banner banner banner
Завтрак с Эйнштейном. Экзотическая физика повседневных предметов
Завтрак с Эйнштейном. Экзотическая физика повседневных предметов
Оценить:
Рейтинг: 0

Полная версия:

Завтрак с Эйнштейном. Экзотическая физика повседневных предметов

скачать книгу бесплатно

Продолжение истории

Описанное выше ни в коем случае нельзя считать полной историей фундаментальной физики. Четыре фундаментальных взаимодействия, которые питают Солнце энергией, единственные, которые мы знаем, но Стандартная модель включает четыре типа кварков помимо семейств верхних и нижних, которые составляют протоны и нейтроны, а также четыре дополнительных лептона, кроме электрона и электронного нейтрино. Частицы в Стандартной модели также имеют эквиваленты из антиматерии – частицы с такой же массой, но противоположным зарядом. Когда частица встречает своего двойника из антиматерии, они взаимно уничтожаются (аннигилируют), превращая их массу в высокоэнергетические фотоны света.

Существование всех этих частиц было экспериментально подтверждено, и их свойства изучены очень детально. Однако ни одна из этих дополнительных частиц не «живет» слишком долго. Самая длительная по времени существования частица – наверное, мюон со средней продолжительностью жизни около двух миллионных секунды, поэтому их влияние на повседневное бытие весьма минимально. Они создаются на скоротечный миг в высокоэнергетическом слиянии между более обычными частицами как в земных физических экспериментах, так и в астрофизических событиях. Они очень быстро распадаются на верхний и нижний кварки (обычно в форме протонов и нейтронов), электроны и нейтрино. История их открытия и развитие Стандартной модели восхитительна, но она лежит за пределами нашей книги.

В целях исследования физики повседневных предметов мы можем ограничить себя всего тремя, наиболее знакомыми, материальными частицами: протонами, нейтронами и электронами. Они комбинируются для создания атомов, которые, в свою очередь, создают все, с чем мы взаимодействуем в ходе нашего обычного дня. В терминах фундаментальных взаимодействий типичная утренняя рутина в основном связана с электромагнетизмом, он ответственен за удержание атомов и молекул между собой и объединяет материю и свет.

Стоит помнить, что все четыре взаимодействия, действуя среди кварков и лептонов, требуются для работы нашего самого существенного ежедневного товарища – Солнца.

Глава 2

Нагревательный элемент: Отчаянный трюк Планка

На кухне я наливаю воду для чая, проверяя, светится ли нагревательный элемент, чтобы убедиться, что я спросонок опять не поставил чайник не на ту конфорку…

Красное свечение горячего предмета – один из простейших и наиболее универсальных явлений в физике. Если вы возьмете кусочек любого материала, достаточно горячего, то он начнет светиться сначала красным цветом, потом желтым, потом белым. Цвет зависит только от температуры предмета. Неважно, что за материал был взят – стержень чистого стекла или чугуна, нагретый до той же температуры он будет светиться абсолютно тем же цветом. Метод нагревания также не важен, пропускаете ли вы электрический ток через виток металла, как в моей электрической печке, или помещаете этот виток в раскаленный уголь, цвет горячего металла будет одинаковым при определенной температуре.

Такое простое и универсальное поведение действовало на физиков как валерьянка на котов, потому что оно предполагало, что в основе этого явления должен быть простой и всеобщий принцип. В поздние 1500-е годы Галилео Галилей и Симон Стевин эмпирически продемонстрировали, что различные материалы и гири падают с одинаковым ускорением: Стевин бросал два свинцовых шара, один в десять раз тяжелее, чем другой, с церковной колокольни[28 - Эти опыты можно делать, только если оба предмета достаточно плотные, чтобы пренебречь силой сопротивления воздуха. Если вы будете бросать вниз скрепку для бумаги и перо, скрепка будет падать быстро, в то время как перо будет опускаться на землю медленно. Сила гравитации, действующая на них, одинакова, в вакууме они достигли бы земли одновременно, как это было театрально продемонстрировано командиром Дэйвом Скоттом во время миссии «Аполлона-15» на Луну. – Прим. авт.].

Это наблюдение позволило Исааку Ньютону разработать закон всеобщего тяготения в 1600-х годах. Через несколько сотен лет еще одно направление, основанное на том же принципе, вдохновило Альберта Эйнштейна на создание общей теории относительности, которая до сих пор остается нашей лучшей теорией гравитации.

Эйнштейн вспоминал ключевой момент в развитии своей теории – в 1907 год, когда его озарило понимание, что человек, падающий с крыши, будет чувствовать невесомость во время падения. Появилась связь между ускорением и гравитацией, что и является основой общей относительности. Эйнштейн говорил об этом как о «самой счастливой мысли всей своей жизни». Математическая проработка последствия этой счастливой мысли заняла почти восемь лет, но ученый создал одну из величайших и наиболее успешных теорий современной физики.

