banner banner banner
Шелест гранаты
Шелест гранаты
Оценить:
Рейтинг: 5

Полная версия:

Шелест гранаты

скачать книгу бесплатно

Шелест гранаты
Александр Прищепенко

Эта книга об оружии, но не только – она открывает причудливую мозаику явлений физического мира: химические и ядерные взрывы, разделение изотопов и магнитная гидродинамика, кинетика ионов в плотных газах и ударные волны в твердых телах, физика нейтронов и электроника больших токов, магнитная кумуляция и электродинамика. Обо всем этом автор рассказывает, не прибегая к сложному аппарату высшей математики. Для тех, кто пожелает ознакомиться с этими явлениями подробно, им же написано рассчитанное на подготовленного читателя учебное пособие для университетов и военных академий «Взрывы и волны». В книге, которую держит в руках читатель, он найдет также исторические экскурсы, пронизанные иронией рассуждения о политике и политиках, а также – о персонажах замкнутого мира военной науки. Во втором (электронном) издании переработан текст, существенно расширен иллюстративный ряд.

Александр Борисович Прищепенко

Шелест гранаты

1. Манящий запах пороха

…Момент был сочтен удачным: родители были заняты застольными разговорами. Достав малую саперную лопатку, я начал копать недалеко от подсобки. Земля поддавалась легко. Наконец, когда ямка достигла глубины штыка лопатки, я достал коробочку из-под духов, где, завернутые в фольгу, лежали примерно 100 граммов ДНДАФ[1 - «Дуя на воду», я решил не называть полные «имена» опасных веществ.] – результат недельных химических опытов.

ДНДАФ – стойкий краситель: кожа рук более недели после завершения «производства» не теряла грязно-коричневый оттенок, который нельзя было соскрести даже пемзой. Но целью являлось, конечно же, не получение красителя: ДНДАФ был мощным взрывчатым веществом (ВВ), причем инициирующим – взрывался даже от слабой искры. В развернутую фольгу была помещена лампочка от карманного фонаря с разбитым баллоном и спиралью, обмазанной размягченной в ацетоне и затем высушенной пороховой смесью. Два провода, ведущих к лампочке, были прокинуты в сторону от «шахты», которая была засыпана и тщательно утрамбована. Мелькнула мысль положить сверху еще и тяжелый камень, но ангел-хранитель и лень не допустили такой глупости: при неблагоприятном стечении обстоятельств камень мог бы и «заплясать» на голове «руководителя испытаний». Наконец, я лег на землю в десятке метров от «шахты», взял в одну руку фотоаппарат, а пальцем другой (с намотанным на него проводом) стал нащупывать контакт батарейки…

Рис. 1.1 Неудавшийся «камуфлет»

…Контакт был замкнут неожиданно: внезапный сильный удар по ушам оглушил, он же вызвал судорогу пальца на спуске фотоаппарата (рис. 1.1). Не было никакого протяжного гула, «как в кино». Вверх взлетела туча дыма, песка и какие-то ошметки.

Задуманный камуфлет – подземный взрыв без выброса газообразных продуктов на поверхность – явно таковым не получился. Ни с чем не сравнимый запах этих газов щипал ноздри и легкие. Мне суждено было вдохнуть его тысячи раз…

… По ушам «руководителю испытаний» хлопнула тогда ударная волна, а в шахте произошла детонация. Эти явления тесно связаны.

Движение поршня, как и любое другое, можно представить как последовательность очень малых перемещений. Каждое из них формирует возмущение: чуть-чуть поджимает газ впереди себя и сообщает сжатой массе скорость поршня (рис. 1.2). В этой слабой (акустической) волне, скорость фронта равна скорости звука, но в сжатом газе скорость звука больше, чем в несжатом, и, поскольку дальнейшие возмущения пойдут по сжатому, они будут иметь большую скорость. Кроме того, сам сжатый газ движется со скоростью поршня и, следовательно, относительно цилиндра скорость второй волны равна сумме скоростей: поршня и увеличенной – звука. Эта сумма и подавно превосходит скорость первого возмущения, поэтому вторая волна сжатия непременно догонит первую и усилит ее. Но перегнать ее она не сможет, так как для этого ей пришлось бы перейти в несжатый газ, где скорость распространения возмущения опять равна начальной скорости звука. Таким образом, поршень погонит удаляющуюся от него волну сжатия увеличивающейся амплитуды, которая образуется в результате слияния отдельных слабых возмущений. Со временем, количество перейдет в качество: на фронте волны образуется резкий скачок уплотнения, в котором будет расти давление – до сколь угодно больших значений, в зависимости от скорости поршня. Такое резкое, происходящее на расстоянии порядка длины свободного пробега молекул изменение параметров вещества – и называется ударной волной.

Рис. 1.2

Вверху: образование ударной волны поршнем, вдвигаемым в цилиндр с газом (в «красной» области – ударно-сжатый, нагретый и более плотный газ). Внизу: ударно-волновой процесс в конденсированном веществе. Срабатывание электродетонатора (его провода видны в правой части снимка) привело к формированию в заряде динамита ударной волны, за которой последовала химическая реакция (произошла детонации этого мощного взрывчатого состава)

В сформировавшейся УВ все параметры связаны взаимнооднозначным соответствием. Иными словами: для идентичных начальных условий невозможно сформировать волны, например, с одинаковыми скоростями, но разными давлениями во фронте или температурами. Это существенно упрощает многие эксперименты: достаточно измерить скорость или любую другую характеристику УВ – и остальные ее параметры можно определить по таблицам. Правда, подобное справедливо лишь для однократного ударного сжатия вещества. Если же оно сжимается несколькими волнами – тут возможны варианты.

