banner banner banner
Все науки. №2, 2023. Международный научный журнал
Все науки. №2, 2023. Международный научный журнал
Оценить:
Рейтинг: 0

Полная версия:

Все науки. №2, 2023. Международный научный журнал

скачать книгу бесплатно

Все науки. №2, 2023. Международный научный журнал
Ином Даниярович Якубов

Екатерина Александровна Вавилова

Шавкат Самиддинович Сайитов

Оббозжон Хокимович Кулдашов

Ибратжон Хатамович Алиев

Яраш Юсупов

Султонали Мукарамович Абдурахмонов

Международный научный журнал «Все науки», созданный при OOO «Electron Laboratory» и Научной школе «Электрон», является научным изданием, публикующим последние научные результаты в самых различных областях науки и техники, представляя собой также сборник публикаций по вышеуказанным темам коллегией авторов и рецензируемый редколлегией (учёным советом) Научной школы «Электрон» и на платформе «Ридеро» ежемесячно.

Все науки. №2, 2023

Международный научный журнал

Авторы: Алиев Ибратжон Хатамович, Кулдашов Оббозжон Хокимович, Якубов Ином Даниярович, Юсупов Яраш, Вавилова Екатерина Александровна, Абдурахмонов Султонали Мукарамович, Сайитов Шавкат Самиддинович

Главный редактор Ибратжон Хатамович Алиев

Иллюстратор Ибратжон Хатамович Алиев

Иллюстратор Оббозжон Хокимович Кулдашов

Иллюстратор Султонали Мукарамович Абдурахмонов

Иллюстратор Боходир Хошимович Каримов

Дизайнер обложки Ибратжон Хатамович Алиев

Дизайнер обложки Раънохон Мукарамовна Алиева

Научный руководитель Боходир Хошимович Каримов

Экономический руководитель Фаррух Муроджонович Шарофутдинов

Экономический консультант Ботирали Рустамович Жалолов

Корректор Гульноза Мухтаровна Собирова

Корректор Абдурасул Абдусолиевич Эргашев

Корректор Екатерина Александровна Вавилова

© Ибратжон Хатамович Алиев, 2023

© Оббозжон Хокимович Кулдашов, 2023

© Ином Даниярович Якубов, 2023

© Яраш Юсупов, 2023

© Екатерина Александровна Вавилова, 2023

© Султонали Мукарамович Абдурахмонов, 2023

© Шавкат Самиддинович Сайитов, 2023

© Ибратжон Хатамович Алиев, иллюстрации, 2023

© Оббозжон Хокимович Кулдашов, иллюстрации, 2023

© Султонали Мукарамович Абдурахмонов, иллюстрации, 2023

© Боходир Хошимович Каримов, иллюстрации, 2023

ISBN 978-5-0059-7574-4 (т. 2)

ISBN 978-5-0059-5898-3

Создано в интеллектуальной издательской системе Ridero

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

О ПРИМЕНЕНИИ ТРЁХМЕРНЫХ ПРИНТЕРОВ В АРХИТЕКТУРЕ

УДК 004.356.2

Алиев Ибратжон Хатамович

Студент 2 курса факультета математики-информатики Ферганского государственного университета

Ферганский государственный университет, Фергана, Узбекистан

Аннотация. Развитие современных технологий ведёт к совершенствованию большого вида привычных на сегодняшний день методов и способов сооружения зданий, но как известно всё более популярными являются методы использования трёхмерных принтеров для достижения этих целей. Подобная идея была активно разработана ранее, но для этого использовалась либо одна головка, либо несколько установок для одного здания, более того, такая технология не позволяла сооружать двух, трёх и т. д. этажные здания. Но кажется решение подобной проблемы было приведено на примере модели небольшого здания в одном из произведений.

Ключевые слова: архитектура, трёхмерные принтеры, технологии, строительства, методы, устройства.

