расстройства, вызванные чрезмерной реакцией на стресс.
В связи с этим утверждением, которое является одной из основных идей этой книги, нужно сделать несколько важных замечаний. На первый взгляд оно говорит о том, что мы заболеваем из-за того, что на нас действуют стрессоры, или, как мы видели на нескольких последних страницах, мы заболеваем из-за хронического или повторяющегося стресса. Но на самом деле правильнее было бы сказать, что хронический или повторяющийся стресс потенциально может вызывать болезнь или увеличить ее риск. Но стрессоры, даже если они очень сильные, повторяющиеся или хронические, сами по себе не приводят к болезни. И в последнем разделе этой книги мы поговорим о том, почему у одних людей стрессогенные заболевания возникают легче, чем у других, несмотря на одни и те же стрессоры.
Нужно указать на еще один дополнительный пункт. Утверждать, что «хронические или повторяющиеся стрессоры могут увеличить риск заболеваний», по сути, неверно, но на первый взгляд это замечание звучит как мелочные семантические придирки. На самом деле стресс не делает нас больными и даже не увеличивает риск заболеть. Стресс увеличивает риск возникновения расстройств, ведущих к болезням, а если у нас уже есть такие расстройства, стресс увеличивает риск того, что защитные системы нашего организма не справятся с болезнью. Это различие важно в нескольких отношениях.
Во-первых, помещая несколько промежуточных шагов между стрессором и болезнью, мы можем лучше объяснить индивидуальные различия – почему одни люди заболевают, а другие нет. Кроме того, проясняя связь между стрессорами и болезнью, легче разрабатывать методы влияния на эту связь. Наконец, это объясняет, почему врачи часто считают концепцию стресса размытой или неясной, – клиническая медицина традиционно склонна к таким утверждениям, как «вы плохо себя чувствуете, потому что у вас возникла болезнь X», но редко может объяснить, почему же вы заболели болезнью X. Поэтому врачи часто говорят: «Вы чувствуете себя больным, потому что у вас возникла болезнь X, а не из-за какой-то ерунды, связанной со стрессом». Но такая позиция игнорирует роль стрессоров в возникновении или обострении заболеваний.
Придерживаясь такого подхода, мы можем приступить к описанию отдельных шагов этой системы. В главе 2 мы обсудим, какие гормоны и системы мозга принимают участие в реакции на стресс: какие из них активированы во время стресса, а какие подавлены. Это приведет нас к главам с третьей по десятую, где мы исследуем отдельные системы нашего организма, которые затрагивает реакция на стресс. Как эти гормоны улучшают тонус сердечно-сосудистой системы во время стресса и как хронический стресс вызывает болезни сердца (глава 3)? Как эти гормоны и нервная система мобилизуют энергию во время стресса и каким образом слишком высокий уровень стресса приводит к заболеваниям, связанным с энергетическим балансом (глава 4)? И так далее. В главе 11 мы исследуем взаимодействие стресса и сна и увидим, как возникает порочный круг, когда стресс приводит к расстройствам сна, а лишение сна может стать стрессором. В главе 12 мы поговорим о роли стресса в процессах старения и о тревожных открытиях последних лет, показывающих, что постоянное воздействие определенных гормонов, вырабатывающихся во время стресса, может ускорять процесс старения мозга. Как мы увидим, эти процессы часто более сложные и тонкие, чем показывает простой набросок, представленный в этой главе.
В главе 13 мы перейдем к теме, имеющей первоочередную важность для понимания нашей склонности к стрессогенным заболеваниям: почему психологический стресс так разрушителен? Эта глава служит вводной к остальным главам. В главе 14 мы поговорим о клинической депрессии, серьезном психическом заболевании, от которого страдает огромное количество людей и которое часто тесно связано с психологическим стрессом. В главе 15 мы рассмотрим, как индивидуальные различия влияют на характер стрессогенных болезней. Мы вступим в мир тревожных расстройств и личностей A-типа, а также рассмотрим несколько удивительных свидетельств связи между характером и реакцией на стресс. В главе 16 мы поговорим о странной ситуации – иногда, испытывая стресс, мы чувствуем себя хорошо, настолько хорошо, что готовы заплатить за билет на фильм ужасов или за катание на американских горках. В этой главе мы выясним, когда стресс бывает полезен, и рассмотрим взаимосвязь удовольствия, которое может быть вызвано некоторыми видами стрессоров, и химической зависимости.
В главе 17 мы поднимемся над уровнем отдельной личности и рассмотрим, как наше место в обществе и тип общества, в котором мы живем, связаны с параметрами стрессогенных заболеваний. Вот одна из ее основных идей: если вы хотите избежать стрессогенных заболеваний, заранее позаботьтесь о том, чтобы ненароком не родиться в бедной семье.
По большей части, вплоть до последней главы, мы будем говорить о довольно неприятных вещах. Появляется все больше данных о влиянии стресса на самые разные части нашего ума и тела, и иногда эти факты довольно неожиданны. Последняя глава призвана дать нам некоторую надежду. В ответ на одни и те же внешние стрессоры некоторые люди справляются со стрессом лучше, чем другие. Что же они делают и чему могут научиться у них все остальные? Мы рассмотрим основные принципы управления стрессом и некоторые неожиданные и удивительные сферы, в которых они успешно применяются. Почти все главы этой книги посвящены различным аспектам нашей уязвимости для стрессогенных заболеваний, но последняя глава показывает, что у нас достаточно средств, чтобы защитить себя от многих из них. Я почти уверен, что для нас не все потеряно.
2. Железы, гусиная кожа и гормоны
Чтобы начать понимать, как стресс вызывает болезни, нужно кое-что знать о работе мозга. Возможно, здесь будет полезно следующее, довольно искусное, описание от одного из первых исследователей в данной области:
И он внял ей, обнял, привлек к себе, взял на руки, и она вдруг ощутила себя крошечным комочком. Сопротивление исчезло, в душе воцарился ни с чем не сравнимый покой. И тогда эта нежная, доверчиво прильнувшая к нему женщина стала для него бесконечно желанна. Он жаждал обладать этой мягкой женственной красотой, волнующей в нем каждую жилку. И он стал, как в тумане, ласкать ее ладонью, воплощавшей чистую живую страсть. Ладонь его плыла по шелковистым округлым бедрам, теплым холмикам ягодиц, все ниже, ниже, пока не коснулась самых чувствительных ее клеточек. Она отогревалась, оттаивала в его пламени. Мужская его плоть напряглась сильно, уверенно. И она покорилась ему. Точно электрический разряд пробежал по ее телу, это было как смерть, и она вся ему раскрылась[6 - Дэвид Герберт Лоуренс. Любовник леди Чаттерли / Пер. И. Багрова, М. Литвинова. М.: Книжная палата, 1991. – Примеч. пер.].
Теперь давайте понаблюдаем, что происходит. Если вам нравится Дэвид Лоуренс, в вашем теле сейчас могут происходить некоторые интересные изменения. Только что вы не поднимались по лестнице, но, возможно, ваше сердце стало биться быстрее. Температура в комнате не изменилась, но вы, возможно, только что активировали одну-другую потовую железу. И хотя определенных, довольно чувствительных, частей вашего тела никто не касается, вы внезапно стали их ощущать.