УВ не только сжимает, она также и нагревает вещество, из-за чего плотность сжатого вещества не становится сколь угодно большой при неограниченном росте давления, а стремится к конечному пределу (воздух, например, сжимается не более чем в 6 раз). Предел ударного сжатия существует и для конденсированных веществ, а, поскольку сжатие конечно, массовая скорость вещества (скорость поршня) всегда меньше скорости фронта (рис. 1.3).

Рис. 1.3

«Карандашная» иллюстрация сжатия вещества в УВ. Моделируется «воздушный» врыв и УВ распространяется сверху вниз. Пусть сжатие – двукратное, тогда в невозмущенном веществе зазоры должны быть равны толщине карандашей

(так расположены карандаши зеленого цвета, имитирующие невозмущенное вещество). Начнем двигать верхний карандаш. Выбрав зазор, этот карандаш толкнет соседний, тот, пройдя зазор, – следующий и т. д. «Ударное сжатие» привело к смещению карандашей, захваченных процессом, «повышению плотности вещества». При этом «фронт» процесса (граница области, где находятся карандаши без зазоров между ними) всегда опередит любой из двигающихся карандашей. Чем больше сжатие (больше расстояние между карандашами), тем меньше различаются массовая скорость и скорость фронта, но отличие существует всегда. Цветами карандашей автор попытался проиллюстрировать и температурный профиль волны

Но все это относится к субстанциям инертным, а ведь есть и такие, распад метастабильных[2 - То есть устойчивых относительно, могущих распасться при незначительном внешнем воздействии, в данном случае – нагреве.] молекул которых происходит с выделением энергии. Достаточно мощная УВ как раз и инициирует этот процесс: за ударным фронтом вещество нагревается и начинается химическая реакция. Вначале энергией этой реакции фронт «подпитывается», ускоряясь, затем устанавливается равновесие. Такой процесс называется детонацией, а установившаяся скорость УВ и химической реакции за ее фронтом – скоростью детонации, которая для современных ВВ близка к 10 км/с.

Понятно, что термодинамические характеристики вещества изменяются при протекании в нем реакции, но явление детонации вполне возможно описать в рамках теории УВ: скорость детонации относительно продуктов реакции равна местной скорости звука в продуктах реакции (запомним это!).

УВ как явление, вызывающее детонацию, упомянуто не случайно, именно таков основной механизм инициирования бризантных (дробящих) взрывчатых веществ (ВВ), таких как пикриновая кислота. Назвали их дробящими потому, что плотность кинетической энергии газов образованных детонацией столь высока, что они дробят преграды на множество осколков и метают их с большой скоростью. Однако если небольшое количество бризантного ВВ поджечь, то, не находясь в ограниченном объеме, оно, хоть и довольно энергично, сгорит. Правда, горение может перейти в детонацию, если сопровождается повышением давления (как это было, например, на атомной подводной лодке «Курск», где герметичное зарядное отделение торпеды нагревалось пламенем горящего двигателя другой торпеды). Существуют и такие вещества, в которых переход горения в детонацию даже вне замкнутого объема весьма быстротечен. Такие ВВ (например, те же фульминаты) называют инициирующими. В нужный момент в них возбуждают детонацию – огневым или ударным импульсом – а далее они возбуждают тот же процесс в бризантных ВВ.

В отличие от инициирующих, бризантные ВВ считаются (и почти справедливо) нечувствительными к механическим воздействиям: когда отказывают взрыватели[3 - Не только. Стрельба «на рикошетах» ведется на настильных траекториях и с установкой взрывателей на замедление. Отразившись (рикошетировав) от грунта, снаряд затем набирает высоту и разрывается в воздухе. Такая стрельба менее точна, зато поражение целей осколками более эффективно. Аналогично выполняется и низковысотное бомбометание – штурмовыми бомбами прочной конструкции.], как правило, взрывов не происходит в снарядах, ударившихся о броню (рис. 1.4) и отлетевших от нее, в бомбах, сброшенных летящим на околозвуковой скорости самолетом и расколовшихся при ударе об угол здания. Однако редчайшее стечение обстоятельств может привести и к совершенно иным последствиям.

Рис. 1.4

Экспонат военного музея в Вене: бронеколпак времен Первой мировой войны. Снаряд, попавший ближе к вершине, разорвался: об этом свидетельствуют радиальные «лучи», расходящиеся от вмятины. А вот в снаряде, вмятина от которого видна левее, вероятно, отказал взрыватель

Реакция в ВВ начинается в микроскопических очагах разогрева (горячих точках), например – в воздушных включениях (рис. 1.5).

Рис. 1.5

При быстром сжатии, температура в пузырьках воздуха в жидких ВВ или промежутках между кристаллами спрессованного ВВ выше, поскольку теплоемкость воздуха меньше, чем у окружающего их конденсированного ВВ.

