скачать книгу бесплатно
Рис. 1.19. Оборудование для обесшламливания и обезвоживания мелкого машинного класса:
а – типа ГИСЛ; б – типа ГВЧ; в – багер- элеватор
Параметрами обогащения в тяжелосредных гидроциклонах [36] рекомендуется для угля, антрацита и горючих сланцев применять машинный класс крупностью от 0,5–1 мм до 6, 13, 25, 40 мм либо от 6, 13 до 25, 40 мм. При переобогащении промпродукта крупность машинного класса рекомендуется в пределах от 0,5 до 6, 13 или 25 мм.
На зарубежных фабриках диапазон крупности обогащаемого материала еще шире: помимо перечисленных машинных классов применяются и другие, например, 2-30 мм, 5-50 мм и т. д.
При выборе нижнего предела крупности машинного класса, обогащаемого в гидроциклоне, исходят из ряда технологических требований:
машинный класс не должен содержать тонких зерен шлама, загрязняющего суспензию, по крайней мере его количество не должно заметно ухудшать реологические свойства суспензии;
учитывая, что эффективность обогащения снижается с уменьшением крупности зерен, нижняя граничная крупность не должна быть меньше размеров зерен, за пределами которых разделение уже не является достаточно эффективным.
На практике нижний предел крупности обычно принимают равным 0,5–1 мм. Это – минимальная крупность, при которой рационально вести мокрую классификацию на вибрационных грохотах. Дальнейшее снижение граничной крупности невыгодно из-за уменьшения удельной производительности грохотов до низкого уровня.
По технологической эффективности нижний предел крупности зерен, обогащаемых в гидроциклонах, может быть принят равным примерно 0,2 мм. Показатель эффективности для этих зерен Е
= 0,20 получен на промышленных гидроциклонах, что находится на уровне эффективности обогащения частиц такой крупности другими методами (например, на концентрационных столах).
На основании результатов работы гидроциклона ГТ-3/80 на ЦОФ «Ткварчельская» В.И. Кармазин и П.И. Пилов [37] провели расчет нижнего предела крупности зерен угля, эффективно обогащаемых в гидроциклоне. Ими получено значение нижнего предела крупности примерно 0,09 мм. Фактически на ЦОФ «Ткварчельская» в схеме раздельной регенерации из промывных вод выделяется с помощью классификационных гидроциклонов шлам крупностью более 0,2 мм и присаживается к соответствующим продуктам обогащения [38]. Показатель эффективности для этого шлама составляет в первой секции гидроциклона Е
= 0,18, во второй секции – Е
= 0,195. Изменение реологических свойств суспензии связано с ее засорением тонким шламом. Поэтому в технологических параметрах [36] указано предельное содержание в машинном классе тонкого шлама крупностью менее 0,5 мм, равное 5 %.
При обогащении по низкой плотности разделения (например, 1400 кг/м
) даже значительное засорение суспензии шламом мало влияет на свойства суспензии, тогда как при обогащении по высокой плотности разделения (например, 2000 кг/м
) содержание в суспензии шлама должно быть строго ограниченным (не более 80 кг/м
).
Указывая нижнюю границу крупности машинного класса для тяжелосредных гидроциклонов при раздельной регенерации промывных вод в 0,2 мм, соответствующего глубине эффективного обогащения по крупности, следует отметить, что эти зерна намного крупнее зерен магнетита. Так, например, для гидроциклонной установки ЦОФ «Ткварчельская» среднединамический размер зерен магнетита, выходящего в слив вместе с концентратом, составляет 0,05 мм [37]. Если зерна шлама крупнее 0,2 мм мало влияют на реологические свойства суспензии, то увеличение их содержания в суспензии сопровождается одновременным увеличением количества более тонких частиц, ухудшающим реологические параметры суспензии. В ряде случаев при высокой плотности разделения для снижения содержания шлама в суспензии прибегают к увеличению нижнего предела крупности машинного класса до 1 и даже 1,5–2 мм.