Вы сидите, почти не двигаясь, и просто о чем-то думаете. Эти мысли связаны с гневом, печалью, эйфорией или половым возбуждением, и вдруг ваша поджелудочная железа выделяет какой-то гормон. Поджелудочная железа? Как вам удалось заставить ее это сделать? Ведь вы даже не знаете, где она находится. Ваша печень выделяет фермент, которого в организме до этого не было, ваше раздражение отправляет какое-то сообщение вашей вилочковой железе, и тут же меняется кровоснабжение небольших капилляров, расположенных в лодыжках. И все это лишь потому, что вы о чем-то подумали.
Умом мы понимаем, что мозг регулирует функции всего тела, но когда видим, насколько далеко идущим может быть это влияние, это нас удивляет. Цель этой главы – немного узнать о связи между мозгом и другими частями тела и увидеть, какие из них активированы, а какие находятся в покое, когда мы спокойно сидим на стуле и испытываем при этом сильный стресс. Это поможет нам понять, как реакция на стресс может спасти нашу шкуру во время гонки по саванне и как она может привести к болезни через несколько месяцев непрерывной тревоги.
Стресс и автономная нервная система
Как наш мозг говорит остальным частям тела, что им делать? Он отправляет им сообщения через нервы, которые тянутся от головного мозга вниз, по позвоночнику и к периферии тела. Одна из частей этой системы коммуникации довольно простая и знакомая. Это соматическая нервная система, отвечающая за сознательные действия. Мы решаем напрячь мышцу, и это происходит. Эта часть нервной системы позволяет нам обмениваться рукопожатиями, заполнять налоговые формы и танцевать польку. Есть другая часть нервной системы, связанная с внутренними органами, идущая мимо скелетных мышц, и эта часть управляет другими интересными вещами: покраснением, гусиной кожей, оргазмом. В целом мы меньше контролируем то, что говорит мозг потовым железам, чем, например, мышцам бедер. (Однако мы в некоторой степени можем контролировать работу этой автоматически функционирующей нервной системы; метод биологической обратной связи, например, основан на том, чтобы научиться произвольно и сознательно менять те или иные автоматические функции. Еще один пример – обучение работе на гончарном круге, когда мы постепенно приобретаем мастерство. На более простом уровне то же самое происходит, когда мы сознательно подавляем громкую отрыжку во время свадебной церемонии.) Нервы, тянущиеся к таким местам, как потовые железы, несут те или иные сообщения, и этот процесс происходит относительно непроизвольно и автоматически. Систему таких нервов называют автономной (вегетативной) нервной системой, и у нее есть все необходимое для того, чтобы запустить реакцию на стресс. В ответ на стресс одна половина этой системы активируется, а другая половина – наоборот, подавляется.
Ту половину автономной нервной системы, которая включается во время стресса, называют симпатической нервной системой[7 - Откуда взялось это название? По мнению выдающегося физиолога стресса Сеймура Левина, оно восходит к Галену, полагавшему, что за рациональное мышление отвечает мозг, а за эмоции – периферийные внутренние органы. Система нервных путей, соединяющих первое со вторым, позволяет мозгу «симпатизировать» внутренним органам. А может быть, это внутренние органы «симпатизируют» мозгу. Как мы скоро увидим, другую половину автономной нервной системы называют парасимпатической нервной системой. Приставка «пара», что означает «рядом», относится к тому весьма очевидному факту, что парасимпатические нервные окончания идут рядом с симпатическими.] (рис. 3). Нервы, принадлежащие к симпатической системе, начинаются в головном мозге, выходят из позвоночника и достигают почти каждого органа, каждого кровеносного сосуда и каждой потовой железы в нашем теле. Они доходят даже до тысяч крошечных мышц, присоединенных к волоскам на теле. Если мы сильно испугались и активируем эти нервы, у нас волосы встают дыбом; а в тех частях тела, где есть эти мышцы, но нет присоединенных к ним волосков, мы покрываемся гусиной кожей.
Симпатическая нервная система вступает в действие во время чрезвычайной ситуации – или того, что мы считаем чрезвычайной ситуацией. Она помогает нам быть бдительными, внимательными, активными и мобилизованными. Первокурсникам медицинских институтов это объясняют с помощью непременной глупой шутки о том, что симпатическая нервная система обеспечивает в поведении четыре F: нападение (fight), бегство (flight), испуг (fright) и секс (sex). Это архетипическая система, которая включается, когда жизнь становится особенно захватывающей или особенно пугающей, например во время стресса (рис. 4). Нервные окончания этой системы выделяют адреналин. Когда кто-то внезапно выскакивает из-за двери и налетает на нас, именно адреналин, выделенный симпатической нервной системой, заставляет сжиматься наш живот. Симпатические нервные окончания также выделяют другую субстанцию, тесно связанную с адреналином, – норадреналин. (В Америке адреналин часто называют эпинефрином, а норадреналин – норэпинефрином.) Адреналин выделяется симпатическими нервными окончаниями в надпочечниках; норадреналин выделяется всеми остальными симпатическими нервными окончаниями в теле. Это химические «посредники», которые активируют различные органы в течение нескольких секунд.
Рис. 3. Примеры влияния симпатической и парасимпатической нервной системы на различные органы и железы
Рис. 4. «О, это – Эдвард и его механизм "нападай или убегай"«
Другая половина автономной нервной системы играет противоположную роль. Этот парасимпатический компонент способствует спокойным, расслабленным занятиям – всем, кроме нападения, бегства, испуга и секса. Если вы ребенок и вы заснули, ваша парасимпатическая система активирована. Она способствует росту, накоплению энергии и другим оптимистическим процессам. Если вы только что плотно поели, сидите с полным животом и счастливо дремлете, парасимпатические нервные окончания активно работают. А если вы бежите по саванне, спасая свою жизнь, задыхаясь и пытаясь справиться с паникой, то парасимпатический компонент выключается. Таким образом, автономная нервная система работает в противоположных направлениях: симпатические и парасимпатические нервные окончания из мозга идут к определенным органам, где в случае активации вызывают противоположные реакции. Симпатическая система ускоряет сердцебиение; парасимпатическая его замедляет. Симпатическая система увеличивает кровоток к мышцам; парасимпатическая – наоборот. И конечно, если бы обе части нервной системы активировались одновременно, случилась бы катастрофа. Это все равно, что одной ногой жать на газ, а другой – на тормоз. В организме существует множество систем, ответственных за то, чтобы этого не произошло. Например, участки мозга, активирующие одну часть нервной системы, как правило, угнетают те участки, которые активируют другую.
Головной мозг: самая главная железа
Нервный путь, представленный симпатической системой, – первое средство, позволяющее мозгу мобилизовать волны активности в ответ на стрессор. Есть также и другой путь – через секрецию гормонов. Если нейрон (клетка нервной системы) выделяет химический посредник, проходящий тысячные доли сантиметра и заставляющий следующую клетку в очереди (как правило, другой нейрон) изменить свое поведение, то этот посредник называют нейромедиатором. Таким образом, когда симпатические нервные окончания в сердце выделяют норадреналин, заставляющий сердечную мышцу работать по-другому, норадреналин играет роль нейромедиатора. Если нейрон (или какая-то другая клетка) выделяет вещество-медиатор, которое вместо этого проникает в кровь и влияет на различные функции тела, то это вещество – гормон. Гормоны вырабатываются разными железами; во время стресса секреция некоторых из них включается, а секреция других выключается.