Для опыта, иллюстрирующего это явление, понадобится капля эфира, старый шприц и молоток. Наберем каплю эфира в шприц, а затем ударим молотком по поршню (поберечь пальцы!) – и увидим фиолетовую вспышку его паров. Говорят, что таким способом американские солдаты добывали огонь в джунглях Вьетнама. Понятно, эфира у них не было, но нагрев воздуха приводил к тлению кусочка высушенного угля. Правда, как ни старался автор, повторить этот трюк ему не удалось

Возникают локальные перегревы также при течении, трении, переламывании и деформации.

…Если у читателя есть возможность получить щепотку охотничьего зернёного черного пороха – пусть попробует перетереть ее в фарфоровой ступке, перед тем защитив глаза очками. При перетирании будут слышны негромкие потрескивания, ощущаться легкий запах серы, а в сумерках – видны неяркие вспышки между ступкой и пестом. Это – «сигналы» от небольших скоплений горячих точек, образовавшихся при дроблении зерен и трении. Реакции в очагах малых размеров затухают: теплоотвод превышает тепловыделение. Чтобы реакция стала самоподдерживающейся, должна случайно возникнуть концентрация большего количества горячих точек вблизи друг от друга. Когда воздействие на ВВ мощное – в таких центрах зарождения реакции нет недостатка и детонация начинается гарантированно. А вот если воздействие слабое, то инициирование горения или детонации будет вероятностным.

В воспоминаниях В. Цукермана – участника создания советского ядерного оружия – описан случай, когда на испытательной площадке «ни с того, ни с сего» загорелся (а мог бы и сдетонировать!) большой шаровой заряд ВВ. Была сочинена скрыто-издевательская объяснительная записка: над зарядом, мол, пролетела и погадила птичка и та капелька послужила линзой, сконцентрировавшей солнечные лучи. На самом-то деле заряд просто неуважительно «тронули», но участники опыта предвидели, что сладчайшую возможность, грозно насупив брови, задать дурацкий вопрос: «Вы отдаете себе отчет о последствиях, если такое случилось бы с ядерным зарядом?!» руководящие товарищи не упустят – и направили грозу на «птичку». Перед принятием на вооружение все взрывчатые составы проходят испытания прострелом пулей и в огромном числе таких опытов не загораются и не детонируют, но вот, случается…

Ясно, что если температура ВВ повышена, то и для создания очага реакции необходимо меньше горячих точек – чувствительность ВВ возрастет. Ну а если понизить температуру ВВ? В 70-х годах был разработан метод разминирования, предусматривавший охлаждение взрывоопасного предмета жидким азотом. Охлажденное устройство можно было «разобрать», постукивая по нему молотком (при таких температурах и металлы очень хрупки).

А при нормальной температуре – можно ли понизить чувствительность ВВ? Для этого надо удалить воздушные включения

– области концентрации горячих точек. После прессования, под большим давлением и при высокой температуре, в присутствии небольшого количества растворителя, мощная взрывчатка (гексоген) приобретает плотность, близкую к плотности монокристалла, и становится полупрозрачной. Коллега автора выточил из «агатированного» ВВ пепельницу и любил гасить в ней окурки, сообщая посетителям, из чего пепельница сделана и наслаждаясь произведенным впечатлением. Автор отнесся к хвастовству «гусара» неодобрительно.

Еще одна особенность ВВ – они не могут не разлагаться. Это – следствие из второго начала термодинамики, в соответствии с которым реакция, сопровождающаяся выделением энергии, самопроизвольно протекает всегда.

«Начало» ничего не сообщает о скорости такой реакции, но вариантов достаточно. Если вещества много, а начальный импульс существенен – возможна детонация или горение (взрывное или довольно вялое). Если возмущения нет – все зависит от условий хранения. Иногда признаки разложения могут не быть заметны в течение сотен лет; бывает, что увеличивается чувствительность к удару или трению, а иногда продукты разложения ускоряют распад и все заканчивается самовоспламенением и взрывом. Требование стабильности ограничивает плотность химической энергии и в современных ВВ она не превышает 10000 Дж/куб. см[4 - Что, однако, на пять порядков больше плотности энергии в конденсаторе и позволяет развить при детонации мощность в многие тераватты).]. Может быть, и можно синтезировать более мощное вещество, но чувствительность и стойкость его будут такими, что к нему небезопасно станет приближаться.

Из многих тысяч взрывчатых соединений отобрано всего несколько таких, которые сравнительно стабильны, но достаточно действенны при возбуждении детонации. На их основе созданы разнообразные взрывчатые материалы. В годы «холодной войны» в «быках» многих стратегически важных мостов в Западной Европе были блоки, наполнителем бетона которых служил октоген: марш численно превосходящих советских танковых соединений рассчитывали остановить, не тратя драгоценное время на заложение зарядов, а только – прилепляя куски пластита с детонаторами на известные саперам участки опор. Из композиций на основе октогена горячим прессованием получают прочные заряды ВВ – в них можно нарезать метчиком резьбу, и она будет хорошо держать винт. Правда, изготовление пресс-форм сложно, и иногда применяют менее энергоемкие литьевые составы. Используя вязкие присадки, можно получить и эластичные (с консистенцией латекса – мягкой резины) и пластические взрывчатые материалы (с консистенцией детского пластилина) – еще менее мощные. К тому же, скорость их детонации не очень стабильна, потому что технологически сложно добиться идеально-однородного перемешивания связки и наполнителя. Эластичный состав с высокостабильной скоростью детонации создали, не тупо, час за часом, перемешивая компоненты, а – подбирая характеристики ударного сжатия наполнителя и связки. Если скорости звука в связке и в продуктах детонации наполнителя будут близки, то и скорость звука в их смеси не будет зависеть от отклонений в соотношении компонент, а значит, скорость детонации будет постоянна[5 - Вспомним: скорость детонации равна местной скорости звука в продуктах реакции. Понятно, что связки не должно быть слишком много – иначе детонация может и затухнуть.]. Такая пара была подобрана: нитрат многоатомного спирта и один из видов синтетического каучука.