Annotation. The development of modern technologies leads to the improvement of a large number of methods and methods of building construction that are familiar today, but as is known, methods of using three-dimensional printers to achieve these goals are becoming increasingly popular. A similar idea was actively developed earlier, but either one head or several installations for one building were used for this, moreover, such technology did not allow the construction of two, three, etc. storey buildings. But it seems that the solution to such a problem was given by the example of a model of a small building in one of the works.

Keywords: architecture, three-dimensional printers, technologies, construction, methods, devices.

Изначально стоит указать, что модель сооружения, а именно одна электростанция состоит из 6 блоков по генерации энергии. У них 6 зданий для линейного ускорения, 6 блоков для циклотронов и также 6 блоков для вывода энергии, то есть в сумме необходимо создать 18 зданий, соединённых между собой. Сам зал линейного ускорителя, который находится на глубине в 12 метров, имеет размер 10 метров в длину и 4 метра в ширину, высота составляет около 3 метров. Прямо над ним, через 2 этажа подвала начинается 1 этаж и такой же зал, но уже для пульта управления линейным ускорителем.

В две стороны от этого зала исходят кабинеты с дополнительным управлением или для административных работ. А уже за ними линия коридоров. Ширина коридоров – 2 метра, а для комнат – 3. Второй этаж идентичен, но предназначен для технологического оборудования, то есть в центре уже расположена лаборатория, чтобы в случае неисправности можно было изготовить нужные детали. Здание циклотрона идентично, но зал его в размере уже 10 метров как в ширину, так и в длину, как и в здании для проведения генерации энергии.

Если же найти общую сумму длин всех стен для линейного ускорителя, вместе с подвалом на глубине 12 метров, с учётом, что общее количество комнат вокруг – 11, то получается для одного этажа 190 метров, толщиной в 1 метр, для радиационной безопасности, а если учесть, что толщина одного покрытия также 10 см, нужно пройти это расстояние для высоты стены в 3 метра, 30 раз, то есть 5,7 км. А также пол с общей площадью в 280 м

. Таких этажей в сумме 5, для одного здания линейного ускорителя, а зданий в сумме 6. Далее для циклотрона эта же длина составит 7,32 км с этой же толщиной, при площади в 400 м

при количестве тех же 5 этажей и 6 зданий, такой же расклад и для здания генерации энергии.

Теперь стоит представить, что у есть в наличии большая механическая рука, которая выдавливает бетон, устанавливает металлоконструкции, и равномерно заливает всё это покрытие. Для этажей, устанавливаются удерживающие временно доски, либо прочные металлические листы, которые после затвердения бетона и цемента можно убрать. Если подсчитать, одна такая конструкция выкладывает слой цемента шириной в 10 см и двигается со скоростью 12 метров в минуту. Таким образом для пола линейного ускорителя потребуется ему проделать путь в 28 км с учётом толщины пола в 1 м, для стен, поскольку их толщина 1 метр, то ему нужно пройти 5,7 км, а в сумме 33,7 км для одного этажа или 168,5 км для одного здания.

Все 6 зданий линейного ускорителя составят 1011 км, а циклотрона 73,2 км для стен и 40 км для пола, в сумме уже 113,2 метров для этажа или 566 км для здания или 3396 км для всех 6 зданий циклотронов или вместе с генерирующими зданиями 6792 км, а в общей сумме для этого комплекса потребуется пройти 7803 км, на площади в 6 480 м

. Если учесть скорость для одного такого робота, потребуется 451 сутки и 13,5 часов беспрерывной работы принтера.

Такая скорость, разумеется, не подходит, хоть она и весьма существенна, если только не предложить увеличить количество «рук». Именно этом и будет решением. И для если примера создать устройство с 50 такими руками, то с одним малым зданием они управятся за 4 часа 40 минут и 50 секунд, если таких устройств уже будет несколько, скажем около 18, то можно управится за это время в сумме уйдёт порядка 17—18 часов. Для создания малого самолёта для сравнения одному человеку потребовалось бы около двух с лишним лет времени, но если привлечь большую команду и около 1500 человек, если не больше, можно управиться гораздо быстрее. Если же один человек создавал бы такой аппарат по уже готовым инструкциям, то ему нужно было бы порядка 2 месяцев для сборки одного устройства, для 50 соответственно 100 месяцев.