Определение верхнего предела крупности машинного класса, обогащаемого в тяжелосредных гидроциклонах, связано как с технико-экономическими соображениями, так и с конструкцией аппарата (размер проходных сечений патрубков).
В тех случаях, когда материал данной крупности может быть обогащен с той же эффективностью в тяжелосредных сепараторах, отличающихся более высокой единичной производительностью и меньшими производственными затратами, чем тяжелосредные гидроциклоны, следует отдать предпочтение гравитационному обогащению. Для этих условий верхняя граница машинного класса, обогащаемого в гидроциклонах, будет определяться нижней границей машинного класса, обогащаемого в сепараторах (обычно 13 мм либо 25 мм). Следует учитывать, что эффективность обогащения узких классов крупности в гидроциклоне несколько выше, чем в сепараторе, кроме того для зерен близких к граничной крупности машинных классов это различие в эффективности заметно возрастает с увеличением вязкости рабочей среды (из-за высокой плотности разделения или значительного содержания шлама). Иногда выгодно принимать верхний предел машинного класса для гидроциклонов в 25(30), 40(50) мм, додрабливая более крупный уголь. В этом случае обогащение класса +0,5 мм производится одним машинным классом. Высокие технологические показатели могут быть получены при любом верхнем размере машинного класса, если этот размер не выходит за пределы технических возможностей гидроциклонов, т. е. если обогащаемый материал не содержит кусков, которые могут перекрыть внутреннее сечение патрубков аппарата.
Такие схемы являются целесообразными в связи с тем, что с ростом механизации добычи количество крупных классов в угле настолько сократилось, что их обогащение самостоятельным машинным классом стало менее экономичным, чем додрабливание и совместное обогащение с мелкими и средними классами. В этих схемах наиболее распространен класс 0,5-30 мм, иногда применяются классы 0,5-40 и 0,5-50 мм.
В зарубежной практике в технологических схемах принято сочетание тяжелосредных и водных обогатительных гидроциклонов. Для таких схем нижний предел машинного класса, обогащаемого в тяжелосредных гидроциклонах, принимается равным 2; 2,5; 3 или 5 мм. Мокрая классификация на грохотах по такой граничной крупности является более высокопроизводительной и эффективной, чем обесшламливание по крупности 0,5 мм, что составляет преимущество использования этих машинных классов. Применение нижнего предела крупности машинного класса для тяжелосредных гидроциклонов 2–5 мм можно рекомендовать только для углей легкой обогатимости, иначе более низкая эффективность водных гидроциклонов ухудшит общие технико-экономические показатели процесса.
В схемах имеет место и обогащение в тяжелосредных гидроциклонах двумя машинными классами, например, 2-20 и 20–50 мм.
При обогащении антрацита тяжелосредные гидроциклоны используются для сорта АС, имеющего крупность 6-13 мм, или сортов АС и АО крупностью от 6 до 25 мм.
Наибольшее распространение получили три способа обесшламливания: мокрая классификация на грохотах, гидравлическая классификация в багер-зумпфах, комбинированный способ с последовательной классификацией в багер-зумпфах и на грохотах (рис. 1.20). Выбор способа обесшламливания, как правило, связан с характером предшествующей ей классификации и с условиями транспортирования мелкого угля на гидроциклонную установку.
Для обогатительных фабрик является естественным подъем исходного угля на высоту, обеспечивающую дальнейшее самотечное движение его через обогатительные машины. Однако в случае применения тяжелосредных гидроциклонов такая система, как правило, становится неосуществимой. Установка с гидростатической подачей питания в гидроциклоны имеет высоту около 25 м, что делает нерациональным размещение над ней классификационных грохотов. Поэтому чаще мелкий уголь поднимается на гидроциклонную установку специальным транспортом.