Скорость детонации этого состава менее 8 км/сек, (октогена – более 9 км/сек), но создан такой эластит (рис. 1.6) не ради получения рекордных параметров взрыва, а для детонационной автоматики, где главное – максимальная стабильность характеристик.

Рис. 1.6

Верхний ряд: американский листовой эластичный взрывчатый материал (ВМ) «деташит» с постоянной скоростью детонации. По требованию заказчика, в него могут быть добавлены красители разных цветов. Тот же ВМ выпускается в шнуровом варианте («детафлекс»), в пластиковой оплетке или без нее (центральный ряд), а также – в виде тонких (0,5 мм) лент (нижний ряд, слева). Для промышленных целей выпускаются жидкие ВМ (правее). Их, например используют для извлечения взрывом обломков сверл, застрявших в заготовках.

Бинарные ВМ (справа) повышают безопасность: они приобретают взрывчатые свойства, только когда смешивают их компоненты, по отдельности к взрывному разложению не способные

Кроме детонации с постоянной скоростью, возможны и нестационарные режимы. Сходящиеся детонационные волны (цилиндрические, сферические) ускоряются по мере уменьшения радиуса. На достаточно малых радиусах энергия химической реакции вообще перестает играть существенную роль, и возрастание параметров сжатия определяется только геометрическим фактором. Кстати, именно в сферически-симметричном случае возможно достижение экстремальных состояний вещества, хотя часто от даже имеющих дипломы технических вузов приходится слышать, что для получения наибольшего давления следует организовать «лобовое» столкновение тел. Видимо, тут сказывается юношеский опыт игры в футбол, при которой лобовые столкновения происходят часто, а сферически-симметричные – никогда.

Рис. 1.7

Движения вещества в морских и ударных волнах различны. Если выделить небольшую массу воды вблизи поверхности чудно окрашенного тихоокеанским закатом моря, то окажется, что в волне прибоя ее траектория напоминает эллипс или окружность, а плотность не меняется. В ударной волне вещество движется только в направлении распространения волны, вначале увеличивая свою плотность, а затем (если волну не поджимает какой-либо поршень) устремляется в обратном направлении, снижая при этом плотность (в так называемой фазе разрежения или разгрузки). В других главах книги речь пойдет о волнах электромагнитных, совсем уж на морские не похожих – распространяющихся со скоростью света колебаниях напряженности электрического и магнитного полей

Исторически сложилось так, что термин «волны» используется для обозначения многих явлений, в природе которых общего мало (рис. 1.7). Движение вещества при взрывных процессах подчиняется уравнениям гидродинамики, названию которых тоже не всегда соответствует область их применения: ими описываются не только движения жидкости (откуда и «гидро»), они используются дня решения очень многих задач. Возможно, одной из причин внедрения «волновой» лексики послужило то, что, например, процессы отражения УВ имеют сходство с волновыми. Натолкнувшись на твердую преграду, УВ может «отразиться» либо приобретя дополнительное сжатие (рис. 1.8), либо испытав разрежение вещества (вроде как с «потерей фазы»).

Критерием того, по какому сценарию это произойдет, является ударно-волновой импеданс – произведение плотности вещества на скорость звука в нем. Если преимущество в ударно-волновом импедансе за веществом преграды, отражается дополнительно «поджатая» волна, от преграды с меньшим импедансом – разреженная, но в любом случае веществу преграды будет передан импульс и оно начнет двигаться по направлению распространения УВ.

Рис. 1.8

Вверху: отражение ударной волны от преграды с большим ударно – волновым импедансом, чем у вещества в волне. В этом случае в отраженной волне возрастает не только давление, но и плотность вещества может превысить максимально достижимую при однократном ударном сжатии. Нижняя кинограмма: продукты детонации заряда ВВ цилиндрической формы, расширяясь, наталкиваются на преграды. В месте столкновений газ светится ярче, потому что там выше его температура. Газы взрыва «перехлестывают» через преграду, что действительно напоминает морской прибой, но это – не ударная волна, а движение массы вещества, плотность которого выше плотности окружающего воздуха. Ударная волна образуется впереди этого массопотока, из воздуха, сжимаемого им

Чем более массивна преграда, тем бо?льшую кинетическую энергию она приобретет в результате воздействия ударной или детонационной волны. Сообщение энергии оболочке заканчивается на некотором расстоянии от заряда (теоретически – пока давление продуктов взрыва существенно, а практически – на расстоянии, равном нескольким характерным размерам заряда).

Кстати, а те же пороха, от которых требуется только горение в зарядной каморе орудия (и при весьма высоких давлениях!) – могут ли детонировать?