Какое отношение имеет мозг ко всем этим железам, выделяющим гормоны? На первый взгляд никакого. Раньше считалось, что периферийные железы тела – поджелудочная, надпочечники, яичники, семенники и т. д. – каким-то таинственным образом «знают», что делают, и у них есть «собственный разум». Они «решают», когда нужно вырабатывать свои посредники, без указаний от других органов. В начале XX века эта ошибочная идея дала начало довольно странной моде. Ученые заметили, что с возрастом у мужчин снижается половое влечение, и предположили, что это происходит из-за того, что яички стареющих мужчин выделяют меньше мужского полового гормона тестостерона. (В то время еще никто не знал о гормоне тестостероне; говорили только о таинственных «мужских соках». На самом деле уровень тестостерона с возрастом падает не сразу. Это снижение не так уж велико, его уровень разный у каждого мужчины, и даже снижение уровня тестостерона на 10 % от нормы почти не оказывает влияния на сексуальное поведение.) На основании этой идеи процесс старения стали сводить к уменьшению полового влечения, вызванного снижением уровня «мужских соков». (Здесь возникает вопрос, почему женщины, у которых нет яичек, тоже стареют, но женская половина населения в то время почти не фигурировала в научных исследованиях.) Как же в таком случае избежать старения? Давать стареющим мужчинам экстракты из тестикул (рис. 5).
Рис. 5. Реклама, New York Therapeutic Review, 1893 год
Скоро немолодые состоятельные господа стали приезжать в дорогие швейцарские санатории, где им ежедневно делали уколы с экстрактами тестикул собак, петухов и обезьян. Можно было даже отправиться на скотный двор санатория и выбрать приглянувшегося козла – точно так же, как омаров в ресторане (а некоторые джентльмены прибывали в санатории с собственными животными, весьма дорогостоящими). Это скоро привело к развитию «терапии омоложения», а именно «органотерапии», состоявшей в трансплантации небольших фрагментов яичек животных. Так возникло повальное увлечение «обезьяньими железами», а термин «железа» использовали из-за того, что журналистам запрещали употреблять слишком фривольное слово «яички». Жертвами новой моды пали промышленные магнаты, главы государств и как минимум один папа римский. А дефицит молодых мужчин и огромное количество браков молодых женщин с пожилыми мужчинами после кровавой резни Первой мировой войны лишь добавили этой «терапии» популярности.
Но была одна проблема: метод не работал. В экстрактах тестикул не было никакого тестостерона – пациентам кололи водный раствор его экстракта, а тестостерон не растворяется в воде. Пересаженные фрагменты органов почти сразу же погибали, и за здоровую ткань при пересадке принимали обычный шрам. А даже если бы они не погибали, это все равно бы не сработало – если стареющие яички вырабатывают меньше тестостерона, то не потому, что с ними что-то не так, а потому, что другой орган (внимание, это важный пункт!) больше не велит им этого делать. В такой ситуации можно пришить совершенно новые яички, но они тоже будут вырабатывать меньше тестостерона – из-за отсутствия стимулирующего сигнала от мозга. Но все это никого не смущало. Почти все пациенты сообщали о поразительных результатах. Если вы платите целое состояние за болезненные ежедневные уколы экстрактов яичек какого-то животного, у вас определенно есть стимул внушить себе, будто вы чувствуете себя, как молодой бык. Эффект плацебо – во всей красе.
Со временем ученые выяснили, что яички и другие периферийные железы, вырабатывающие гормоны, не автономны, но находятся под контролем чего-то еще. Они обратили внимание на гипофиз – железу, расположенную в основании головного мозга. Уже было известно, что если гипофиз поврежден или функционирует неправильно, возникают расстройства секреции гормонов во всем организме. Первые эксперименты, проведенные в начале XX века, показали, что периферийная железа вырабатывает свой гормон только в том случае, если гипофиз сначала выработает гормон, запускающий действие этой железы. Гипофиз содержит целый массив гормонов, командующих всеми остальными частями тела; гипофиз знает, какова общая стратегия, и регулирует то, что делают все другие железы. Это понимание дало начало известному представлению о том, что гипофиз – главная железа тела.
Эта идея быстро распространилась главным образом благодаря усилиям альманаха Reader's Digest, напечатавшего серию статей под названием «Тело человека» («Я – поджелудочная железа человека», «Я – берцовая кость человека», «Я – яичники человека» и т. д.). В третьей статье этой серии, «Я – гипофиз человека», описывались функции этой «главной железы». Но к 50-м годам XX века ученые уже выяснили, что гипофиз не является главной железой.
Самым простым доказательством было то, что если удалить гипофиз и поместить его в горшочек, наполненный питательными веществами, эта железа будет работать неправильно. Различные гормоны, которые она обычно вырабатывает, перестанут выделяться. Конечно, если удалить какой-то орган и бросить его в питательный суп, он вряд ли будет работать как положено. Но, что интересно, «удаленный» гипофиз прекращает вырабатывать одни гормоны, но продолжает вырабатывать другие, и очень активно. Дело не только в том, что гипофиз был травмирован и перестал работать. Он начинает действовать хаотично, потому что теперь у него нет целостной гормональной стратегии. Обычно он выполнял указания мозга, а в этом горшочке нет никакого мозга, который говорил бы гипофизу, что делать.
Получить доказательства этого относительно просто. Разрушьте часть мозга, расположенную рядом с гипофизом, и гипофиз прекратит вырабатывать одни гормоны, но начнет вырабатывать слишком много других. Это говорит о том, что мозг контролирует одни гормоны гипофиза, стимулируя их секрецию, и управляет другими, угнетая их выработку. Проблема была в том, чтобы выяснить, как мозг это делает. Логично было бы искать нервы, идущие из мозга в гипофиз (точно так же, как нервы, идущие к сердцу и другим органам), а также нейромедиаторы мозга, дающие команду гипофизу. Но ни того ни другого никто не мог найти. В 1944 году физиолог Джеффри Харрис предположил, что мозг также является гормональной железой, что он вырабатывает гормоны, которые поступают в гипофиз и управляют его действиями. В принципе, это была не такая уж сумасшедшая идея; за четверть века до этого один из «крестных» отцов этой научной области Эрнст Шаррер показал, что некоторые другие гормоны, раньше считавшиеся секрецией одной периферийной железы, на самом деле вырабатываются в мозге. Тем не менее многие ученые сочли идею Харриса ересью. Можно получить гормоны из таких периферийных желез, как яичники, яички, поджелудочная железа, – но гормоны из мозга? Какая нелепость! Это казалось неправдоподобным с научной точки зрения. И вообще, чтобы мозг вырабатывал гормоны? Это просто неприлично! Ведь его дело – писать сонеты.