Рис. 1.20. Схемы обесшламливания машинного класса перед обогащением
в гидроциклонах:
а – мокрая классификация на грохотах; б – гидравлическая классификация в багер-зумпфах;
в – комбинированная классификация в багер-зумпфах и на грохотах; 1 – дуговой грохот;
2 – вибрационный грохот; 3 – смеситель; 4 – багер-зумпф
На рис. 1.21 представлены схемы подготовки угля, отличающиеся в основном компоновкой оборудования.
Схемы (рис. 1.21, а и 1.21, б) применяются при сухой классификации исходного угля. Подача мелкого угля на дешламационный грохот осуществляется через смесительный желоб, в котором сыпучий поток превращается в пульпу. Для подъема угля используется конвейерный транспорт или элеватор. Схема (рис. 1.21, в) применяется как при сухой, так и при мокрой классификации. Смесительный желоб в ней заменяется дуговым грохотом, а для подачи угля на обогащение применяется насос. Использование схемы (рис. 1.21, г) наиболее рационально при мокрой классификации.
Рис. 1.21. Схемы подачи угля на дешламацию перед обогащением в гидроциклонах:
а, б – при сухой классификации; в, г – при мокрой классификации;
1 – желоб; 2 – вибрационный грохот; 3 – дуговой грохот; 4 – элеватор
Наиболее широко применяется технология обесшламливания на грохотах. Как правило, они устанавливаются совместно с дуговыми грохотами, так как независимо от системы классификации мелкий уголь подается на обесшламливание в виде пульпы. Количество воды, используемой для обесшламливания, зависит от системы транспортирования. При сухом транспортировании и раздельной подаче угля и воды в смесительный желоб на 1 т твердого материала расходуется 2–3 м
воды, около одной трети общего количества подается через брызгала на грохоте. При гидравлической подаче угля расход воды повышается до 3–4 м
/т. Кроме повышенного расхода воды насосная подача имеет еще один существенный недостаток – переизмельчение угля. Интенсивность измельчения зависит от физических свойств угля и породы и может быть весьма значительной.
Производительность дешламационных грохотов, обеспечивающая требуемую чистоту машинного класса и достаточное его обезвоживание, зависит от крупности обогащаемого материала.
На современных инерционных грохотах со щелевидными ситами с размером щели 0,5 мм приняты следующие нагрузки, т/м
:
Производительность дуговых грохотов согласуется с нагрузкой вибрационных грохотов и определяется с помощью следующих эмпирических зависимостей [36]:
и
где Q
и Q
– производительность гидроциклонной установки по твердому углю (т/ч) и по пульпе (м
/ч); F – площадь живого сечения сита, м
; ? – скорость подачи пульпы, м/с.
Мокрая классификация на щелевидных ситах, которая используется для обесшламливания угля, имеет одну особенность, весьма существенную как для обогащения машинного класса, так и для шламовой системы фабрики: заданная чистота надрешетного продукта достигается при значительных потерях этого продукта с подситным шламом. По данным института «Укрнииуглеобогащение» [38], содержание зерен, превышающих по крупности номинальный размер щели дешламационных грохотов, составляет на фабриках, обогащающих коксующиеся угли, 12,5 %, а на фабриках, обогащающих антрациты, 25 %. Засорение подрешетного продукта является как следствием наличия в угле плоских частиц, проходящих через щелевидное сито, так и следствием износа сит.
С учетом допускаемого засорения надрешетного продукта шламом и потерь со шламом более крупного материала, количество машинного класса, поступающего на обогащение после обесшламливания, составит [36]:
где Q и Q
– нагрузка соответственно на гидроциклоны и грохоты; ?– содержание в исходном продукте дешламации зерен, меньших, чем нижний предел крупности машинного класса.
Унос жидкости с надрешетным продуктом колеблется в пределах 1,0–0,4 м
/т. Меньшее значение относится к случаю, когда площадь сита обеспечивает сброс основного потока жидкости до разгрузочного конца. При подаче разбавленного питания и полном сбросе основного потока пульпы под решето, к.п.д. дугового сита может достигать 80–90 %.