Запросто: это было продемонстрировано после Первой мировой войны, когда оставшийся порох использовали при прокладке туннелей в Альпах. Все дело в мощности инициатора детонации: если она достаточна, могут «сыграть» не только пороха, но и вещества вообще взрывчатыми не считающиеся, например – удобрение из смеси нитрата и сульфата аммония. В 1921 г. на заводе в Германии скопилась огромная его гора, соли слежались, по мере надобности их куски откалывали небольшими взрывами. Когда же поступил крупный заказ, вес «откалывающих» зарядов значительно увеличили и сработали все 4500 тонн, совершив похожее на то (рис. 1.9), что произошло спустя более чем два десятилетия в Хиро?шиме.

Рис. 1.9

Последствия взрыва на заводе минеральных удобрений в германском Оппау. На фоне разрушенных цехов – воронка длиной 165 м, глубиной 19 м и шириной 95 м

Хотя взрыв такой смеси происходит с выделением сравнительно небольшой (на единицу ее объема) энергии, детонация стала возможной не только из-за мощного инициатора, но и из-за размеров заряда, который, в соответствии со сформулированным в середине XX века Ю. Харитоном критерием, должен превышать произведение скорости звука в веществе на время его разлета.

…Однажды автору довелось разъяснять процесс образования ударных волн школьнице: на нее произвел известное впечатление близкий грозовой разряд (рис. 1.10). Выслушав и рассмотрев рисунок, она задала каверзный, но свидетельствовавший о понимании проблемы вопрос: «А почему поезд метро в тоннеле не делает волну?» Быть может то, что беседовали мы на немецком, помешало мне рассказывать понятно и занимательно – девушка переключила свое внимание на другие обстоятельства. Что ж, постараюсь быть более убедительным в письменных объяснениях.

Рис. 1.10

Разряды молнии на землю чреваты катастрофами. Так, в 1769 г. молния попала в церковь Сен-Назера (Брешия, Италия), где хранилось 100 тонн черного пороха. Взрыв разрушил шестую часть домов города и унес жизни трех тысяч человек.

Молекулы воды – связки «положительного» водорода и «отрицательного» гидроксила (ОН). Их можно разделить механически, при соударениях, что и происходит в воздушных потоках. В грозовом облаке разделяются очень большие заряды – до тысячи кулон. Когда напряженность электрического поля между грозовым облаком и землей превышает пробивную, электроны приобретают энергию, достаточную для ионизации (это происходит вблизи облака, потому что на высоте плотность молекул ниже и электроны разгоняются дольше, приобретая большую энергию). Так формируется светящийся плазмоид – лидер (кадр 1). Носители заряда в нем двигаются по направлению поля, образуя проводящий канал и увеличивая напряженность. Рост напряженности приводит к появлению и других лидеров, «разветвляющих» разряд (кадры 2–3). Там, где один из лидеров оказывается наиболее близко к земле, напряженность возрастает настолько, что происходит встречный пробой, вызванный носителями противоположного знака (кадр 4). Далее ток (сила которого может достигать миллиона ампер) протекает по сформировавшемуся плазменному каналу с температурой в десятки тысяч кельвинов, где многие атомы при высокоэнергетичных столкновениях лишились своих электронов (кадр 5). Расширение канала приводит к охлаждению плазмы, рекомбинации (воссоединение носителей электричества разных знаков) и ослаблению ее свечения (кадр 6). На снимке справа – разряд молнии, спровоцированный длинным металлическим стержнем, выступающим над грунтом. Ток протекает не только по стрежню: произошли многочисленные разряды в воздухе, образовавшие «канат». В образованной расширяющейся плазмой ударной волне температура уже недостаточна для ионизации, происходит лишь возбуждение атомов (переход их электронов на более высокие энергетические уровни). При дальнейшем охлаждении и возвращении атомов азота в основное состояние испускаются кванты «голубого цвета» (области испускающего характерное свечение воздуха отмечены стрелками). «Удар по ушам» УВ от близкого разряда молнии весьма ощутим. На других фотографиях читатель увидит и фронт УВ, но, чтобы получить такие снимки, необходимы весьма кратковременная экспозиция и специальная подсветка процесса

Уолтер Лорд написал интереснейшую книгу «День позора» – о налете самолетов с японских авианосцев на базу ВМС США Пёрл-Харбор 7 декабря 1941 г. Лорд опросил ветеранов, рассказавших ему об «ужасных, раздиравших уши и легкие» взрывах японских бомб и торпед. Вес ВВ в каждой такой бомбе или авиационной торпеде – сотня-другая килограммов, но вот как описали очевидцы гораздо более мощный взрыв на линкоре «Аризона» (рис. 1.11):

«Бомба попала в палубу у башни № 2 главного калибра, пробила полубак и, взорвавшись внутри корабля, вызвала детонацию зарядов в боевых погребах. Огромный столб огня и дыма взметнулся вверх метров на 200, принимая форму огромного гриба. Грома взрыва почти не было. Свидетели говорят, что услышали что-то более похожее на гигантский вздох, нежели на гром. Грома не было, но ударная волна была ужасной. Она заглушила мотор на пикапе авиационного оружейника Харранда Квисдорфа, ехавшего по дороге к острову Форд[6 - Судя по карте – более чем в километре от места швартовки «Аризоны».].»