Эти 100 месяцев составляют 8 с лишним лет, то есть для создания таких устройств нужно привлечь соответственно в 4 раза больше или 6000 человек, для сборки за сутки, но если начать отсчёт с 8 часов 30 минут ночи, то у будет около полутора часов времени для сообщения планов общим представителям проекта. Далее до 12 часов ночи вполне возможно будет собрать общее число людей с таким расчётом, чтобы до 6 часов утра среды, можно было закончить здание. На постройку уйдёт 17 часов, то есть устройства должны быть готовы не позже часа вторника, то есть в запасе будет 13 часов на сборку или половина суток, а это означает, что придётся привлечь 12 000 человек.

Действительно эпохальные масштабы и это, не говоря о тех, кто должен будет быть администраторами этих людей, то есть в сумме порядка 13200 человек, если по одному руководителю на каждый десяток.

И если описывать результат можно прийти к следующей картине.

На ограждённой площади, где, к слову, уже появились тропинки, посажены саженцы, деревья, поставлена ограда и прочие детали, сначала шли 6 зданий линейного ускорителя, соединённые между собой, поэтому походившие на одно здание длиной в 20 метров и шириной в 84 метра, то за ним уже были построены 3 соединённых между собой здания, также длиной 20 метров, а когда завершится все 6 зданий в ряду, шириной в 120 метров и наконец, ещё один идентичный ряд с той же шириной и длиной. За ним как раз и шёл сам зал конференции.

Весь зал внутри имел 4 этажа, соединённые между собой, при этом 2 из них были погружены под землю, а 2 выходили наверх. В ширину этот зал был 90 метров и чуть меньше предыдущего ряда зданий, а длину составлял 50 метров. То есть имел площадь в 4500 квадратных метров, при этом если же сцена занимала 1/8 от общей площади или 562,5 квадратных метра, то оставалось 3937,5 квадратных метра, то есть на первом этаже уже могло уместится 1968 человек, и почти столько же на последующих этажах, в сумме же в этом зале умещалось 7875 человек, что было просто ошеломительно при высоте зала порядка 12 метров!

Для постройки этого зала использовались оба имеющихся малых принтера. При той же толщине стенок в 1 м и высоте пола в этот же метр и ширине слоя в 10 см, необходимо изначально было пройти по площади 450 км, двигаясь конструкции при этом. Далее для стен в 50 метров длину и целых 20 метров в высоту уходит 200 км и для стен в 90 м тратится 360 км, также и для крыши 450 км. Для этажей с площадью в 3937,5 квадратных метра или при ширине в 90 метров с длиной в 43,75 необходимо будет затратить для одного этажа 393,75 км или для 3 этажей 1181,25 км, в сумме получается 2641,25 километров.

В итоге на создание этого зала у одного принтера потребовалось бы 15 часов 40 минут и 30,27 секунд, но поскольку работало 2 таких устройства, здание было завершено за 7 часов 50 минут и 15,13 секунд.

Пока работа шла в том темпе, что первая модель была готова в 5 часа утра, вторая в 8 часов утра, далее большая модель была завершена в 12 часов дня, а все малые здания были уже построены в 10 часов дня, поскольку работало 2 принтера вместе. Затем они начали создавать зал конференции и уже к шести часам вечера завершили. К тому времени три больших зданий уже были построены и строились следующие. Затем к 3 часам дня был готов второй «кубик», который приступил к работе, когда первый закончил 3 здания, как уже говорилось и уже вместе с ним к 5 часам вечера они закончили все 6 больших зданий для циклотронов.