Двое ученых, Роже Гиймен и Эндрю Шалли, решили все-таки разыскать эти гормоны мозга. Это была невероятно трудная задача. Мозг сообщается с гипофизом посредством крохотной кровеносной системы, размер которой немного больше пробела в конце этого предложения. Напрасно искать эти гипотетические рилизинг-гормоны и гормоны-ингибиторы мозга в общей системе кровообращения; если такие гормоны и существуют, то к тому времени, когда они достигают общей кровеносной системы, они растворяются без следа. Поэтому их нужно было искать в крошечных фрагментах ткани в основании мозга, содержащих кровеносные сосуды, идущие от мозга в гипофиз.
Непростая задача, но эти двое ученых были настроены решительно. Их чрезвычайно увлекала абстрактная интеллектуальная проблема этих гормонов, их возможное клиническое использование, а также признание, ожидающее при достижении этой туманной научной цели. Кроме того, они ненавидели друг друга, и это также стимулировало научный поиск. Сначала, в конце 1950-х годов, Гиймен и Шалли пытались искать эти гормоны мозга вместе. Однако, возможно, вечером какого-то особенно трудного дня, проведенного за изучением пробирок, один из них сказал другому какую-то гадость – о том, что произошло на самом деле, история умалчивает; но как бы там ни было, дело закончилось печально известной взаимной враждой, зафиксированной в летописи науки, и она была не менее эпична, чем вражда между греками и троянцами, а может быть, даже чем битва между «Кока-Колой» и «Пепси». Пути Гиймена и Шалли разошлись. Каждый был намерен первым обнаружить предполагаемые гормоны мозга.
Как можно выделить гормон, которого, возможно, нет в природе, а если и есть, то в крошечных количествах в крохотной системе кровообращения, к которой невозможно получить доступ? И Гиймен и Шалли следовали одной и той же стратегии. Они начали собирать мозги животных на скотобойнях. Вырежьте фрагмент ткани у основания мозга, рядом с гипофизом. Бросьте несколько таких фрагментов в блендер, вылейте получившееся мозговое месиво в гигантскую пробирку, заполненную химикатами, очищающими это месиво, а потом соберите выделившиеся капельки. Затем сделайте инъекцию этих капелек крысе и посмотрите, изменятся ли паттерны выработки гормонов ее гипофиза. Если изменятся, возможно, мозговые капельки содержат один из этих предполагаемых стимулирующих или угнетающих гормонов. Попробуйте очистить вещество, содержащееся в капельках, определите его химическую структуру, создайте его искусственный аналог и посмотрите, регулирует ли оно функцию гипофиза. Не так уж сложно в теории. Но обоим ученым на это потребовались годы.
Одной из проблем этой тяжелой и грязной работы был масштаб. В лучшем случае в мозге содержится крохотное количество гормонов, и поэтому приходилось использовать тысячи мозгов за один раз. Началась большая война за скотобойни. Из ворот выезжали грузовики, нагруженные мозгами свиней или овец; химики заливали литры измельченных мозгов в монументальные аппараты для химического разделения, а другие собирали капли жидкости, очищали ее в следующем аппарате, затем в следующем… Но этот конвейер оказался весьма полезным. В процессе были изобретены абсолютно новые способы тестирования влияния на живой организм гормонов, которые могли бы или не могли бы в нем существовать. Это была чрезвычайно сложная научная проблема, усугубляемая тем фактом, что многие специалисты в этой области считали, что эти гормоны – чистая фикция, а эти два парня впустую тратят время и деньги.
Гиймен и Шалли изобрели совершенно новый подход к научным исследованиям. Один из всем известных штампов – одинокий ученый, сидящий в лаборатории в два часа ночи в попытках объяснить результаты эксперимента. А здесь были целые команды химиков, биохимиков, физиологов и других специалистов, которые все вместе искали эти таинственные гормоны. И они их нашли. «Всего» четырнадцать лет работы – и была опубликована химическая структура первого гормона[8 - «Так что, – спросит затаивший дыхание спортивный болельщик, – кто там выиграл, Гиймен ли Шалли?» Ответ зависит от того, как вы определяете фразу «сделать это первым». Первым был выделен гормон, косвенно регулирующий выработку гормона щитовидной железы (то есть управляющий тем, как гипофиз регулирует работу щитовидной железы). Шалли и его команда первыми подали на публикацию статью этом открытии, где говорилось: «В мозге действительно существует гормон, регулирующий выработку гормонов щитовидной железы, и его химическая структура представляет собой А». Но как показал фотофиниш, команда Гиймена всего пять недель спустя представила статью, где делался идентичный вывод. Ситуация осложнялась тем, что за несколько месяцев до этого Гиймен и его коллеги первыми опубликовали доклад, где говорилось: «Если синтезировать химическое вещество со структуройX, оно регулирует выработку гормонов щитовидной железы и делает это точно таким же образом, что и вещество, выделенное из гипоталамуса; мы еще не знаем, имеет ли вещество, вырабатывающееся в гипоталамусе, структуру X, но мы бы не удивились, если это так и есть». Так что Гиймен первым сказал: «Эта структура действует как реальное вещество», а Шалли первым сказал: «Эта структура – реальное вещество». Как я сам обнаружил много десятилетий спустя, оставшиеся в живых ветераны боев между Гийменом и Шалли до сих пор выясняют, кто из них на самом деле победил. Может показаться странным, что через несколько лет этого безумного соперничества никто не сделал очевидного – например, почему национальные институты здравоохранения не посадили этих двоих за круглый стол и не сказали: «Почему мы должны давать все эти деньги наших налогоплательщиков на отдельные исследования? Почему бы вам не начать работать вместе?» Как ни странно, это не обязательно способствовало бы научному прогрессу. Конкуренция служит важной цели. В науке необходимо независимое воспроизведение результатов. Потратив годы на исследования, ученый одерживает победу и публикует структуру нового гормона или химического вещества. Две недели спустя приходит другой парень. У него есть все стимулы в мире, чтобы доказать, что первый парень был неправ. Вместо этого он вынужден сказать: «Я ненавижу этого сукиного сына, но должен признать, что он прав. Мы получили идентичную структуру». Именно так мы можем убедиться, что наши доказательства действительно обоснованны, – благодаря независимому подтверждению от враждебно настроенного конкурента. Когда все сотрудничают и поддерживают друг друга, дело обычно идет быстрее, но все члены команды разделяют одни и те же гипотезы, что делает их уязвимыми для маленьких, незаметных ошибок, которые могут превратиться в большие.]. Спустя два года, в 1971 году, Шалли предложил химическую формулу следующего гормона гипоталамуса, а Гиймен опубликовал эту формулу два месяца спустя. В 1972 году Гиймен начал очередной раунд, опередив Шалли с формулой следующего гормона на целых три года. Все очень обрадовались. Оказалось, что умерший к тому времени Джеффри Харрис был прав, а Гиймен и Шалли в 1976 году получили Нобелевскую премию. В своей речи по этому случаю один из них, более культурный и умеющий говорить правильные вещи, заявил, что его интересовали только наука и желание помочь человечеству; он отметил, каким стимулирующим и продуктивным было его сотрудничество с коллегой. Другой, с менее изысканными манерами, но более честный, сказал, что в течение десятилетий его мотивировал исключительно дух соперничества, и описал свои отношения с коллегой как «много лет агрессии и жестокой мести».