В этом описании всё станет на места, если заменить «детонацию зарядов» на «горение сотен тонн пороха»: бомба, вероятно, взорвалась чуть в стороне от пороховых зарядов и не возбудила в них детонацию, а подожгла осколками. Образовавшиеся при горении газы, которые после полного расширения заняли объем около миллиона кубометров, сформировали УВ, но не вблизи линкора, а на удалении в километр и более от него. Оружейнику Харранду Квисдорфу УВ наверняка сильно ударила по ушам, да и находившимся от «Аризоны» значительно дальше, чем он, скорее всего уже не показалось, что «грома не было».

Рис. 1.11

Американский линкор «Аризона»: на написанной перед войной картине и снятый любительской камерой 7 декабря 1941 г. в Пёрл-Харборе

Сформируется ли УВ и если да, то как близко к движущемуся телу, зависит от скорости тела и от того, насколько сжимаемому воздуху позволено «растекаться», сбрасывая избыточное давление. Летящий с небольшой скоростью биплан (рис. 1.12) воздух перед собой, конечно, слегка уплотняет, но не формирует ударную волну с резким скачком плотности, который было бы видно на носу машины. Другое дело – пороховые газы, вырвавшиеся из «Аризоны»: они расширялись во всех направлениях, так что сжатому на их фронте воздуху просто некуда было деваться – ему оставалось двигаться по нормали к фронту, поджимая все новые слои. Да и то, по нашим оценкам, такое течение привело к формированию УВ за тысячи метров от взрыва.

Рис. 1.12

Вряд ли кто-либо заподозрит, что древний биплан с поршневым двигателем и неубирающимся шасси преодолел звуковой барьер. Поджать (очень незначительно) воздух перед собой ему удалось, но ударная волна со скачком плотности не образовалась. Но за сжатием воздуха следуют его разрежение и охлаждение, и конденсация паров воды сделала эту часть течения видимой (верхний левый снимок).

Конструкция и тяга двигателей стратегического бомбардировщика В-52 не позволяют и ему достичь сверхзвуковой скорости, хотя летит он, конечно, быстрее биплана и зоны конденсации образуются за каждой выступающей деталью (справа).

Палубный истребитель F-14 предназначен для воздушного боя на сверхзвуковых скоростях, его крылья изменяемой геометрии сложены, а двигатели работают так, что там, где газы их выхлопа достигают моря, вздымаются огромные столбы воды. Но и он пока не преодолел звуковой барьер – иначе воздух не успевал бы расступиться перед истребителем и сжимался бы им в область конической формы, со значительной плотностью и резкой границей. Такой «конус» стал бы видимым и «сел» бы на носовую часть самолета – так, как это случилось с летящей со сверхзвуковой скоростью пулей (слева внизу).

Из-за скачка плотности воздуха, ударную волну можно, увидеть, так как с увеличением плотности растет и показатель преломления, что вызывает смещение лучей света. Скачок уплотнения выглядит, как чередующиеся полосы большей и меньшей освещенности. Снимок пули сделан в 70-е годы XX века, а методы теневой съемки были детально разработаны германскими учеными в годы Второй мировой войны. Из теории ударных волн следует, что образуются они не только в носовой части летящего тела, но и на его оконечности. Мы слышим двойной хлопок головной и хвостовой ударных волн от пролетевшего со сверхзвуковой скоростью самолета, потому что его длина достаточно велика и волны возможно различить. Ударных волн от летящей пули – тоже две (одна «сидит» на головной части, другая образуется за хвостовой), но размеры пули на три порядка меньше, чем самолета, и наш орган слуха их не различает

Если скорость движения превышает звуковую – УВ образуется, даже если воздух вокруг ничто не ограничивает (рис. 1.13): он просто «не успевает расступиться» и сжимается перед столь быстро летящим телом или движущимся газом. «Хлопки» самолета, пролетевшего со сверхзвуковой скоростью – выродившиеся на большом расстоянии в акустические, не способные ничего сломать или передвинуть ударные волны.

Рис. 1.13

Ударные волны возникают не только благодаря деятельности человека. Вверху: компьютерная реконструкция Тунгусской катастрофы, произошедшей над сибирской тайгой в 1908 г. Метеорит (точнее – метеороид) представлял собой ядро неплотного льда весом порядка миллиона тонн. В правой верхней части рисунка видно, что еще при полете ядра в сравнительно разреженном воздухе образовалась УВ (конус ее справа вверху). При входе в более плотную атмосферу, выделение тепла стало столь интенсивным, что метеороид взорвался, сформировав более мощную и иной формы УВ, которая свалила и сожгла лес на площади более 2000 кв. км. Размеры «бурелома» позволили спустя полвека оценить энерговыделение процесса: оно оказалось таким же, как и при взрыве 20 миллионов тонн тринитротолуола. Внизу: после взрывного извержения курильского вулкана Пик Сарычева, в нагретых прошедшей ударной волной облаках конденсированные частицы воды вновь превратились в прозрачный пар, благодаря чему появилось «окно», через которое из космоса и было сфотографировано явление. Известный человечеству рекорд взрывного энерговыделения, произошедшего на поверхности Земли, принадлежит вулкану Кракатоа: при извержении 1883 г. он был оценен, как эквивалентный пяти миллиардам тонн тринитротолуола. В воздух при этом было выброшено около 6 кубических километров пепла, а выродившаяся в акустическую ударная волна была слышна на удалении 4800 км.