Теперь оставалось ещё 6 таких же зданий для генерации энергии и дальше оставались небольшие работы. Меблировка, ремонт, украшение предыдущих зданий шло полным ходом. За рекордные 2 часа уже был готов третий большой принтер, который вместе с имеющимся двумя смог за 2 часа закончить оставшиеся 6 зданий. Поэтому уже к 7 часам вечера всё здание с 18 блоками и залов было полностью готово и продолжались лишь работы по украшению изнутри.

Крыши также уже были накрыты, а благодаря созданию всего 5 принтеров вместо 18, граф смог сэкономить чуть меньше половины от названного изначально бюджета, для постройки всего оборудования и зданий соответственно. Наконец, дело было закончено с огромным выигрышем в 11 часов от названного времени. Они хотели закончить строительство в 6 часов утра 11 мая, а получилось, что они уже закончили в 7 часов вечера 10 мая, это была победа!

И вот была выполнена просто титаническая работа, эпохальная!

Целью данного описания было донесение основной идеи того, что всё возможно, даже такая удивительная задача как постройка целой электростанции менее чем за 2 сутки, хоть и с привлечением огромного количества самых различных ресурсов, а также с использования новейшей технологии трёхмерной печати зданий, с остановкой на этапе завершения печати первого этажа и установкой конструкции, поверх коих параллельно будет продолжаться печать очередного этажа.

Использованная литература

1. Архитектурные конструкции. В 3 книгах. Книга 1. Архитектурные конструкции малоэтажных жилых зданий; Архитектура-С – Москва, 2006. – 248 c.

2. Байер В. Е. Архитектурное материаловедение; Архитектура-С – Москва, 2006. – 264 c.

3. Белоконев Е. Н., Абуханов А. З., Белоконева Т. М., Чистяков А. А. Основы архитектуры зданий и сооружений; Феникс – Москва, 2009. – 336 c.

4. Бойтемиров Ф. А., Головина В. М., Улицкая Э. М. Расчет конструкций из дерева и пластмасс; Академия – Москва, 2007. – 160 c.

5. Гиясов Адхам Плоскостные и пространственные конструкции покрытий зданий; Издательство Ассоциации строительных вузов – Москва, 2008. – 144 c.

6. Гребенник Р. А., Гребенник В. Р. Монтаж стальных и железобетонных строительных конструкций; Академия – Москва, 2009. – 288 c.

7. Григорьев И. В., Прокопьев В. И., Твердый Ю. В. Деформирование, устойчивость и колебания оболочечных конструкций; Издательство Ассоциации строительных вузов – Москва, 2007. – 208 c.

8. Девятаева Г. В. Технология реконструкции и модернизации зданий. Учебное пособие; Инфра-М -, 2003. – 256 c.

9. Иодо И. А., Потаев Г. А. Градостроительство и территориальная планировка; Феникс – Москва, 2008. – 288 c.

10. Кашкина Л. В. Основы градостроительства; Владос – Москва, 2005. – 248 c.

11. Маилян Л. Р., Лазарев А. Г., Сеферов Г. Г., Батиенков В. Т. Конструкции зданий и сооружений с элементами статики; Инфра-М -, 2010. – 688 c.

12. Маилян Р. Л., Маилян Д. Р., Веселев Ю. А. Строительные конструкции; Феникс – Москва, 2010. – 880 c.

13. Маклакова Т. Г. Архитектурно-конструктивное проектирование зданий. Том 1. Жилые здания; Архитектура-С – Москва, 2010. – 328 c.

14. Миронов В. В., Миронов Д. В., Чикишев В. М., Шаповал А. Ф. Использование мягких геосинтетических оболочечных конструкций в строительстве; Издательство Ассоциации строительных вузов – Москва, 2005. – 573 c.

15. Митюгов Е. А. Курс металлических конструкций; Издательство Ассоциации строительных вузов – Москва, 2008. – 120 c.