Крупность граничного зерна классификации на дуговых ситах с поперечными щелями приблизительно в два раза меньше ширины щелей. Поэтому для обесшламливания угля, например, по зерну 0,5 мм ширина щели должна быть принята 1 мм.
Ширина дуговых сит, установленных перед обесшламливающими и обезвоживающими грохотами, должна быть равна ширине грохота ±0,2 м. Перед одним грохотом могут устанавливаться два сита.
При последовательной компоновке двух дуговых сит, которая рекомендуется для схем с переобогащением перемывочного продукта, удельная нагрузка по отделяемой суспензии составляет 45–50 м
/ ч на 1 м ширины сита.
В комплексе с гидроциклоном диаметром 500 мм обычно устанавливаются последовательно два дуговых сита шириной 600 мм.
Влажность обесшламленного материала после грохотов принимать в зависимости от крупности в пределах 18–23 %.
При содержании шлама в оборотной воде, не превышающем 100–120 г/л и отсутствии в рядовом угле глинистых, размокающих пород, в схемах гидроциклонных установок могут применяться багер-зумпфы, совмещающие обесшламливание угля и транспортирование его на обогащение.
Размеры элеватора определяются количеством обесшламленного угля, а площадь багер-зумпфа зависит от размера граничного зерна классификации. При обесшламливании по крупности 0,5 мм допустимая нагрузка составляет 15–20 м
/час на м
площади багер-зумпфа. Содержание класса +0,5 мм в сливе не превышает 5–6%. Содержание класса 0–0,5 мм после обесшламливания в багер-зумпфах составляет 15–17 %. влажность осадка багер-зумпфа следует принимать в пределах 25–30 %.
Количество шлама, образующегося при обесшламливании, принимать при самотечной подаче материала 1,5 % и при насосной подаче до 10 % от поступающего.
Подача мелкого машинного класса в тяжелосредный гидроциклон осуществляется вместе с магнетитовой суспензией под геометрическим напором пульпы не менее 9 диаметров гидроциклона. Для гидроциклонов с безнапорной подачей угля, в которых рабочий напор суспензии обеспечивается насосом, приняты несколько большие давления – 0,12-0,15 МПа.
При обогащении мелкого машинного класса в тяжелосредных гидроциклонах содержание шлама крупностью 0–0,5 мм в нем не должно превышать 5 % при совместной регенерации промывочных вод от всех продуктов обогащения и выведении на регенерацию 10–15 % рабочей суспензии и 10 % при раздельной регенерации промывочных вод и выведении на регенерацию 30–40 % рабочей суспензии.
Для тщательного обесшламливания мелкого угля над обезвоживающими грохотами устанавливают одно-два брызгальных устройства, к которым подводят чистую добавочную воду с содержанием твердого не выше 20–30 г/л.
Влажность обесшламленного мелкого машинного класса не должна превышать 15 % для центрифуг, 23 % для грохотов, 30 % для багер-элеваторов – чем меньше, тем лучше.
1.4.4. Подготовка угольного шлама к тяжелосредному обогащению
Подготовка угольного шлама к тяжелосредному обогащению в гидроциклонах с магнетитовой суспензией представляет собой выделение из подситного продукта узла обесшламливания мелкого машинного класса илистой составляющей крупностью менее 0,1 мм.
Согласно [39–41], класс менее 0.1 мм имеет низкую эффективность разделения в гидроциклонах с магнетитовой суспензией и почти с одинаковой зольностью распределяется по продуктам обогащения пропорционально их массовым потокам. Поэтому, чтобы не допустить озоления концентрата и повышения потерь угля с отходами, этот класс должен быть удален из продуктов обогащения.
Обогащение угольного шлама может осуществляться одним или двумя машинными классами. В первом случае крупность машинного класса 0,1–3 мм, во втором – 0,5–3 мм и 0,1–0,5 мм.
Удаление класса 0–0,1 мм можно осуществлять до операции обогащения (из исходного продукта тяжелосредных гидроциклонов перед смешиванием его с магнетитовой суспензией), после операции обогащения (из продуктов обогащения при отмывке магнетита и их обезвоживании) и после регенерации магнетитовой суспензии (из шламовой воды после удаления магнетита на электромагнитных сепараторах).