Образуют «терзающую легкие и уши» ударную волну выстрел и детонация – потому что газы и в том и в другом случае движутся быстрее звука. На рис. 1.14 видно, что стрелок защитил свои уши от неприятного воздействия ударных волн. Тот же эффект дал бы и глушитель. Ну а чтобы сделать «молчаливой» гаубицу, для «гашения» куда большей, чем у револьвера, энергии ее газов, требуется и глушитель соответствующих размеров.

Рис. 1.14

Слева – выстрел из револьвера «Магнум» и образование при этом ударных волн. Внешняя, сферическая сформирована воздухом, вытесненным из ствола пулей, а внутренняя, также сферическая – пороховыми газами, вырвавшимися из ствола; конические ударные волны образованы летящей пулей. Плотность энергии внешней волны убывает с расстоянием, УВ замедляется. Видно, что впереди стрелка внутренняя УВ догнала и усилила внешнюю, заставив ее двигаться быстрее. Скорость ударной волны всегда превышает скорость звука в невозмущенной среде, где она распространяется, и обгоняет УВ звук тем заметнее, чем выше давление в ее фронте. Если это давление незначительно, то такую волну называют вырожденной: она мало чем отличается от акустической. В центре: глушитель, укрепляемый на стволе, значительно ослабляет звук выстрела: пороховые газы, сообщив вылетевшей из ствола пуле скорость, далее не расширяются свободно, а «расплываются» в отсеках глушителя: летящая пуля последовательно «открывает» для них все новые отсеки, в каждом последующем из которых давление меньше, чем в предыдущем. Когда пуля вылетает из глушителя, газы выходят из него уже с небольшой скоростью, не образуя ударную волну. Справа: 155-мм самоходная гаубица ведет огонь с использованием глушителя, громкий звук выстрела не демаскирует орудие

В метро поезд движется намного медленнее, чем расширялись пороховые газы, вырвавшиеся из «Аризоны», и уж тем более медленнее, чем газы детонации японских бомб и торпед. Мешают образованию ударной волны и помещения станций: в них, как в глушителе, «расплывается» воздушный поток. Так что ударной волны в метро можно не опасаться: длина тоннелей для этого недостаточна, хотя начальная фаза течения газа формируется: перед прибытием поезда стоящие на платформе ощущают «ветер» своими лицами…

…Сквозь шум в ушах начали пробиваться женский визг, доносившийся с дачной веранды, под аккомпанемент дружного бреха окрестных бобиков. «Сейчас выпорют» – мрачно подсказало сознание (такое, хотя и очень редко, случалось). Но на крыльце показались слегка подвыпившие и хохочущие отец и его приятель, генерал-танкист. Генерал, с притворной строгостью насупив брови, проревел: «Слушай, женщины будут просто в отчаянии, если ты развалишь эту халупу!» Я понял, что порки на этот раз не будет…

1.1. Во владениях Стикс[7 - Нимфа реки, окружающей царство мертвых.]

Я не помню своего прадеда. До меня дошла лишь его присказка: «А ты мне куповала?» с которой он, судя по всему – не дурак выпить, приставал к прабабке. Эти освященными многими годами слова стали традиционными и для потомков прадеда за обеденным столом, хотя алкоголь ими употреблялся весьма умеренно.

Григорий Игнатьевич Прищепенко (рис. 1.15), мой дед, родился в 1886 г. под Ростовом на Дону, в семье крестьянина. В юности он приобрел навыки живописи и достиг профессионального уровня: расписывал церкви. Ремесло церковного художника обеспечивает достаток и располагает к нежеланию каких-либо перемен в жизни, но дед обладал, к тому же, еще и довольно острым умом. Григорий Игнатьевич сменил профессию, став электромонтером на железнодорожной станции Прохладная (через которую более чем полвека спустя много раз пришлось проезжать его внуку, направлявшемуся на полигон). По рассказам, дед в то время позволял себе критически комментировать действия властей, хотя язык его все же был недостаточно остр, чтобы его обладателя взяла на заметку полиция. Так или иначе, смена профессии была своевременна: через несколько месяцев ««Божiею милостiю Николай Вторый, Императоръ и Самодержецъ Всероссийскiй, Царь польскiй, Великий князь финляндскiй и прочая и прочая и прочая» разразился высочайшим манифестом, в начале которого звучали нотки обиды человека, оскорбленного в святых для славянина чувствах: «С полным единодушием и особою силою пробудились братские чувства русского народа к славянам, когда Австро-Венгрия предъявила Сербии заведомо неприемлемые для Державного государства требования. Презрев уступчивый и миролюбивый ответ Сербского правительства, отвергнув доброжелательное посредничество России, Австрия поспешно перешла в вооруженное нападение, открыв бомбардировку беззащитного Белграда». Далее из «Манифеста» хлестала обида продувшегося в очко игрочишки – дернул карту себе, да с перебором: «Вынужденные, в силу создавшихся условий принять необходимые меры предосторожности, мы повелели привести армию и флот в военное положение», однако, вопреки «заверению Нашему, что принятые меры отнюдь не имеют враждебных ей целей, <Австро-Венгрия> стала домогаться немедленной их отмены и, встретив отказ в этом требовании, внезапно объявила России войну.»