16. Никулин А. Д., Шмитько Е. И., Зуев Б. М. Проектирование предприятий строительных материалов, изделий и конструкций; Проспект Науки – Москва, 2006. – 352 c.

17. Понамарев А. Б. Реконструкция подземного пространства; Издательство Ассоциации строительных вузов – Москва, 2006. – 232 c.

ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИИ ФОТОННОГО ТУННЕЛИРОВАНИЯ ДЛЯ ПРЯМОЙ ТЕЛЕПОРТАЦИИ

Алиев Ибратжон Хатамович

Студент 2 курса факультета математики-информатики Ферганского государственного университета

Ферганский государственный университет, Фергана, Узбекистан

Аннотация. В работе описан метод, являющийся аналогом квантовой телепортации при перемещении определённых объектов с указанием некоторых парадоксом. При этом большое внимание уделяется общему представлению процесса, а также приводятся математические закономерности. Данный метод также является своего рода решением вопроса этической проблемы классической квантовой телепортации.

Ключевые слова: фотонное туннелирование, телепортация, переход, ядерные реакции, запутанные частицы.

Annotation. The paper describes a method that is analogous to quantum teleportation when moving certain objects with the indication of some paradoxes. At the same time, much attention is paid to the general representation of the process, and mathematical patterns are also given. This method is also a kind of solution to the ethical problem of classical quantum teleportation.

Keywords: photon tunneling, teleportation, transition, nuclear reactions, entangled particles.

Сегодня активно известен феномен квантовой телепортации, позволяющий запутать две определённые частицы, связывая их спины между собой, при этом можно связать чаще всего два фотона или электрона. Для связывания фотонов чаще всего используется прохождение луча лазера (с более однородными характеристиками) и при необходимости к коему больше свойственна интерференция через нелинейных кристалл с разделением на два дополнительных луча. Чаще всего это бета-борат бария, триборат лития, титанил фосфата калия, ниобат калия или более активно применяемые L-аргинин малеин дигидрат или 2-L-метионил маленин дигидрат.

Подобным образом также можно запутать и два электрона, но проблема заключалась в том, что при контакте подобного рода частиц с другими с последующем изменением их спина, вторая запутанная частица, находящаяся на сколько угодно большом удалении превращалась в точную копию задаваемой частицы, когда же та разрушалась полностью. Но тут встаёт изначально вопрос доставки второй частицы – фотона или электрона до места, куда нужно направить сам объект и это уже само по себе вызывает как неудобства, так и слишком большую трату времени для перемещения хотя бы на другие экзопланеты расположенные в удалении не меньше, чем десятки световых лет.

Более того, само утверждение уничтожения изначального объекта приводит к своего рода странным ощущениям относительно этичности подобного рода экспериментов, поскольку при использовании уже макрообъектов или биологических организмов, изначальное существо попросту уничтожается и остаётся его копия. Сотоварищем, нежели заменой такой идеи выступает новая теория фотонного туннелирования, основанная на следующей идее.

Любая части в любой системе имеет точную определённую энергию, которую можно передать в виде волны, в частности в виде фотона или гамма-кванта, а также в виде частицы с большой энергией. Для данного примера будут использованы дейтроны, в которые будут генерироваться все частицы организма согласно (1), при бомбардировке потоком электронов с определёнными энергиями.

Но стоит учесть, что в данном случае энергия электронов подобрана резонансно, то есть с таким расчётом, чтобы увеличить вероятность данного канала реакции по отношению к другим до 96—97%, как это происходит на энергетических резонансных ядерных реакциях с повышенной монохромотичностью. А поскольку в организме существует не более 1—5 частиц с почти идентичной энергией, то в 4,85 случаях из 5 частиц, будут превращены в такие дейтрон-нейтронные пары верно, а остальные части могут превратить в самый вероятностный канал, образовав другие более массивные частицы, чаще всего ядра, по энергиям которых легко понять к какой из пар они относятся.