Так что слава Гиймену и Шалли; мозг действительно оказался главной железой. Теперь наука признает, что гипоталамус, находящийся в основании головного мозга, содержит огромный массив стимулирующих и угнетающих гормонов и они управляют гипофизом, который, в свою очередь, регулирует работу периферийных желез. В некоторых случаях мозг запускает выработку гормона гипофизах посредством действия единственного гормона-стимулятора (рилизинг-гормона). Иногда он прекращает выработку гормона гипофиза Y с помощью единственного гормона-ингибитора. В некоторых случаях выработкой гормонов гипофиза управляет координация рилизинг-гормона и гормона-ингибитора с помощью системы двойного контроля. Что еще хуже, иногда (например, в одной ужасно запутанной системе, которую я изучаю) есть целый массив гормонов гипоталамуса, которые все вместе регулируют работу гипофиза, одни как стимуляторы, а другие как ингибиторы.
Гормоны стрессовой реакции
Как главная железа мозг может переживать какое-то стрессовое событие или думать о нем и при этом гормонально активировать компоненты реакции на стресс. Во время стресса некоторые связи между гипоталамусом, гипофизом и периферийными железами активируются, а некоторые – угнетаются.
Существует два гормона, жизненно важных для реакции на стресс; как мы уже говорили, это адреналин и норадреналин. Их вырабатывает симпатическая нервная система. Другой важный класс гормонов реакции на стресс называют глюкокортикоидами. К концу этой книги вы будете знать о них почти все, потому что я очень люблю эти гормоны. Глюкокортикоиды – это стероидные гормоны. (Стероидами называют общую химическую структуру пяти классов гормонов: андрогены – знаменитые «анаболические» стероиды, например тестостерон, которые могут стоить вам участия в Олимпиаде, – а также эстрогены, прогестины, минералокортикоиды и глюкокортикоиды.) Они вырабатываются надпочечниками, и их действие, как мы увидим, часто похоже на действие адреналина. Адреналин начинает действовать в течение нескольких секунд; глюкокортикоиды поддерживают его действие в течение нескольких минут или нескольких часов.
У надпочечников нет разума, и поэтому выработка глюкокортикоидов должна находиться под контролем гормонов мозга. Когда происходит стрессовое событие или у нас возникают стрессовые мысли, гипоталамус выделяет в гипоталамо-гипофизарную кровеносную систему несколько гормонов, запускающих весь процесс (рис. 6). Основной из этих гормонов называется КРГ (кортикотропин-рилизинг-гормон), и в синергии с ним действует множество менее важных гормонов[9 - Для тех немногих читателей этой книги, которые прочли ее предыдущее издание и что-то из него еще помнят: может быть, вы задаетесь вопросом, почему гормон, ранее известный как КРФ (кортикотропин-рилизинг-фактор), превратился в КРГ. По правилам эндокринологии предполагаемый гормон называют «фактором» до тех пор, пока не будет расшифрована его химическая структура. После этого он получает «повышение» и может называться «гормоном». КРФ получил этот статус в середине 1980-х годов, и постоянное использование термина «КРФ» в издании 1998 года было просто ностальгической и сентиментальной попыткой удержать те бурные дни моей юности, когда КРФ еще не приручили. После весьма болезненной работы над собой я с этим смирился и теперь использую термин «КРГ».]. В течение приблизительно 15 секунд КРГ запускает выработку гормона АКТГ (адренокортикотропный гормон, или кортикотропин) в гипофизе. После того как АКТГ попал в кровь, он достигает надпочечников, и через несколько минут происходит выработка глюкокортикоида. Вместе глюкокортикоиды и секреция симпатической нервной системы (адреналин и норадреналин) в большой степени отвечают за то, что происходит в нашем теле во время стресса. Это рабочие лошадки реакции на стресс.
Рис. 6. Схема контроля секреции глюкокортикоидов. Мозг обнаружил стрессор или ожидает его. Это запускает выработку КРГ (и связанных с ним гормонов) в гипоталамусе. Эти гормоны поступают в автономную систему кровообращения, соединяющую гипоталамус и переднюю долю гипофиза, которая, в свою очередь, начинает вырабатывать АКТГ. АКТГ поступает в общую систему кровообращения и запускает выработку глюкокортикоидов надпочечниками
Кроме того, во время стресса наша поджелудочная железа получает стимул для выработки гормона под названием глюкагон. Глюкокортикоиды, глюкагон и секреция симпатической нервной системы повышают уровень глюкозы в крови. Как мы увидим, эти гормоны важны для мобилизации энергии во время стресса. Активируются также и другие гормоны. Гипофиз вырабатывает пролактин, который кроме других эффектов способствует угнетению во время стресса репродуктивной функции. И гипофиз и мозг также вырабатывают особый класс эндогенных морфиноподобных веществ, эндорфинов и энкефалинов, которые, среди всего прочего, притупляют ощущение боли. Наконец, гипофиз вырабатывает вазопрессин, также известный как антидиуретический гормон, играющий важную роль в реакции сердечно-сосудистой системы на стресс.
В ответ на стресс активируются некоторые железы, а различные гормональные системы во время стресса угнетаются. Снижается секреция различных гормонов репродуктивной системы, таких как эстроген, прогестерон и тестостерон. Выработка гормонов, связанных с функцией роста (например, соматотропного гормона, или соматотропина), также угнетается, как и выработка инсулина, гормона поджелудочной железы, который в нормальных условиях помогает телу накапливать энергию, чтобы использовать ее позже.
(Вы сбиты с толку и напуганы этими терминами и уже подумываете о том, что лучше было бы почитать какую-нибудь книгу по самосовершенствованию Дипака Чопры? Пожалуйста, даже не мечтайте запомнить названия этих гормонов. Они будут так часто повторяться на следующих страницах, что скоро вы будете с легкостью упоминать их в обычных разговорах и поздравительных открытках близким родственникам. Поверьте мне.)
Некоторые сложности
Сделаем краткий обзор современных представлений о нервных и гормональных посредниках, которые приносят из мозга сообщения о том, что произошло что-то ужасное. Первым роль адреналина, норадреналина и симпатической нервной системы выяснил Кеннон. Как мы говорили в предыдущей главе, он изобрел фразу «нападай или убегай», описывающую реакцию на стресс как подготовку тела для этого внезапного повышения требований к его энергии. А Селье затем ввел во всю эту историю фактор глюкокортикоидов. С тех пор была выяснена роль других гормонов и других частей нервной системы. Через десять лет после первого издания этой книги к данной картине добавилось множество новых второстепенных гормонов, и, несомненно, еще больше нам предстоит обнаружить. Все вместе эти изменения в секреции и активации и формируют первичную реакцию на стресс.
Конечно, не все так просто. Как мы будем не раз повторять в следующих главах, реакция на стресс готовит тело к серьезным затратам энергии – к канонической (или, возможно, «кеннонической») реакции «нападай или убегай». Но недавняя работа психолога Шелли Тейлор из Калифорнийского университета в Лос-Анджелесе заставила ученых в этом усомниться. Тейлор предположила, что в ответ на стресс реакция «нападай или убегай» возникает преимущественно у мужчин и ее сильно переоценивают из-за традиционной склонности ученых (по большей части мужчин) исследовать реакции мужчин, а не женщин.