Для удаления класса 0–0,1 мм в зависимости от типа исходного продукта, его крупности, количества и разубоженности применяют специальные аппараты, высокочастотные грохоты, гидроциклоны и сгустители.
Специальные аппараты для тонкого грохочения описаны в [42–45], высокочастотные грохоты в [46–49], гидроциклоны в [50–53], сгустители в [54–57].
Технические характеристики оборудования для тонкой классификации угольных шламов приведены в табл. [A8 – A15], а общие виды некоторых специальных аппаратов, высокочастотных грохотов, гидроциклонов и сгустителей – на рис. 1.22-1.25.
Основным и наиболее распространенными аппаратами при классификации угольных шламов являются высокочастотные грохоты и гидроциклоны.
При тонком грохочении угольных шламов перевод частиц меньше крупности разделения в подситный продукт осуществляется посредством воды: чем меньше содержание твердого в исходном продукте, тем выше извлечение этих частиц. Рекомендуемое содержание твердого в исходном продукте должно находиться на уровне 200–300 г/л или 15–20 % по массе. С этой точки зрения грохоты для тонкого грохочения должны иметь большую ширину, а длину не более 1,5 мм. В противном случае, при большой длине грохота необходимо добавлять большее количество воды на сито, при ее незначительном промывочном эффекте. При необходимости иметь большую длину ситовой поверхности между ее участками устанавливаются так называемые желоба репульпации, в которые подается чистая вода. Вода подается противотоком движению надситного продукта грохота.
Рис. 1.22. Специальные аппараты:
а – механический спиральный классификатор; б – грохот ГК8 с простукиванием сита;
в – цилиндроконический сгуститель; г – гидравлический камерный классификатор
Рис. 1.23. Высокочастотные грохоты для классификации угольных шламов:
а – грохот с непосредственным возбуждением сита; б – поличастотный грохот;
в – репульпирующий грохот Деррика; г – грохот Stack Sizer
; д – типа ZGP-S
Рис. 1.24. Гидроциклоны для классификации угольных шламов:
а – ГЦ; б – типа «Кребс»; в – батарейные гидроциклоны типа БГЦ;
г – циклонно-ситовый классификатор ЦСК-600 и его сита
Рис. 1.25. Сгустители для классификации угольных шламов:
а – радиальный; б – конический; в – пластинчатый
При тонком грохочении должны соблюдаться следующие принципы:
1) для прохождения тонких частиц через сита необходимо достаточное количество воды и высокочастотная вибрация;
2) исходный продукт должен подаваться на ситовую панель грохота тонким слоем;
3) надситный продукт должен быстро удаляться с сита, чтобы эффективная область сита и грохота оставалась свободной, поэтому длина сита должна быть короткой;
4) ширина грохота – наиболее важный фактор, определяющий его производительность.
Нагрузка на грохоты типа «Derrick» при классификации угольных шламов с содержанием твердого в исходной пульпе не более 300 г/л составляют: при щели отверстий 0,075 мм – 3,5 т/ч на 1 деку, при щели отверстий 0,1 мм – 8,0 т/ч на 1 деку, при щели отверстий 0,2 мм – 16 т/ч на 1 деку. При этом расход чистой воды для ополаскивания находится в пределах 150–200 л/ч на 1 деку.
При классификации угольных шламов в гидроциклонах их номинальная производительность соответствует паспортной, а эффективность классификации и граничная крупность разделения определяется диаметром гидроциклона, давлением подачи исходной пульпы, гранулометрическим составом угольного шлама, содержанием твердого в исходной пульпе, диаметрами песковой и сливной насадок и их соотношением с диаметром входного патрубка. Кроме того, на эффективность классификации и величину граничной крупности разделения влияют следующие конструктивные параметры гидроциклона:
– диаметр и глубина погружения сливного стакана;