Универсальное поведение теплового излучения в таком случае представляется похожим на многообещающий источник озарения: на этом явлении хорошо тестировать идеи о распределении энергии в горячих объектах и способах взаимодействия света и материи. К несчастью, в конце 1800-х годов усилия физиков предсказать цвет света, испускаемого горячими предметами при различных температурах, потерпели неудачу.

В конце концов объяснение температурного излучения потребовало радикального разрыва с существующей физикой. Начальная точка для всей квантовой теории, чье применение физики все еще обсуждают по прошествии столетия, обнаруживается в красном свечении нагревательных элементов, которые мы используем для приготовления завтрака.

В практическом смысле все экзотические явления, связанные с квантовой физикой – дуальная волновая природа частиц, кот Шрёдингера, «спутанная связь» на расстоянии, могут быть продемонстрировано прямо на вашей кухне.

Световые волны и цвета

Как часто случается, самый простой способ объяснить необходимость в радикально новой теории – это демонстрация провала прежней теории. До того, как мы поймем, как квантовая модель решила проблему теплового излучения, мы должны увидеть, почему этого не смогла сделать классическая физика. Для этого, несомненно, нужно разобраться в основах того, что классическая физика говорит о свете, тепле и материи.

Первой, очень важной, концепцией, лежащей в основе экспериментов, которые привели к разрушению классической физики, считается идея, что свет – это волна. Волновая природа света была известна за полвека до уравнений Максвелла, по большей части благодаря экспериментам, выполненным около 1800 года английским эрудитом Томасом Юнгом[29 - Ю н г, Томас (1773–1829) – английский ученый широкого профиля: физик, механик, врач, астроном, филолог, востоковед. – Прим. ред.]. Физики спорили, представлять свет лучше всего как поток частиц или как волну в какой-то субстанции, но Юнг убедительно продемонстрировал волновую природу своим гениально простым экспериментом со светом «на двух щелях»: свет проходил через две узкие щели, прорезанные в экране. Юнг обнаружил, что свет, который проникал через две близко расположенные прорези в экране, с другой стороны не превращался в две яркие полоски, как можно было бы ожидать (как в случае со светом, проходившим через одну прорезанную щель). Вместо этого на экране появлялся ряд светлых и темных точек[30 - Если вы хотите увидеть это сами, то должны сделать две тонкие прорези на кусочке алюминиевой фольги и осветить их с помощью лазерной указки. Другое явление, также очень тесно связанное с этим опытом, еще проще увидеть: если вы поставите прядь волос на пути лазерной указки, световые волны обогнут отдельные волосинки с разных сторон, сложатся и создадут образ (паттерн) из множества пятен. – Прим. авт.].

Эти пятна возникают в ходе процесса, известного как «интерференция», который происходит тогда, когда складываются волны из двух различных источников. Если две волны приходят в конкретную точку пространства «в фазе», так что пики (гребни, максимумы) одной волны совпадают с гребнями другой волны, они складываются и образуют волну с более высоким гребнем, чем каждая по отдельности. С другой стороны, если волны приходят «не в фазе», например, гребень одной волны и впадина другой, они взаимно вычитаются, и гребень одной волны заполнит долину другой, в результате волны не будет совсем. Это работает для любых источников волн, например, так бывает при возникновении сложных паттернов (картинок) от волн в прудах развлекательных парков. Тот же процесс интерференции используется для уничтожения волн и подавления «шума» в наушниках.

Интерференция в эксперименте Юнга получается потому, что волнам света от каждой щели нужно различное количество времени, чтобы дойти до определенной точки на экране. В точке ровно по центру между двумя щелями обе волны идут одно и то же расстояние и таким образом приходят в фазе, образуя яркое пятно. В точке несколько слева от центра волны от щели с левой стороны проходят более короткий путь до экрана, чем волны от щели с правой стороны. Это дополнительное расстояние означает, что волны от правой щели чуть дольше колебались и пики правощелевых волн совпадают с долинами лево-щелевых, образуя темное пятно. Еще чуть дальше, и дополнительное расстояние позволяет волнам закончить колебание до полного цикла, накладывая пики волн от правой и левой щели друг на друга и создавая следующее яркое пятно.

Этот паттерн повторяется много раз, создавая ряд светлых и темных пятен. Расстояние между светлыми пятнами имеет простую зависимость от длины волны, обеспечивая удобный способ измерять длину волны видимого света. В современных единицах она варьируется от 400 нанометров для фиолетового цвета до примерно 700 нанометров[31 - Один нанометр равен 10

метра, или 0.000000001 м. – Прим. авт.] для глубоко красного цвета. Добавление дополнительных щелей будет делать яркие точки уже и более отчетливыми. К 1820-м годам Йозеф фон Фраунгофер[32 - Ф р а у н г о ф е р, Йозеф фон (1787–1826) – немецкий физик-оптик. – Прим. ред.] использовал «дифракционные решетки», основанные на интерференции света, для того, чтобы сделать первые достаточно точные измерения длин волн света, испускаемого Солнцем и другими звездами.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 1 форматов)