Тейлор убедительно показала, что у женщин физиология реакции на стресс может быть совершенно другой, на основании того факта, что у большинства видов самки, как правило, менее агрессивны, чем самцы, и наличие у матери зависящего от нее потомства часто не дает ей возможности убежать. Показывая, что девочки вполне могут составить конкуренцию мальчикам с точки зрения остроты зубов, Тейлор предположила, что у самок реакция на стресс действует не по типу «нападай или убегай», а по типу «заботься и поддерживай». Самки заботятся о своем потомстве и устанавливают социальные связи. Как мы увидим в последней главе этой книги, существуют поразительные гендерные различия в стилях управления стрессом, что подтверждает гипотезу Тейлор, и многие из этих различий связаны как раз с созданием и укреплением социальных связей.
Тейлор также указала на гормональный механизм, помогающий запустить реакцию «заботься и поддерживай». Симпатическая нервная система, глюкокортикоиды и другие гормоны, о которых мы только что говорили, готовят тело к серьезным физическим нагрузкам, а гормон окситоцин, по-видимому, больше связан с реакцией заботы и поддержки. Гормон гипофиза способствует тому, что у самок разных видов млекопитающих происходит импринтинг (запечатление) потомства после его рождения, что стимулирует выделение грудного молока и побуждает материнское поведение. Кроме того, окситоцин может быть очень важным для формирования у самки моногамной связи с самцом (у относительно немногочисленных моногамных видов млекопитающих)[10 - Возможно, люди не входят в список таких видов по многим биологическим критериям. Но это тема для отдельной книги.]. И тот факт, что у самок окситоцин выделяется во время стресса, поддерживает гипотезу о том, что реакция на стресс, возможно, состоит не только в подготовке к безумной гонке по саванне, но может также вызывать желание общаться и быть вместе с другими.
Некоторые критики весьма влиятельной работы Тейлор указывают, что иногда реакция на стресс у самок тоже происходит по типу «нападай или убегай», а не по типу заботы. Например, самки, конечно же, могут быть дико агрессивными (особенно когда им нужно защищать детенышей) и им часто приходится бежать, чтобы сохранить себе жизнь или поесть (у львов, например, охотятся в основном самки). Кроме того, иногда реакция на стресс у самцов может развиваться по типу поддержки, а не по типу борьбы или бегства. Она может принять форму создания коалиции с другими самцами или, у редких моногамных видов (у которых самцы, как правило, активно заботятся о детенышах), выражается в поведении защиты и поддержки, обычно характерном для самок. Но, несмотря на эту критику, почти все соглашаются с той идеей, что, реагируя на стресс, тело не обязательно готовится к агрессии или к бегству и что в физиологии и психологии стресса существуют важные гендерные различия.
Есть и другие сложности. Даже рассматривая классическую реакцию на стресс, основанную на паттерне «нападай или убегай», мы видим, что не все ее аспекты работают одинаково у разных видов животных. Например, у крыс стресс вызывает быстрое снижение секреции соматотропина (гормона роста), а у людей выработка этого гормона временно увеличивается (эту загадку и ее значение для человека мы обсудим в главе, посвященной функции роста).
Другая сложность касается времени действия адреналина и глюкокортикоидов. Выше я отмечал, что первый начинает действовать через несколько секунд, а второй поддерживает действие адреналина в течение нескольких минут или даже нескольких часов. Это весьма разумно, например, перед лицом армии противника, когда защитная реакция может принимать форму выдачи оружия с оружейного склада (адреналин, начинающий действовать через несколько секунд). Но защита страны может заключаться и в более длительных задачах – скажем, в разработке конструкции новых танков (глюкокортикоиды, действующие в течение нескольких часов). Но в рамках схемы, где львы гонятся за зебрами, как часто гонка по саванне длится часами? Что хорошего в том, что действие глюкокортикоидов начинает проявляться уже после того, как стресс под названием «рассвет в саванне» закончился? Некоторые эффекты глюкокортикоидов действительно помогают запустить реакцию на стресс. Другие помогают восстанавливаться после него. Как мы увидим в главе 8, это, возможно, имеет большое значение для многих аутоиммунных заболеваний. А некоторые эффекты глюкокортикоидов готовят вас к следующему стрессору. Как будет сказано в главе 13, это помогает понять, почему психологические состояния, связанные с ожиданием, с такой легкостью могут вызвать выработку глюкокортикоидов.
Еще одна сложность касается последовательности стадий реакции на стресс, когда она уже активирована. Основная идея концепции Селье состояла в том, что независимо от того, слишком ли нам жарко или слишком холодно, зебра мы или лев (или просто испытываем стресс, прочитав эту фразу), у нас активируются одни и те же паттерны секреции глюкокортикоидов, адреналина, соматотропина, эстрогена и т. д. для каждого из этих стрессоров. По большей части это так и есть, и такое объединение различных аспектов реакции на стресс в «единый пакет» запускается в мозге, где одни и те же нервные пути могут и стимулировать выработку КРГ в гипоталамусе, и активировать симпатическую нервную систему. Кроме того, адреналин и глюкокортикоиды, вырабатывающиеся в надпочечниках, могут способствовать секреции друг друга.
Но оказывается, что не все стрессоры приводят к одной и той же реакции на стресс. Симпатическая нервная система и глюкокортикоиды «включаются» в ответ на практически любые стрессоры. Но скорость и сила действия симпатической и глюкокортикоидной ветвей могут меняться в зависимости от стрессора, и не все из остальных эндокринных компонентов реакции на стресс активируются для всех стрессоров. Сочетание и характер выработки гормонов могут меняться, по крайней мере в некоторой степени, в зависимости от стрессора, создавая особый гормональный «рисунок» для каждого стрессора.
Вот пример, касающийся относительной силы реакций на стресс, связанных с глюкокортикоидами и симпатической нервной системой. Джеймс Генри, автор новаторской работы о влиянии социальных стрессоров, например положения в иерархии, на сердечно-сосудистые заболевания у грызунов, обнаружил, что симпатическая нервная система особенно сильно активирована у грызунов, занимающих низкие позиции в социальной иерархии, но пытающихся повысить свой статус. И наоборот, глюкокортикоидная система относительно сильнее активирована у особей, занимающих низкие позиции в социальной иерархии, но смирившихся с этим. Исследования на людях показали, что, у нас, возможно, есть аналог этой дихотомии. Активация симпатической нервной системы – относительный маркер тревоги и бдительности, а обильная выработка глюкокортикоидов больше указывает на депрессию. Кроме того, все стрессоры не вызывают секрецию и адреналина, и норадреналина или же норадреналина во всех ветвях симпатической системы.
В некоторых случаях признаки стресса прокрадываются с черного хода. Два разных стрессора могут создавать идентичные профили выброса гормонов в кровь. Но при этом в случае одного стрессора – но не другого – ткани в разных частях тела могут менять чувствительность к гормону стресса.