Рис. 1.15

Слева – автопортрет (акварель) Григория Игнатьевича Прищепенко, моего деда. Справа – бабушка, Пелагея Александровна

И, действительно: надо же было Австро-Венгрии уродиться столь непроходимой идиоткой, чтобы в припадке безумия «домогаться» отмены такой до предела лишенной враждебности меры, как объявление о мобилизации[8 - Упреждение в развертывании и боевом применении войск представлялось для Центральных держав необходимым, поскольку, по завершении у противника (России) мобилизации, его численное превосходство на театре становилось весьма существенным.]!

Упреждение в развертывании и боевом применении войск представлялось для Центральных держав необходимым, поскольку, по завершении у противника (России) мобилизации, его численное превосходство на театре становилось весьма существенным.

Основным в данной ситуации был вопрос, что еще поставить на кон, но как раз на этот счет у игрочишки сомнений не было: «В грозный час испытания да будут забыты внутренние распри. Да укрепится еще теснее единение Царя с Его народом, и да отразит Россия, поднявшаяся, как один человек, дерзкий натиск врага.»

Поначалу-то проблем не предвиделось. Под бренчание поэтических лир, предрекавших, что:

И вновь, как прежде, мы ответим
За Русь мильонами голов,
И вновь, как прежде, грудью встретим
И грудью вытесним врагов!

на призывные пункты ломанулись толпы заволновавшихся о «судьбе славянства». Правда, пииты (в данном случае – господин Н. Агнивцев) вовсе не предполагали, что среди «миньонов» окажутся их собственные головы. Надежда была на то, что:

Пока оружия не сложит
Раздутый спесью швабский гном,
Пусть каждый бьется тем, чем может:
Солдат – штыком, поэт – пером[9 - Должен признаться, что не люблю поэзию, сам никогда ею не грешил, но, с другой стороны, иногда четверостишие передает идиотизм эпохи столь точно, что его не заменит десяток вырезок с выступлениями государственных деятелей. К сожалению, данные о многих авторах цитируемых стишков у меня не сохранились, за что приношу искренние извинения.].

Последнее из пожеланий опередило время: его, «озвучивали» (до чего омерзительно это жаргонное словцо!), скатываясь до плагиата, луженые глотки «агитаторов, горланов, главарей», требуя, «чтоб к штыку приравняли перо». Впоследствии штык-перья воинов этой славной когорты, ряды которой никогда не убывали, разили на бумаге врагов, не забывая пописывать об «оружии особого рода», о том, что «слово на той войне» ценилось «со снарядами наравне, от орудий любых калибров», и что «поэт в России – больше, чем поэт».

Очевидно, применив, пусть и бессознательно, метод неполной индукции[10 - Метод доказательств в математике. Сущность его поясняет аналогия. Допустим, выкована цепь. Первое ее звено проверили, испытав его нагрузкой. Потом, при выковывании каждого последующего звена испытывали той же нагрузкой его, в соединении с предыдущим. Выполнение этих условий (надежность как первого звена, так и соединения каждого из последующих звеньев с предыдущим) является необходимым и достаточным для того, чтобы быть уверенным в прочности всей цепи. Этот метод иногда называют методом полной индукции. Неполная индукция – доказательство прочности ограниченного числа звеньев.] и сформулировав: «железнодорожник в России – значительно больше, чем железнодорожник», дед воспользовался тем, что людей этой ценной профессии не призывали в армию. К тому же, у жены, Пелагеи Александровны (в девичестве – Подколзиной, 06 августа 1915 года родился сын Борис.

Чудовище Мировой войны оказалось прожорливее, чем ожидалось, но тем ярче должна была воссиять слава победоносного полководца. Игрочишка суетливо поспешил утвердиться на посту Верховного главнокомандующего. Был он любящим мужем и отцом, но из проявленных им «в грозный час испытания» качеств выделялись никогда не изменявшее ему упрямство да умение подбирать для подвергающегося военной нагрузке сложного государственного механизма исключительно ржавые, с сорванной резьбой «винтики» – людей, личная преданность которых трону могла соперничать разве только с их некомпетентностью в порученном деле. Так что позже, летом 1918 года за все пришлось-таки расплатиться лично, да не только своей жизнью, но и жизнями детишек, виноватых лишь в том, что были они одной с неудавшимся полководцем крови.

За войной последовала революция, а за ней – и новая война, Гражданская. В железных дорогах нуждались все конфликтующие стороны, и это давало шанс уцелеть.

Борис подрастал, окончил 7-летнюю школу в Гудермесе, слесарил в паровозном депо, а в 1932 г. поступил в Новочеркасский индустриальный институт. Доучиться молодому комсомольцу не дали, «мобилизовав» на Ростовский завод сельскохозяйственных машин. Большевистская власть не считалась с желаниями молодых людей и те, кто отказывался от таких предложений, потом имели основания пожалеть.

Тем временем Григорий Игнатьевич переехал в Москву: не давало покоя желание проявить талант инженера. В Центральный аэрогидродинамический институт им был послан проект «махолёта», причем была даже построена демонстрационная модель (рис. 1.16). Можно сказать, что дед начал свою карьеру так же, как герой одного из тогдашних кинофильмов, который сочинил о себе самом нижеследующее.

Рис. 1.16