Наконец, как мы увидим в главе 13, два одинаковых стрессора могут вызвать совершенно разного типа реакции на стресс в зависимости от психологического контекста. Другими словами, любой конкретный стрессор не вызывает всегда одну и ту же реакцию на стресс. Едва ли это удивительно. Несмотря на общие аспекты разных стрессоров, их различия создают разные физиологические проблемы, например когда слишком жарко или слишком холодно, когда мы сильно встревожены или сильно подавлены. Несмотря на это, описанные в этой главе гормональные изменения, которые почти всегда возникают перед лицом различных стрессоров, составляют единую метаструктуру нервной и эндокринной реакции на стресс. Теперь мы можем увидеть, как эти реакции в совокупности помогают спасти нашу шкуру во время острых чрезвычайных ситуаций, но могут привести к болезни, если действуют слишком долго.
3. Инсульт, сердечные приступы и смерть от колдовства
Вот одна из этих неожиданных чрезвычайных ситуаций: вы идете по улице, направляясь на встречу с другом. Вы уже думаете о том, в какой ресторан хотели бы пойти, и предвкушаете хороший ужин. Тут вы поворачиваете за угол и… О боже, лев! Как мы теперь знаем, весь ваш организм немедленно перестраивается, чтобы достойно встретить кризис: пищеварительный тракт прекращает работу, дыхание учащается. Замедляется выработка половых гормонов, в кровь поступают адреналин, норадреналин и глюкокортикоиды. И, если вы хотите, чтобы ноги вас спасли, один из самых важных дополнительных процессов, который, мы надеемся, происходит, – это рост активности сердечно-сосудистой системы, поставляющей кислород и энергию в работающие мышцы.
Как реагирует на стресс сердечно-сосудистая система
Активировать сердечно-сосудистую систему сравнительно легко при условии, что у нас есть симпатическая нервная система, немного глюкокортикоидов и мы не беспокоимся о мелочах. Первым делом нужно ускорить сердечный ритм – заставить сердце биться быстрее. Для этого нужно выключить парасимпатическую и активировать симпатическую нервную систему. Глюкокортикоиды тоже участвуют в этом процессе, активируя в стволе мозга нейроны, стимулирующие симпатическое возбуждение, и усиливая влияние адреналина и норадреналина на сердечную мышцу. Также нужно увеличить силу, с которой бьется сердце. Для этого используется уловка с венами, по которым кровь возвращается в сердце. Симпатическая нервная система заставляет их сжиматься и уменьшает их гибкость. В результате кровь по венам возвращается в сердце с большей энергией. Она ударяет в сердечные стенки, раздувая их больше, чем обычно… затем сердечные стенки еще сильнее сокращаются, как растянутая резина.
При этом учащается сердечный ритм и повышается артериальное давление. Следующая задача – разумно распределить кровь по бегущему изо всех сил организму. Артерии расслабляются и расширяются, увеличивая кровоснабжение мышц и поставку энергии. В то же время кровоснабжение в других частях тела существенно снижается, например в пищеварительном тракте и в коже (также меняются паттерны кровоснабжения мозга – мы обсудим это в десятой главе). Уменьшение кровоснабжения кишечника впервые было отмечено в 1833 году, в обширном исследовании с участием одного американского индейца, пострадавшего от огнестрельного ранения. Его кишечник можно было видеть снаружи. Когда этот человек находился в покое, ткани его кишечника были ярко-розовыми и хорошо снабжались кровью. Всякий раз, когда он начинал беспокоиться или сердиться, слизистая кишечника бледнела из-за уменьшения кровоснабжения. (Возможно, его беспокойство и гнев были вызваны тем, что бледнолицые проводили над ним опыты, вместо того чтобы сделать что-то более полезное, например зашить ему живот.)
Последняя уловка сердечно-сосудистой системы в ответ на стресс связана с почками. Предположим, что вы зебра с распоротым животом и потеряли много крови. А вам нужна кровь, чтобы поставлять энергию работающим мышцам. Вашему телу нужно удерживать воду. Если объем крови снижается из-за обезвоживания или кровопотери, не имеет значения, что делают сердце и вены; способность поставлять глюкозу и кислород в мышцы снижается. Как мы обычно теряем воду? Через мочеиспускание, а источник воды в моче – кровь. Поэтому у вас уменьшается кровоснабжение почек и мозг отправляет почкам сообщение: остановить процесс и вернуть воду в систему кровообращения. Это происходит с помощью гормона вазопрессина (его называют антидиуретическим гормоном, потому что он блокирует диурез), а также нескольких дополнительных гормонов, регулирующих водный баланс.
Здесь у вас, конечно же, возникает вопрос: если один из аспектов реакции сердечно-сосудистой системы на стресс – сохранение воды в кровеносной системе и это достигается замедлением образования мочи в почках, то почему от страха мы можем намочить штаны? Я поздравляю читателя с тем, что он не оставил без внимания вопрос, на который у современной науки пока нет ответа. А в попытках найти ответ мы сталкиваемся с другой загадкой. Зачем нам мочевой пузырь? Он очень полезен, если вы хомяк или собака, потому что у этих животных мочевой пузырь заполняется до отказа, а затем они обходят свою территорию, отмечая ее границы, – запах мочи подает соседям знак «не входить»[11 - Одна из моих бесстрашных научных ассистенток, Мишель Перл, обзвонила некоторых ведущих урологов Америки и спросила у них, зачем человеку мочевой пузырь. Один специалист по сравнительной урологии (как и Джей Каплан, работы которого мы обсудим в этой главе) указал на исследования территориального поведения грызунов, помечающих запахом свою территорию, и привел обратный аргумент: возможно, мочевой пузырь нужен нам для того, чтобы избежать непрерывного выделения мочи, оставляющей запах, по которому хищники могли бы отследить наш путь. Но тот же уролог отметил, что эта идея вряд ли верна – у рыб тоже есть мочевой пузырь, а им, очевидно, не приходится беспокоиться о пахучих следах. Другие урологи предположили: возможно, мочевой пузырь действует как буфер между почками и внешним миром, что уменьшает вероятность почечных инфекций. Однако кажется странным, что какой-то орган может развиться исключительно для того, чтобы защитить от инфекций другой орган. Перл предположила, что мочевой пузырь мог возникнуть как дополнительный орган мужской репродуктивной системы – кислотность мочи вредна для спермы (в древние времена женщины использовали в качестве «колпачка» половинку лимона), так что, возможно, имело смысл создать для мочи отдельное хранилище. Многие из опрошенных урологов сказали что-то вроде: «Ну, отсутствие мочевого пузыря было бы чрезвычайно антисоциальным». При этом они, возможно, не поняли, что тем самым предположили, что мочевой пузырь появился у позвоночных животных десятки миллионов лет назад, и лишь для того, чтобы мы, люди, случайно не обмочили смокинг на званом ужине. Но чаще всего урологи говорили следующее: «Честно говоря, я никогда об этом не задумывался», «Я не знаю, я говорил с коллегами, они тоже не знают» и «Чтобы доставлять мне головную боль».Самое странное заключается в том, что многие животные не используют весь объем своего мочевого пузыря. По моему обширному опыту наблюдений за бабуинами, они очень редко сдерживают мочеиспускание, даже если могут это сделать. Очевидно, в этой области нужно проделать еще очень много работы.]. Наличие мочевого пузыря логично для животных, помечающих свою территорию запахом, но мне кажется, что вы вряд ли так поступаете[12 - Однако некоторые люди так поступают. В Германии во время Второй мировой войны союзники навели понтонный мост и наладили переправу через Рейн. Генерал Джордж Паттон, переходя через этот мост, остановился посередине и под прицелами кинокамер помочился в Рейн. «Я так долго этого ждал», – сказал он. Продолжая тему милитаризма, водных масс и желания пометить территорию, во время Корейской войны американские войска выстраивались вдоль реки Ялу, как раз напротив китайских солдат, и все вместе мочились в реку.]. Наличие мочевого пузыря у человека – настоящая загадка. Мочевой пузырь – это просто скучный мешок для хранения мочи. Но почки – другое дело. Почки – реабсорбирующий, двунаправленный орган, а это значит, что мы можем целый день спокойно вытягивать воду из крови и возвращать ее обратно, регулируя этот процесс с помощью определенных гормонов. Но как только моча покидает почки и направляется в мочевой пузырь, с ней можно попрощаться; мочевой пузырь однонаправлен. А во время стрессовой чрезвычайной ситуации мочевой пузырь превращается просто в неприятный лишний вес, совершенно ненужный, когда вы бежите по саванне. Ответ очевиден: нужно его опустошить[13 - Следует отметить, что у детей стресс может вызвать энурез (потерю контроля над мочевым пузырем), но обычно дети, страдающие ночным энурезом (ночным недержанием мочи), в психологическом отношении совершенно здоровы. Вся эта дискуссия поднимает загадочный вопрос о том, почему так трудно помочиться в писсуар в общественном туалете кинотеатра, когда за спиной нетерпеливо ждет своей очереди толпа других желающих побыстрее занять места в зрительном зале, пока не начался сеанс.] (рис. 7).
Рис. 7. «Что, планируешь сегодня прошвырнуться по району с ребятами?»
Итак, теперь все хорошо – вы увеличили кровоснабжение, кровь бурлит, сильно и быстро поставляя энергию туда, где она больше всего необходима. Чтобы убежать от льва, именно это нам и нужно. Что интересно, Марвин Браун из Калифорнийского университета в Сан-Диего и Лорел Фишер из Аризонского университета показали, что когда животное находится в состоянии готовности – например, газель приседает в траве, когда мимо проходит лев, – возникает совсем другая картина. Вид льва – очевидно, стрессор, но не слишком сильный; оставаясь неподвижными, нужно физиологически подготовиться к бешеной гонке через саванну при малейших признаках опасности. Во время такого состояния готовности сердечный ритм и кровообращение замедляются и увеличивается сопротивление сосудов во всем теле, в том числе и в мышцах. Другой пример усложнения реакции на стресс мы приводили в конце главы 2, когда говорили о признаках стресса, – на разные типы стрессоров включаются разные паттерны реакции на стресс.
Наконец, действие стрессора закончилось, лев переключился на какого-то другого пешехода, и вы можете вернуться к своим обеденным планам. Различные гормоны реакции на стресс выключаются, парасимпатическая нервная система начинает замедлять сердечный ритм с помощью органа, который называется блуждающим нервом, и организм успокаивается.
Хронический стресс и сердечно-сосудистые заболевания
Итак, встретившись со львом, вы все сделали правильно. Но, если вы заставляете свое сердце, кровеносные сосуды и почки действовать таким образом каждый раз, когда кто-то вас раздражает, вы увеличиваете для себя риск сердечных заболеваний. Неадекватность реакции на стресс в ответ на психологические стрессы становится наиболее очевидной как раз на примере сердечно-сосудистой системы. Вы в ужасе бежите по улице, изменяя при этом функции сердечно-сосудистой системы таким образом, чтобы она лучше снабжала кровью мышцы бедер. В таких случаях возникает замечательное соответствие между кровоснабжением и требованиями метаболизма. Но если вы сидите и думаете о том, что на следующей неделе нужно закончить важный проект, при этом доводя себя до настоящей паники, то изменяете функции сердечно-сосудистой системы таким образом, чтобы она лучше снабжала кровью мышцы ног. Но это просто глупо. И в конечном счете может привести к болезни.
Каким образом повышение артериального давления во время хронического психологического стресса приводит к сердечно-сосудистым заболеваниям – убийцам номер один в Соединенных Штатах и других развитых странах мира? По сути, наше сердце – это простой механический насос, а кровеносные сосуды – нечто не более захватывающее, чем обычные шланги. Реакция сердечно-сосудистой системы на стресс, по сути, состоит в том, чтобы на какое-то время заставить ее работать активнее, и если мы делаем это регулярно, то она изнашивается точно так же, как насос или поливальный шланг, купленный в универмаге.
Первый шаг на пути к стрессогенным заболеваниям – это гипертония, хронически повышенное артериальное давление[14 - Повышенным считается артериальное давление в состоянии покоя, когда систолическое давление (верхняя цифра, отражающая силу, с которой кровь выходит из сердца) составляет больше 140 или когда диастолическое давление (нижняя цифра, отражающая силу, с которой кровь возвращается в сердце) составляет больше 90.]. Это очевидно: если во время стресса артериальное давление повышается, то хронический стресс приводит к хроническому повышению давления. Первая задача выполнена: у нас началась гипертония.
Это немного сложнее, потому что в этой точке возникает порочный круг. Небольшие кровеносные сосуды, распределенные по всему телу, призваны регулировать кровоснабжение отдельных органов, чтобы обеспечить им достаточный уровень кислорода и питательных веществ. Если давление хронически повышено – если мы хронически увеличиваем силу, с которой кровь бежит по этим крохотным сосудам, – то им приходится больше работать, чтобы отрегулировать силу кровотока. Это похоже на разницу в управлении садовым шлангом при поливе лужайки или пожарным рукавом, из которого хлещет мощная струя воды. Во втором случае нужно больше мышечных усилий. Именно это и происходит в этих крошечных сосудах. Вокруг них возникает утолщенный слой мышц, чтобы лучше управлять увеличенной силой кровотока. Но из-за такой «переразвитой» мускулатуры сосуды теряют гибкость и оказывают больше сопротивления крови. А это еще больше повышает артериальное давление. Что в свою очередь увеличивает сопротивление сосудов. И так по кругу.
Таким образом, мы создали себе хронически повышенное артериальное давление. И это не слишком хорошо для нашего сердца. Кровь теперь возвращается в сердце с большей силой и, как мы уже сказали, это увеличивает нагрузку на стенки сердечной мышцы, которой приходится противостоять этому цунами. Со временем стенки утолщаются, на них «нарастает» больше мышц. Это называют гипертрофией левого желудочка: масса левого желудочка увеличивается. Сердце становится «перекошенным», потому что один его сектор увеличивается в размерах. Это повышает риск развития сердечной аритмии. И еще одна плохая новость: вдобавок эта утолщенная стенка желудочка теперь может требовать большего количества крови, чем пропускают коронарные артерии. Исследования показывают, что гипертрофия левого желудочка – самый надежный прогностический параметр возникновения сердечно-сосудистых заболеваний.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера: